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Abstract :   This paper is an investigation into the determinants of  asymmetries in stock returns.  
We develop a series of  cross-sectional regression specifications which attempt to forecast 
skewness in the daily returns of individual stocks.  Negative skewness is most pronounced in 
stocks that have experienced: 1) an increase in trading volume relative to trend over the prior six 
months; and 2)  positive returns over the prior thirty-six months.  The first finding is consistent 
with the model of Hong and Stein (1999), which predicts that negative asymmetries are more 
likely to occur when there are large differences of opinion  among investors.  The latter finding 
fits with a number of theories, most notably Blanchard and Watson’s (1982) rendition of stock-
price bubbles.  Analogous results also obtain when we attempt to forecast the skewness of the 
aggregate stock market, though our statistical power in this case is limited.   
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I.  Introduction 

Aggregate stock-market returns are asymmetrically distributed.  This asymmetry can be 

measured in several ways.  First, and most simply, the very largest movements in the market are 

usually decreases, rather than increases—that is, the stock market is more prone to melt down 

than to melt up.  For example, of the ten biggest one-day movements in the S&P 500 since 1947, 

nine were declines.1  Second, a large literature documents that market returns exhibit negative 

skewness, or a closely related property, “asymmetric volatility”—a tendency for volatility to go 

up with negative returns.2   Finally, since the crash of October 1987, the prices of stock-index 

options have been strongly indicative of a negative asymmetry in returns, with the implied 

volatilities of out-of-the-money puts far exceeding those of out-of-the-money calls; this pattern 

has come to be known as the “smirk” in index implied volatilities.3 

 While the existence of negative asymmetries in market returns is generally not disputed, 

it is less clear what underlying economic mechanism these asymmetries reflect.  Perhaps the 

most venerable theory is based on leverage effects (Black (1976), Christie (1982)), whereby a 

drop in prices raises operating and financial leverage, and hence the volatility of subsequent 

returns.  However, it appears that leverage effects are not of sufficient quantitative importance to 

explain the data (Schwert (1989), Bekaert and Wu (1997)).  This is especially true if one is 

interested in asymmetries at a relatively high frequency, e.g., in daily data.  To explain these, one 

has to argue that intra-day changes in leverage have a large impact on volatility—that a drop in 

                                                           
1 Moreover, the one increase—of 9.10 percent on October 21, 1987—was right on the heels of the 20.47 percent 
decline on October 19, and arguably represented a correction of the microstructural distortions that arose on that 
chaotic day, rather than an independent price change. 
2 If, in a discrete-time setting, a negative return in period t raises volatility in period t+1 and thereafter,  returns 
measured over multiple periods will be negatively skewed, even if single-period returns are not.   The literature on 
these phenomena includes Pindyck (1984), French, Schwert and Stambaugh (1987), Campbell and Hentschel 
(1992), Nelson (1991), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993), Braun, Nelson and Sunier 
(1995), Duffee (1995), Bekaert and Wu (1997) and Wu (1997). 
3 See, e.g., Bates (1997), Bakshi, Cao and Chen (1997), and Dumas, Fleming and Whaley (1998). 



 2

prices on Monday morning leads to a large increase in leverage and hence in volatility by 

Monday afternoon, so that overall, the return for the full day Monday is negatively skewed. 

 An alternative theory is based on a  “volatility feedback” mechanism.  As developed by 

Pindyck (1984), French, Schwert and Stambaugh (1987), Campbell and Hentschel (1992) and 

others, the idea is as follows:  When a large piece of good news arrives, this signals that market 

volatility has increased, so the direct positive effect of the good news is partially offset by an 

increase in the risk premium.  On the other hand, when a large piece of bad news arrives, the 

direct effect and the risk-premium effect now go in the same direction, so the impact of the news 

is amplified.  While the volatility-feedback story is in some ways more attractive than the 

leverage-effects story, there are again questions as to whether it has the quantitative kick that is 

needed to explain the data.  The thrust of the critique, first articulated by Poterba and Summers 

(1986), is that shocks to market volatility are for the most part very short-lived, and hence cannot 

be expected to have a large impact on risk premia. 

 A third explanation for asymmetries in stock-market returns comes from stochastic 

bubble models of the sort pioneered by Blanchard and Watson (1982).   The asymmetry here is 

due to the popping of the bubble—a low probability event that produces large negative returns.   

 What the leverage-effects, volatility-feedback and bubble theories all have in common is 

that they can be cast in a representative-investor framework.4  In contrast, a more recent 

explanation of return asymmetries, Hong and Stein (1999), argues that investor heterogeneity is 

central to the phenomenon.  The Hong-Stein model rests on two key assumptions: there are 

differences of opinion among investors as to the fundamental value of  the market; and there are 

                                                           
4 This is not to say that all bubble models adopt a representative-agent approach—only that their central prediction 
of return asymmetries does not require investor heterogeneity.  For a more recent bubble model that explicitly 
incorporates heterogeneity, see e.g., Allen, Morris and Postlewaite (1993).  In their paper, heterogeneity is motivated 
by a desire to generate bubbles in a finite-horizon setting. 
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short-sales constraints.  When differences of opinion are initially large, the short-sales constraint 

forces the more bearsish investors to a corner solution, in which they sell all of their shares and 

just sit out of the market.  As a consequence of being at a corner, their information is not fully 

incorporated into prices.  However, if after this information is hidden, other, previously-more-

bullish investors have a change of heart and bail out of the market, the originally-more-bearish  

group may become the marginal “support buyers” and hence more will be learned about their 

signals.  Thus accumulated hidden information tends to come out during market declines, which 

is another way of saying that returns are negatively skewed. 

 With its focus on differences of opinion, the Hong-Stein model has distinctive empirical 

implications that are not shared by the representative-investor theories.  In particular, the Hong-

Stein model predicts that negative skewness in returns will be most pronounced after periods of 

heavy trading volume.  This is because—like in many models with differences of opinion—

trading volume proxies for the intensity of disagreement.5  When disagreement (and hence 

trading volume) is high, it is more likely that bearish investors will be at a corner, with their 

information incompletely revealed in prices.  And it is precisely this hiding of information that 

sets the stage for negative skewness in subsequent periods, when the arrival of bad news to other, 

previously-more bullish investors can force the hidden information to come out. 

 In this paper, we undertake an empirical investigation that is motivated by this 

differences-of-opinion theory.  We develop a series of cross-sectional regression specifications 

that attempt to forecast skewness in the daily returns to individual stocks.6  One of our key 

                                                           
5 See Varian (1989),  Harris and Raviv (1993), Kandel and Pearson (1995) and Odean (1998a) for other models with 
this feature. 
6 Thus when we speak of “forecasting crashes” in the title of the paper, we are implicitly adopting a narrow 
definition of the word “crashes”,  associating  it solely with the conditional skewness of the return distribution; we 
are not in the business of forecasting negative expected returns.  This usage follows Bates (1991, 1997), who also 
interprets conditional skewness—in his case, inferred from options prices—as a measure of crash expectations.  
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forecasting variables is the recent deviation of turnover from its trend.  For example, at the firm 

level, we ask whether the skewness in daily returns measured over a given six-month period (say 

 July 1-December 31 1998) can be predicted from the detrended level of turnover over the prior 

six-month period (January 1-June 30 1998).   It turns out that firms which experience larger 

increases in turnover relative to trend are indeed predicted to have more negative skewness; 

moreover, the effect of turnover is  strongly statistically and economically significant.   

 In an effort to isolate the effects of turnover, our specifications also include a number of 

other variables.  These other variables can be divided into two categories.  In the first category 

are those that, like detrended turnover, capture time-varying influences on skewness. The other 

very significant variable in this category is past returns.  When past returns have been high, 

skewness is forecasted to become more negative.  The predictive power is strongest for returns in 

the prior six months, but there is some ability to predict negative skewness based on returns as 

far back as thirty-six months.  This result can be rationalized in a number of ways, but it is 

perhaps most clearly suggested by models of stochastic bubbles.  In the context of a bubble 

model, high past returns imply that the bubble has been building up for a long time, so that there 

is a larger drop when it pops and prices fall back to fundamentals. 

 The second category of variables that help to explain skewness are those that appear to be 

picking up relatively fixed firm characteristics.  For example, skewness is more negative on 

average for large-cap firms.  We are not aware of any theories that would have naturally led one 

to anticipate this finding.7   Rather, for our purposes a variable like size is best thought of as an 

atheoretic control—it is included in our regressions to help ensure that we do not mistakenly 

attribute explanatory power to turnover when it is actually proxying for some other firm 

                                                           
7 Though one can of course cook up stories after the fact.  We offer one such story below. 
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characteristic.  Such a control may be largely redundant to the extent that detrending the turnover 

variable already removes firm effects, but we keep it in to be safe.  

In addition to running our cross-sectional regressions with the individual-firm data, we 

also experiment briefly with analogous time-series regressions for the U.S. stock market as a 

whole.  Here, we attempt to forecast the skewness in the daily returns to the market using 

detrended market turnover and past market returns.  Obviously, this pure time-series approach 

entails an enormous loss in statistical power—with data going back to 1962, we have less than 

70 independent observations of market skewness measured at six-month intervals—which is why 

it is not the main focus of our analysis.  Nevertheless, it is comforting to note that the qualitative 

results from the aggregate-market regressions closely parallel those from the cross-sectional 

regressions: high values of both detrended turnover and past returns also forecast more negative 

market skewness.  The coefficient estimates continue to imply economically meaningful effects, 

although that for detrended turnover is no longer statistically significant. 

While both the cross-sectional and time-series results are broadly consistent with the 

theory we are interested in, we should stress that we do not at this point view them as a tight test. 

For even if innovations to trading volume do proxy for the intensity of disagreement among 

investors, they likely capture other factors as well—such as changes in trading costs—that we 

have not adequately controlled for.  More generally, our efforts to model the determinants of 

conditional skewness at the firm level are really quite exploratory in nature.8  Given how early it 

is in this game, we are naturally reluctant to declare an unqualified victory for any one theory. 

  The remainder of the paper is organized as follows.  In Section II, we review in more  

                                                           
8 By contrast, there is a huge literature on forecasting volatility.  And as noted above, many models of conditional 
volatility have implications for the average degree of skewness in stock returns.  But we aim to understand variation 
over time and across stocks in the degree of skewness, which represents different—and more uncharted—territory. 
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detail the theoretical work that motivates our empirical specification.  In Section III, we discuss 

our sample and the construction of our key variables.  In Section IV, we present our baseline 

cross-sectional regressions, along with a variety of sensitivities and sample splits.  In Section V, 

we  consider the analogous time-series regressions, in which we attempt to forecast the skewness 

in aggregate-market returns.  In Section VI, we use an option-pricing metric to evaluate the 

economic signficance of our results.  Section VII concludes. 

   

II.  Theoretical Background 

The model of Hong and Stein (1999), which provides the principal motivation for our 

empirical tests, begins with the assumption that there are two investors, A and B, each of whom 

gets a private signal about a stock’s terminal payoff.  As a matter of objective reality, each 

investor’s signal contains some useful information.  However, A  only pays attention to his own 

signal, even if that of B is revealed to him, and vice-versa.  This deviation from full Bayesian 

rationality—which can be thought of as a form of overconfidence—leads to irreducible 

differences of opinion about the stock’s value.   

In addition to investors A and B, the model also incorporates a class of fully rational, 

risk-neutral arbitrageurs.  These arbitrageurs recognize that the best estimate of the stock’s true 

value is formed by averaging the signals of A and B.  However, the arbitrageurs may not always 

get to see both of the signals, because A and B face short-sales constraints.  Importantly, the 

arbitrageurs themselves are not short-sales-constrained, so they can take infinitely large positive 

or negative positions.  Perhaps the most natural interpretation of these assumptions is not to take 

the short-sales constraint literally—as an absolute technological impediment to trade—but  rather 
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to think of investors A and B as institutions like equity mutual funds, many of whom are 

precluded by their charters or operating policies from ever taking short positions.9  In contrast, 

the arbitrageurs might be thought of as hedge funds who are not subject to such restrictions. 

There are two trading dates.  To see how the model can generate asymmetries, imagine 

that at time 1, investor B gets a pessimistic signal, so that his valuation for the stock lies well 

below A’s.  Because of the short-sales constraint, B will simply sit out of the market, and the 

only trade will be between investor A and the arbitrageurs.  The arbitrageurs are rational enough 

to figure out that B’s signal is below A’s, but they cannot know by how much.  Thus the market 

price at time 1 impounds A’s prior information, but does not fully reflect B’s time-1 signal. 

Next, move to time 2, and suppose that A gets a new positive signal.  In this case, A 

continues to be the more optimistic of the two, so his new time-2 signal is incorporated into the 

price, while B’s time-1 signal remains hidden.   On the other hand, if A gets a bad signal at time 

2, some of B’s previously-hidden information may come out.  This is because as A bails out of 

the market at time 2, the arbitrageurs learn something by observing if and at what price B steps 

in and starts being willing to buy.   In other words, there is information in how B responds to A’s 

reduced demand for the stock—in whether or not B gets up off the sidelines and provides buying 

support.  Thus more information comes out when the stock price is falling at time 2, which 

implies that time-2 returns will be negatively skewed. 

However, this logic is not sufficient to establish that unconditional returns (i.e., the 

average across time 1 and time 2) are negatively skewed.  There is a countervailing positive-

skewness effect at time 1, since the most negative draws of B’s signal are the ones that get 

hidden from the market at this time.  When A’s and B’s priors are sufficiently close to one 

                                                           
9 That such a restriction is common is indirectly suggested by the work of Koski and Pontiff (1999), who document 
that 79% of equity mutual funds make no use whatsoever of derivatives (either futures or options). 
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another, the positive time-1 skewness can actually overwhelm the negative time-2 skewness, so 

that returns are on average positively skewed.  Nevertheless, Hong and Stein show in their 

Proposition 3 that if the ex ante divergence of opinion (i.e. the difference in priors) between A 

and B is great enough, the time-2 effect dominates, and unconditional returns are negatively 

skewed.10 

More directly relevant for our purposes is a result (Proposition 5) about the conditional 

skewness of time-2 returns.  When differences of opinion are particularly pronounced at time 

1—i.e., when B’s signal is much lower than A’s—this is when B’s signal is most likely to remain 

hidden, thereby setting the stage for negative skewness at time 2.  And large differences of 

opinion at time 1 also manifest themselves as unusually large trading volume, with A doing the 

buying, and the arbitrageurs doing the selling.  Thus high trading volume at time 1 forecasts 

more negative skewness at time 2.  This conditional statement is true regardless of whether 

unconditional skewness is positive or negative, and it forms the basis for our empirical tests.     

 In order to isolate this particular theoretical effect, we need to be aware of other 

potentially confounding factors.  For example, is is well-known that trading volume is correlated 

with past returns (Shefrin and Statman (1985), Lakonishok and Smidt (1986), Odean (1998b)).  

And, as noted above, past returns might also help predict skewness, if there are stochastic 

bubbles of the sort described by Blanchard and Watson (1982).11  To account for this possibility,  

all of our regressions include a number of lags of past returns on the right-hand side. 

In a similar vein, one might also worry about skewness being correlated with volatility. 

                                                           
10 It is this unconditional skewness feature—which is driven by the short-sales constraint—that most clearly 
distinguishes the model of Hong and Stein from other related models in which pent-up information  is revealed  
through the trading process (e.g., Grossman (1988), Genotte and Leland (1990) Jacklin et al (1992), and Romer 
(1993)).   In these other models, returns are on average symmetrically distributed, albeit potentially quite volatile. 
11 In the model of Coval and Hirshleifer (1998), there is also conditional negative skewness after periods of positive 
returns, even though unconditionally, average skewness is zero.  
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There are a number of models which can deliver such a correlation; e.g., in the volatility- 

feedback model of Campbell and Hentschel (1992), higher levels of volatility are associated with 

more negative skewness.  To the extent that such an effect is present in our data, we would like 

to know whether turnover is forecasting skewness directly—as it should, according to the Hong-

Stein model—or whether it is really just forecasting volatility, which is in turn correlated with 

skewness.  To address this concern, all of our regressions include some control for volatility, and 

we experiment with several ways of doing this control. 

 

III.  Data   

To construct our variables, we begin with data on daily stock prices and monthly trading 

volume for all NYSE and AMEX firms, from the CRSP daily and monthly stock files.  Our 

sample period begins in July 1962, which is as far back as we can get the trading volume data.  

We do not include NASDAQ firms.  This is because we want to have a uniform and accurate 

measure of trading volume, and the dealer nature of the NASDAQ market is likely to render 

turnover in its stocks not directly comparable to that of NYSE and NASDAQ stocks.   We also 

follow convention and exclude ADRs, REITs, closed-end funds, primes and scores—i.e., stocks 

that do not have a CRSP share type code of 10 or 11.   

For most of our analysis, we further truncate the sample by eliminating the very smallest 

stocks in the NYSE/AMEX universe—in particular, those with a market capitalization below the 

20th percentile NYSE breakpoint.  We do so because our goal is to use trading volume as a proxy 

for differences of opinion.  Theoretical models that relate trading volume to differences of 

opinion typically assume that transactions costs are zero.  In reality, variations in transactions 

costs are likely to be an important driver of trading volume, and more so for very small stocks.   
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By eliminating the smallest stocks, we hope to raise the ratio of signal (differences of opinion) to 

noise (transactions costs) in our key explanatory variable.  We also report some sensitivities in 

which the smallest stocks are analyzed separately (see Table 4 below), and as one would expect 

from this discussion, the coefficients on turnover for this subsample are noticeably smaller. 

 Our baseline measure of skewness, which we denote NCSKEW, for “negative coefficient 

of skewness”, is calculated by taking the negative of (the sample analog to) the third moment of 

daily returns, and dividing it by (the sample analog to) the standard deviation of daily returns 

raised to the third power.  Thus for any stock i over any six-month period t, we have: 

 

 NCSKEWit =  -(n(n-1)3/2E Rit
3)/((n-1)(n-2)(E Rit

2)3/2 )           (1)                            

 

where Rit represents the sequence of demeaned daily returns to stock i during period t, and n is 

the number of observations on daily returns during the period.12  These daily “returns” are, more 

precisely, actually log changes in price.  We use log changes as opposed to simple daily 

percentage returns because they allow for a natural benchmark—if stock returns were 

lognormally distributed, then an NCSKEW measure based on log changes should have a mean of 

zero.  However, we have also redone everything with an NCSKEW measure based instead on 

simple daily percentage returns, and none of our main results are affected.13  

                                                           
12 In calculating NCSKEW, as well as any other moments which rely on daily return data, we drop any firm which 
has more than five missing observations on daily returns in a given period. 
13 Using simple percentage returns instead of log changes does have two (predictable) effects:  1) it makes returns 
look more postively skewed on average; and 2) it induces a pronounced correlation between skewness and 
contemporaneously measured volatility.  However, given that we control for volatility in all of our regression 
specifications, using simple percentage returns does not materially alter the coefficients on turnover and past returns. 
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Scaling the raw third moment by the standard deviation cubed allows for comparisons 

across stocks with different variances; this is the usual normalization for skewness statistics.14   

By putting a minus sign in front of the third moment, we are adopting the convention that an 

increase in NCSKEW corresponds to a stock being more “crash prone”—i.e., having a more left-

skewed distribution.  

 For most of our regressions, the daily firm-level returns that go into the calculation of the 

NCSKEW variable are market-adjusted returns—the log change in stock i less the log change in  

the value-weighted CRSP index for that day.  However, we also rerun everything with variations 

of NCSKEW based on both: 1) excess returns (the log change in stock i less the T-bill return); as 

well as 2) beta-adjusted returns.  As will be seen, these variations do not make much difference 

to our results with NCSKEW. 

 In addition to NCSKEW, we also work with a second measure of return asymmetries 

which does not involve third moments, and hence is less likely to be overly influenced by a 

 handful of extreme days. This alternative measure, which we denote by DUVOL, for “down-to-

up volatility”, is computed as follows.  For any stock i over any six-month period t, we separate 

all the days with returns below the period mean (“down” days) from those with returns above the 

period mean (“up” days), and compute the standard deviation for each of these sub-samples 

separately.  We then take the log of the ratio of (the sample analog to) the standard deviation on 

the down days to (the sample analog to) the standard deviation on the up days.  Thus we have:  

 

DUVOLit =  log{(nu-1)EDOWN Rit
2/((nd-1)EUP Rit

2 )}            (2) 

 

                                                           
14 See, e.g., Greene (1993). 
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where nu  and nd  are the number of up and down days, respectively.  Again, the convention is 

that a higher value of this measure corresponds to a more left-skewed distribution.  To preview, 

our results with NCSKEW and DUVOL are for the most part quite similar, so it does not appear 

that they depend on a particular parametric representation of return asymmetries. 

 In our regressions with firm-level data, we use non-overlapping six-month observations 

on skewness.  In particular, the NCSKEW and DUVOL measures are calculated using either data 

from January 1- June 30, or July 1-December 31 of each calendar year.  We could in principle 

use overlapping data—so that we would have a new skewness measure every month—but there 

is little payoff to doing so, since, as will become clear shortly, we already have more than 

enough statistical power as is.15   When we turn to the time-series regressions with aggregate-

market data, statistical power becomes a real issue, and we use overlapping observations. 

 Besides the skewness measures, the other variables that we use are very familiar and do 

not merit much discussion.  SIGMAit is the standard deviation of stock i’s daily returns, 

measured over the six-month period t.  RETit is the cumulative return on stock i, also measured 

over the six-month period t.16  LOGSIZEit is the log of firm i’s stock-market capitalization at the 

end of period t.  TURNOVERit  is the average monthly share turnover in stock i—defined as 

shares traded divided by shares outstanding—over  period t.  In our baseline specification, we 

work with detrended turnover, which we denote DTURNOVER.  The detrending is done very 

simply, by subtracting from the TURNOVER variable a moving average of its value over the 

prior eighteen months.  Again, the rationale for doing this detrending is that, as a matter of 

                                                           
15 We have, however, checked our results by re-running everything using different non-overlapping intervals—e.g., 
February 1-July 31 and August 1-January 31;  March 1-August 31 and September 1-February 28, etc.  In all cases, 
the results are essentially identical. 
16 When NCSKEW or DUVOL is computed using either market-adjusted or beta-adjusted returns, SIGMA and RET 
are computed using market-adjusted returns.  When NCSKEW or DUVOL is computed using excess returns, 
SIGMA and RET are based on excess returns as well.     
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conservatism, we want to eliminate any component of turnover that can be thought of as a 

relatively fixed firm characteristic.17 

 Table 1 presents a variety of summary statistics for our sample.  Panel A shows the 

means and standard deviations of all of our variables for: 1) the full sample of individual firms; 

2) five size-based sub-samples; and 3) the market as a whole, defined as the value-weighted 

NYSE/AMEX index.18  Panels B and C look at contemporaneous correlations and 

autocorrelations respectively, for the sample of individual firms.  In Panels B and C, as in most 

of our subsequent regression analysis, we restrict the sample to those firms with a market 

capitalization above the 20th percentile NYSE breakpoint. 

 One interesting point that emerges from Panel A is that while there is negative 

skewness—i.e., positive mean values of NCSKEW and DUVOL—for the market as a whole, the 

opposite is true for individual stocks, which are positively skewed.   This discrepancy can in 

principle be understood within the strict confines of the Hong-Stein (1999) model, since, as was 

noted above, the model allows for either positive or negative unconditional skewness, depending 

on the degree of ex-ante investor heterogeneity.  In other words, if one is willing to assume that 

differences of opinion about the market are on average more pronounced than differences of 

opinion about individual stocks, the model can produce negative skewness for the latter and 

positive skewness for the former.   

However, it is not clear that such an assumption is empirically defensible.  An alternative 

interpretation of the data in Table 1.A is that even if the Hong-Stein model provides a reasonable 

account of skewnness in market returns,  it must be missing something when it comes to 

                                                           
17 This detrending is roughly analogous to doing a fixed-effects specification in a shorter-lived  panel.  Since we 
have such a long time series, it makes little sense to impose that firm effects are literally constant over the entire 
sample period.  Instead, the detrending controls for firm characteristics that adjust gradually. 
18 When working with the market as a whole, all the variables are based on simple excess returns relative to T-Bills. 
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explaining the mean skewness of individual stocks.   For example, it might be that large positive 

events like hostile takeovers—which the theory ignores—impart an added degree of positive 

skewness to individual stocks but wash out across the market as a whole.  This view does not 

imply that we cannot learn something about the theory by looking at firm-level data; the theory 

will certainly gain some credence if it does a good job of explaining cross-sectional variation in 

skewness, even if it cannot fit the mean skewness at the firm level.  Nevertheless, it is worth 

emphasizing the caveat that, without further embellishments, the theory may not provide a 

convincing rationale for everything that is going on at the individual stock level. 

 Perhaps the most noteworthy fact shown in Panel B of Table 1 is the contemporaneous 

correlation between our two skewness measures, NCSKEW and DUVOL, which is .88.  While 

these two measures are quite different in their construction, they appear to be picking up much 

the same information.  Also worth pointing out is that the correlation between NCSKEW and 

SIGMA is less than .01, while that between DUVOL and SIGMA is about -.08; these low 

correlations lend some preliminary (and comforting) support to the notion that forecasting either 

of our skewness measures is a quite distinct exercise from forecasting volatility.    

 Panel C documents that, unlike SIGMA—which has an autocorrelation coefficient of 

.72—neither of our skewness measures has much persistence.  For NCSKEW the autocorrelation 

is on the order of .05; for DUVOL it is .09.  

 

IV. Forecasting Skewness in the Cross-Section 

A.  Baseline Specification 

Panel A of Table 2 presents our baseline cross-sectional regression specification.  We 

pool all the data (excluding firms with market capitalization below the 20th percentile NYSE 
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breakpoint) and regress NCSKEWit+1 against: its own lagged value, NCSKEWit; as well as 

SIGMAit; LOGSIZEit; DTURNOVERit; and six lags of past returns, RETit …..RETit-5.  We also 

include dummy variables for each time period t.  The regression can be interpreted as an effort to 

predict—based on information available at the end of period t—which firms will have the most 

negative skewness in period t+1.   

In column 1, we use market-adjusted returns as the basis for computing the NCSKEW 

measure.  In column 2 we use beta-adjusted returns, and in column 3 we use simple excess 

returns.  As can be seen, the results are quite similar in all three cases.  In particular, the 

coefficients on detrended turnover are positive and strongly statistically significant in each of the 

three columns, albeit somewhat larger (by about 20%) in magnitude when market-adjusted 

returns are used.  The past return terms are also always positive and strongly significant.  Thus 

stocks that have experienced either a surge in turnover or high past returns are predicted to have 

more negative skewness—i.e., to become more crash-prone, all else equal.   In addition, the 

coefficient on size is also positive, suggesting that negative skewness is more likely to be seen in 

large-cap stocks.  

As noted above, the positive coefficient on size is not something one would have 

necessarily predicted ex ante.  Nevertheless, it is possible to come up with rationalizations after 

the fact.  For example, suppose that managers can to some extent control the rate at which 

information about their firms gets out.  It seems plausible that if managers uncover good news, 

they will disclose all this good news right away.  In contrast, if they are sitting on bad news, they 

may  try to delay its release, with the result that the bad news dribbles out slowly.  This type of 

behavior will tend to impart positive skewness to firm-level returns, and may explain why 

returns on individual stocks are on average positively skewed at the same time that market 
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returns are negatively skewed.  Moreover, if one adds the further assumption that it is easier for 

managers of small firms to temporarily hide bad news—since they face less scrutiny from 

outside analysts than managers of large firms—the resulting positive skewness will be more 

pronounced for small firms. 19 

In Panel B of Table 2, we repeat everything from Panel A, except that we replace the 

NCSKEW measure of return asymmetry with the DUVOL measure.  Although the difference in 

units precludes a direct comparison of the point estimates, the qualitative patterns are generally 

the same as in Panel A.  Focusing on the base case of market-adjusted returns, the t-statistic on 

DTURNOVER is actually a bit higher than in Panel A (4.35 vs. 3.84) as is the R2 of the 

regression (6.7% vs. 3.0%). 

 The one distinction worth noting is that there is now a somewhat more pronounced drop 

in the coefficient on DTURNOVER when we move away from the base case of market-adjusted 

returns, especially when we go to simple excess returns.   On the one hand, we should expect to 

get lower coefficient estimates when using simple excess returns as compared to market-adjusted 

returns—after all, DTURNOVER is a firm-specific variable, so it should have more ability to 

explain skewness in the purely idiosyncratic component of stock returns.  On the other hand, we 

do not know why the dropoff in explanatory power is greater when we use the DUVOL measure 

of skewness, as opposed to the NCSKEW measure.    

 

 

 

                                                           
19 This line of argument is loosely supported by the results in Hong, Lim and Stein (1999), who find that negative 
information is only slowly incorporated into the prices of small stocks with low analyst coverage.  Following the 
empirical strategy of that paper, one might also ask whether, controlling for size, there is more positive skewness in 
the returns of stocks that have relatively few analysts.  
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B.  Robustness 

In Table 3 we conduct a number of further robustness checks.  In Panel A, everything is a 

variation on column 1 of Table 2.A, and uses an NCSKEW measure based on market-adjusted 

returns.  In Panel B, everything is a variation on column 1 of Table 2.B, and uses a DUVOL 

measure based on market-adjusted returns.  Since the conclusions from Panels A and B of Table 

3 are quite similar, we focus the bulk of our discussion on Panel A.  First, in column 1 of Panel 

A, we truncate outliers of the NCSKEW variable, setting all observations that are more than 

three standard deviations from the mean in any period t to the three-standard-deviation tail values 

in that period.  As can be seen, this has little impact on the results, suggesting that they are not 

driven by a handful of outlier observations.   

In column 2, we replace the DTURNOVER variable with its un-detrended analog, 

TURNOVER.  This means that we are now admitting into consideration differences in turnover 

across firms that are not merely temporary deviations from trend, but rather, more long-run firm 

characteristics.  In other words, we are essentially removing our fixed-effect control from the 

turnover variable.  According to the theory, one might expect that long-run cross-firm variation 

in turnover would also predict skewness—some firms might be subject to persistently large 

differences in investor opinion, and these too should matter for return asymmetries.  The 

coefficient estimate on TURNVOVER in column 2 confirms this notion, roughly doubling in 

magnitude from its base-case value.  This implies that our fixed-effect approach of using 

DTURNOVER instead of TURNOVER everywhere else in the paper is in fact quite 

conservative—in doing so, we are throwing out a dimension of the data that is strongly 

supportive of the theory.   
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In columns 3 and 4, we investigate whether our results are somehow tied to the way that 

we have controlled for volatility.  Recall that the central issue here is whether DTURNOVERit is 

really forecasting NCSKEWit+1 directly, or whether it is instead forecasting SIGMAit+1, and 

showing up in the regression only because SIGMAit+1 is correlated with NCSKEWit+1.  Thus 

ideally, we would like to add a period-t control variable to the regression that is a good forecast 

of SIGMAit+1, so that we can verify that DTURNOVERit is still significant even after the 

inclusion of this control.  Our use of SIGMAit in the base-case specification can be motivated on 

the grounds that it is probably the best univariate predictor of SIGMAit+1, given the very 

pronounced serial correlation in the SIGMA variable. 

But of course, just using one past lag is not necessarily the best way to forecast 

SIGMAit+1.  One can presumably do better by allowing for richer dynamics.  In this spirit, we 

add in column 3 two further lags of SIGMA (SIGMAit-1 and SIGMAit-2) to the base-case 

specification.  These two lags are completely insignificant, and hence our coefficient on 

DTURNOVERit, as well as those on the six RET terms, are virtually unchanged.   

In column 4 we take this logic one step further.  We create a fitted value of SIGMAit+1–

which we denote by SIGMAHATit+1—based on the following information set available in period 

t: SIGMAit; SIGMAit-1; SIGMAit-2; LOGSIZEit; DTURNOVERit; and RETit …..RETit-5.  We 

then replace SIGMAit in the base case with this fitted value of future volatility, SIGMAHATit+1.  

This is equivalent to running an instrumental-variables regression where future volatility 

SIGMAit+1 is included on the right-hand side, but is instrumented for using the information 

available in period t.  As can be seen, this variation leads to almost exactly the same results as in 

the base case.   
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Overall, based on the evidence in columns 3 and 4 of Table 3.A, we conclude that it is 

highly unlikely that our base-case success in forecasting NCSKEW with the DTURNOVER and 

RET variables arises because these variables are able to forecast SIGMA.  In other words, these 

variables really appear to be predicting cross-firm differences in the asymmetry of stock returns, 

rather than just differences in volatility. 

 Panel B of Table 3 replicates everything in Panel A, but using the DUVOL measure of 

asymmetry in place of NCSKEW.  And as mentioned above, the same basic conclusions about 

the robustness of the results emerge.   The only noteworthy difference is that, unlike in Panel A, 

using the un-detrended version of turnover in column 2 does not in this case lead to a higher 

coefficient estimate. 

 

C.  Cuts on Firm Size 

In Table 4, we disaggregate our base-case analysis by size.  To conserve on space, we 

only report the results using the NCSKEW measure of asymmetry; those for the DUVOL 

measure are much the same.  In particular, we take the specification from column 1 of Table 2.A, 

and run it separately for five size-based sub-samples, corresponding to quintiles based on NYSE 

breakpoints.  (Recall that in Tables 2 and 3, we omitted the smallest of these five quintiles from 

our sample.)   Two conclusions stand out.  First, as one might have suspected, the coefficient on 

DTURNOVER for the very smallest category of firms is noticeably smaller than for any other 

group, albeit still positive.  Again, this is probably because variation in turnover for these very 

small firms is driven in large part by variation in trading costs, whereas our theory requires a 

good proxy for differences of opinion.  Second, once one moves beyond the smallest quintile, the 

coefficients look reasonably stable.  There is certainly no hint that the effects that we are 
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interested in go away for larger firms.  Indeed, the highest point estimate for the DTURNOVER 

coefficient comes from the next-to-largest quintile. 

 The fact that the coefficients on DTURNOVER are robust for large firms is not 

surprising in light of the underlying theory.  The model of Hong and Stein (1999) is not 

predicated on impediments to arbitrage—it incorporates a class of fully risk-neutral arbitrageurs 

who can take infinite long or short positions.  Thus in contrast to limited-arbitrage behavioral 

models which aim to forecast the first moment of stock returns (e.g., DeLong et al (1990)), the 

Hong-Stein model does not have the feature that the key effects diminish as one moves to larger 

stocks, where arbitrage activity is presumably more efficient.20,21 

 

 D.  Stability Over Sub-Periods  

In Table 5, we examine the intertemporal stability of our baseline regression, using a 

Fama-MacBeth (1973) approach.  Specifically, we now run a separate, purely cross-sectional 

variant of the regression in column 1 of Table 2.A  (without the time dummies, naturally) for 

every one of the 66 six-month periods in our sample.  We then take simple time-averages of the 

cross-sectional regression coefficients over various sub-periods, and  compute the associated t-

statistics based on the time-series properties of the coefficients.  In Panel A of Table 5, we 

display the coefficient on DTURNOVER from every one of the 66 regressions.  In Panel B, we 

show time-averages of all the regression coefficients for the full sample and for each of four 

decade-based sub-periods: the 1960’s; the 1970’s; the 1980’s; and the 1990’s. 

                                                           
20 This is true as long as some investors (other than the arbitrageurs) continue to be effectively short-sales 
constrained in large stocks.  Hong and Stein (1999) argue that beyond any “technological” constraints on shorting, 
many institutions such as mutual funds are prohibited by their charters or operating policies from ever taking short 
positions.  This represents a constraint that is equally binding for any stock, regardless of market cap.   
21 Several recent papers establish that stock-return predictability—based on either “momentum” or “value” 
strategies—is more pronounced in smaller-cap stocks.  See, e.g., Fama (1998), Hong, Lim and Stein (1999), and 
Griffin and Lemmon (1999). 
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 The overriding conclusion that emerges from Table 5 is that our results are remarkably 

stable over time.  For example, the coefficient on DTURNOVER—which averages .532 over the 

full sample period—reaches a low of .486 in the 1980’s and a high of .592 in the 1970’s.  

Moreover, even taken alone, three of the four decade-based subperiods produce a statistically 

significant result for DTURNOVER.   

 

V.  Forecasting Market Skewness 

We now turn to forecasting skewness in the returns to the aggregate market.  While this is 

in many ways the more interesting exercise from an economic viewpoint, our statistical power is 

severely limited.  Thus it may be asking too much to expect that the results here will be strongly 

statistically significant in their own right; rather one might more reasonably hope that they look 

qualitatively similar to those from the cross-sectional regressions. 

Our definition of the aggregate market is the value-weighted NYSE-AMEX index, and 

all returns are excess returns relative to T-bills.  To avoid any temptation to further mine the 

data, we use essentially the same specification as in our baseline cross-sectional analysis.  

Specifically, we use all the same right-hand-side variables, except for LOGSIZE and the time 

dummies.  The DTURNOVER variable is constructed exactly as before, by detrending 

TURNOVER with its own moving average over the prior 18 months. 

In an effort to get the most out of the little time-series data that we have, we now use 

monthly overlapping observations.  (The t-statistics we report are adjusted accordingly.) This 

yields a total of 401 observations that can be used in the regressions.  However, a new concern 

that arises with the time-series approach is the extent to which our inferences are dominated by 
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the enormous daily movements during October 1987.22  To address this concern, we also re-run 

our regressions omitting October 1987.  This brings us down to 371 observations.23  

 The results are summarized in Table 6.  In columns 1 and 2 we use the NCSKEW 

measure of skewness, and run the regressions with and without October 1987, respectively.  In 

columns 3 and 4 we use the DUVOL measure of skewness, and again run the regression with and 

without October 1987.  The basic story is the same in all four columns.24  The six past return 

terms are always positive, and many are individually statistically significant.  In contrast, the 

coefficient on DTURNOVER, while it is positive in each of the four regressions, is never 

statistically significant.  Dropping October 1987 seems to increase the precision of the 

DTURNOVER coefficient estimate somewhat, but the highest t-statistic across the four 

specifications is only 1.15. 

 Nevertheless, holding statistical significance aside, the point estimates suggest large 

quantitative effects relative to the cross-sectional regressions.  Indeed, the coefficients on 

DTURNOVER and the RET terms are now on the order of ten times bigger than they were in the 

previous tables.  Relatedly, the R2’s of the time-series regressions are much higher, at roughly 

25%, as opposed to the 3%-7% range seen in most of the cross-sectional regressions.  Thus both 

turnover and past returns may well be very important for forecasting the skewness of market 

                                                           
22 October 1987 should be expected to have less influence on the cross-sectional regressions because they use 
market-adjusted returns and time dummies.  We have also verified directly that our cross-sectional results do not 
change when we omit October 1987 from our sample. 
23 The reason that we lose 30 observations is that we do not allow any observation on NCSKEW, DUVOL, SIGMA 
or DTURNOVER to enter the regression if it draws on data from October 1987.  Because of the detrending, the 
DTURNOVER variable in any given month draws on 24 months’ worth of data. 
24 We have also experimented with adding further lags of SIGMA to our base-case time-series specifications.  As in 
the cross-sectional regressions, this does not make any meaningful difference. 
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returns, but we lack the statistical power to assert these conclusions—particularly that for 

turnover—with much confidence.25 

 

VI.  Economic Significance of the Results:  An Option-Pricing Metric 

Thus far, we have focused on the statistical significance of our results, and have not 

really asked whether they imply magnitudes that are economically meaningful.  Assessing 

economic significance in the current context is a bit tricky.  The thought experiment that is 

typically undertaken is something like this: suppose that the right-hand-side variable of 

interest—in this case, DTURNOVER—is shocked by two standard deviations.  How much does 

the left-hand-side variable—NCSKEW or DUVOL—move?  What makes things difficult here is 

that most people have little sense for what would constitute an economically interesting change 

in NCSKEW or DUVOL. 

To help frame things in a way that is hopefully more intuitive, we can translate 

statements about NCSKEW into statements about the prices of out-of-the-money put options.  

The idea behind our metric can be understood as follows.  Imagine that you are pricing an out-of-

the-money put on a stock whose returns you initially believe to be symmetrically distributed—

i.e., a stock for which you believe that NCSKEW is equal to zero.  Now the stock experiences a 

surge in turnover.  As a result, you revise your forecast of NCSKEW, using the DTURNOVER 

coefficient estimate from our regressions.  Given this new forecast of NCSKEW—but holding 

volatility fixed—by how much does the value of the put option increase? 

To answer this sort of question precisely, we need to: 1) find an option-pricing model that 

admits skewness in returns; and 2) create a mapping from the parameters of this model to our 

                                                           
25 In light of this power problem, a natural thing to do would be to run comparable time-series regressions for other 
stock markets outside the U.S.  We hope to pursue this in future research. 
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NCSKEW variable.   The model we use is the stochastic-volatility model of Das and Sundaram 

(1999), in which the dynamics of stock prices are summarized by the following two diffusion 

equations: 

 

dpt = "dt + Vt
1/2dz1         (3) 

 

dVt = 6(V0 - Vt)dt + 0Vt
1/2dz2        (4) 

 

Here pt is the log of the stock price, " is the expected return on the stock, Vt is the current 

variance, 6 is the mean reversion parameter for the variance process, V0
 is the long-run mean 

level of variance and 0 is the volatility of the variance process.  The two Wiener processes dz1  

and dz2 are instantaneously correlated, with a correlation coefficient of D.  The parameter D is the 

one of central interest for our purposes, as it governs the skewness of stock returns:  when D = 0, 

log returns are symmetrically distributed; when D < 0, log returns are negatively skewed. 

 In order to map the parameters of the option-pricing model into our NCSKEW variable, 

we draw on formulas given in Das and Sundaram (1999) that express the skewness in daily log 

returns as a function of the diffusion parameters. If we are willing to fix all the other parameters 

besides D, these formulas allow us to ask:  “to what value of D does a given value of NCSKEW 

correspond?”  Once we have obtained the implied value of D in this way, we can calculate 

options prices and thereby see the impact of a given value of NCSKEW. 

 Table 7 illustrates the results of this exercise.  Consider first Panel A, where the 

parameters are chosen so as to be reasonable for individual stocks: 6 = 1; V0
 = 0.16; Vt = 0.16; 

and  0 = 0.1.  (Setting the variance V to 0.16 corresponds to an annual standard deviation of 
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returns of 40%.) We also set the stock price P = 100, and the riskless rate r = 0.  We begin with a 

hypothetical Firm 1, which has symmetrically distributed returns—i.e., it has NCSKEW = 0.  

This is equivalent to a value of D = 0.  Next, we take Firm 2, which is identical to Firm 1, except 

that it has a two standard-deviation higher value of DTURNOVER.  The standard deviation of 

DTURNOVER (for firms above the 20th percentile NYSE breakpoint) is 0.042, and from Table 

2.A, column 1, the coefficient on DTURNOVER is 0.437.  Hence the value of NCSKEW for 

Firm 2 is 0.037 (2 x 0.042 x 0.437 = 0.037).  Using equation (21) in Das and Sundaram (1999, 

page 223) this value of skewness in daily returns for Firm 2 can be shown to imply D = -0.38, 

assuming all the other diffusion parameters stay fixed.     

Panel A of Table 7 displays the impact of this change in D for the prices of six-month 

European put options.  That is, it calculates put prices for both Firm 1 (which has NCKSEW = 0 

and thus D = 0) and Firm 2 (which has NCSKEW = 0.037 and thus D = -0.38).  As can be seen, 

the impact on put prices is substantial, particularly if one goes relatively far out-of-the-money.  

For example, a put with a strike of 70 is worth 1.20 for Firm 1, but 1.44 for Firm 2, an increase 

of  20.14%.  Or expressed in a different way, the Firm-1 put has a Black-Scholes (1973) implied 

volatility of 40.33%, while the Firm-2 put has an implied volatility of 42.50%. 

Panel B undertakes a similar experiment to gauge the significance of our time-series 

results.  We keep all the diffusion parameters the same as in Panel A, except that we now set  V0
 

= Vt = 0.04, corresponding to an annual standard deviation of returns of 20%.  For the market as 

a whole, the standard deviation of DTURNOVER is 0.005 (see Table 1.A).  Using the coefficient 

estimate on DTURNOVER of  6.00 from Table 6, column 1, a two-standard-deviation shock to 

DTURNOVER translates into a movement of  0.06 in the NCSKEW variable.  Given the other 

diffusion parameters, this value of  0.06 for NCSKEW is equivalent to D = -0.33.   
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Panel B then compares the prices of six-month European puts across two regimes, the  

first with D = 0, and the second with D = -0.33.  Once again, the differences appear to be 

meaningful.  For example, a put with a strike price of 85 is worth 0.86 in Regime 1, but 1.07 in 

Regime 2, an increase of 24.66%.  The corresponding implied volatilities are 20.36% and 

21.84% respectively.  These results reinforce a point made above: while the time-series estimates 

may be statistically much weaker than those from the cross-section, they are no less suggestive 

of important economic effects. 

 

VII.  Conclusions 

Three robust findings about conditional skewness emerge from our analysis of individual 

stocks. In the cross-section, negative skewness is greater in stocks that: 1) have experienced an 

increase in trading volume relative to trend over the prior six months; 2) have had positive 

returns over the prior thirty-six months; and 3) are larger in terms of market capitalization.  The 

first two results also have direct analogs in the time-series behavior of the aggregate market, 

though the statistical power of our tests in this case (especially with respect to trading volume) is 

quite limited. 

Let us try to put each of these findings into some perspective.  The first, regarding trading 

volume, is the one we were looking for based on a specific theoretical prediction from the model 

of Hong and Stein (1999).  Clearly, our results here are supportive of the theory.  At the same 

time, this does not mean that there are not other plausible interpretations.  While we have 

attempted to control for some of the most obvious alternative stories, no doubt there are others 

that can be thought up.  This caveat would seem to be particularly relevant given that there has 

been so little research to date on conditional skewness at the individual stock level. 



 27

The second finding, having to do with the effect of past returns on skewness, is not 

something we were anticipating per se.  It is more accurate to say that we tripped over it in our 

efforts to isolate the effects of trading volume from other factors.  Having uncovered this very 

strong regularity in the data, we have found it helpful to think about it in terms of models of 

stochastic bubbles, such as that developed by Blanchard and Watson (1982).  However, we 

would stop well short of claiming to have strong evidence in favor of the existence of bubbles.  

Indeed, there is a large body of research from the 1980’s (see, e.g., West (1988) and Flood and 

Hodrick (1990) for reviews) that—focusing on a very different set of implications of bubble 

models—tends to come to mostly skeptical conclusions on this question.26  Rather, the more 

modest statement to be made is that previous research has not examined the implications of 

bubble models for conditional skewness, and that on this one score, the bubble models look 

pretty good.     

The third finding—that small-cap stocks are more positively skewed than large-cap 

stocks—is again something that we tripped over in the data.  And here we are not even aware of 

an existing theoretical model that provides a simple and satisfying explanation.  Instead, we have 

concocted a loose hypothesis after the fact, based on the ideas that: 1) managers prefer to 

disclose good news right away, while dribbling bad news out slowly; and 2) managers of small 

companies have more scope for hiding bad news from the market in this way.  This hypothesis 

can probably be fleshed out to the point where it yields further and more distinctive empirical 

implications; this might make an interesting subject for future research.           

                                                           
26 To oversimplify, the earlier empirical literature on bubbles can be characterized as primarily focusing on the 
relationship between prices and measures of fundamentals, such as dividends.   
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Table 1: Summary Statistics 
 
 
NCSKEWt is the negative coefficient of (daily) skewness, measured using market-adjusted returns in the 
six-month period t. DUVOLt is the log of the ratio of down-day to up-day standard deviation, measured 
using market-adjusted returns in the six-month period t.  SIGMAt is the standard deviation of (daily) 
market-adjusted returns measured in the six-month period t.  LOGSIZEt is the log of market 
capitalization measured at the end of period t.  DTURNOVERt is average monthly turnover in the six-
month period t, detrended by a moving average of turnover in the prior eighteen months.  TURNOVERt is 
the average monthly turnover measured in the six-month period t.  RETt is market-adjusted cumulative 
return in the six-month period t. 
 
Panel A: First and Second Moments 
 
 

 
 

 
 

All Firms 

Quintile-5 
(Largest) 

 Firms 

 
Quintile-4 

Firms 

 
Quintile-3 

Firms 

 
Quintile-2 

Firms 

Quintile-1 
(Smallest) 

Firms 

 
Market 

Portfolio 
      NCSKEWt 

Mean 
Standard Dev. 

 
-0.262 
0.939 

 
-0.139 
0.806 

 
-0.155 
0.904 

 
-0.198 
0.923 

 
-0.266 
0.994 

 
-0.362 
0.964 

 
0.268 
0.735 

DUVOLt 
Mean 

Standard Dev. 

 
-0.190 
0.436 

 
-0.128 
0.364 

 
-0.141 
0.391 

 
-0.171 
0.406 

 
-0.213 
0.437 

 
-0.224 
0.476 

 
0.172 
0.377 

SIGMAt 
Mean 

Standard Dev. 

 
0.025 
0.018 

 
0.015 
0.005 

 
0.017 
0.007 

 
0.020 
0.008 

 
0.023 
0.010 

 
           0.034 

0.023 

 
0.008 
0.003 

LOGSIZEt 
Mean 

Standard Dev. 

 
5.177 
2.073 

 
8.249 
1.035 

 
6.860 
0.653 

 
5.924 
0.642 

 
4.984 
0.656 

 
3.121 
1.108 

 
N/A 

DTURNOVERt 
Mean 

Standard Dev. 

 
0.001 
0.066 

 
0.000 
0.039 

 
0.002 
0.040 

 
0.002 
0.042 

 
0.001 
0.046 

 
-0.000 
0.095 

 
0.002 
0.005 

TURNOVERt 
Mean 

Standard Dev. 

 
0.050 
0.075 

 
0.051 
0.050 

 
0.056 
0.055 

 
0.055 
0.060 

 
0.054 
0.063 

 
0.043 
0.098 

 
0.037 
0.022 

RETt 
Mean 

Standard Dev. 

 
0.003 
0.297 

 
0.024 
0.164 

 
0.015 
0.202 

 
0.021 
0.240 

 

 
0.017 
0.288 

 
-0.019 
0.372 

 
0.029 
0.108 

No. of Obs. 100895 13988 14291 14727 16651 41238 421 
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Panel B: Contemporaneous Correlations (Using only firms above 20th percentile in size) 
 

 
 

 
 
NCSKEWt 

 
 

DUVOLt 

 
 

SIGMAt 

 
 

LOGSIZEt 

 
DTURN-

OVERt 

 
TURN-
OVERt 

 
 

RETt 
NCSKEWt  0.875 0.008 0.038 0.007 0.028 -0.302 

DUVOLt   -0.076 0.045 -0.013 -0.042 -0.371 

SIGMAt    -0.307 0.130 0.398 0.034 

LOGSIZEt     0.002 0.101 -0.014 

DTURN-
OVERt 

     0.376 0.133 

TURN-
OVERt 

      0.061 

RETt        

 
 
 
 
 
Panel C: Autocorrelations (Using only firms above 20th percentile in size) 
 
 

 
 

 
 

NC-
SKEWt-1 

 
 
 

DUVOLt-1 

 
 
 

SIGMAt-1 

 
 

LOG-
SIZEt-1 

 
 

DTURN-
OVERt-1 

 
 

TURN-
OVERt-1 

 
 
 

RETt-1 
NCSKEWt 0.047 0.059 -0.047 0.063 0.022 0.032 0.043 

DUVOLt 0.061 0.090 -0.109 0.068 0.016 -0.024 0.047 

SIGMAt -0.008 -0.071 0.715 -0.292 0.042 0.318 -0.014 

LOGSIZEt 0.049 0.055 -0.342 0.976 0.000 0.093 -0.011 

DTURN-
OVERt 

-0.028 -0.028 -0.059 0.009 0.381 -0.130 0.119 

TURN-
OVERt 

0.015 -0.052 0.294 0.104 0.195 0.781 0.086 

RETt -0.002 0.006 -0.032 -0.042 -0.013 -0.064 0.030 
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Table 2: Forecasting Skewness in the Cross-Section: Pooled Regressions 

 
The sample includes only those firms with market capitalization above the 20th percentile breakpoint of 
NYSE.  In Panel A, the dependent variable is NCSKEWt+1 the negative coefficient of (daily) skewness in 
the six-month period t+1.  NCSKEWt+1 is computed based on returns that are market-adjusted, beta-
adjusted and simple excess returns in cols 1-3 respectively.  In Panel B, the dependent variable is 
DUVOLt+1 the log of the ratio of down-day to up-day standard deviation in the six-month period t+1. 
DUVOLt+1 is computed based on returns that are market-adjusted, beta-adjusted and simple excess 
returns in cols 1-3 respectively.   SIGMAt is the (daily) standard deviation of returns in the six-month 
period t.  LOGSIZEt is the log of market capitalization at the end of period t.  DTURNOVERt is average 
monthly turnover in the six-month period t, detrended by a moving average of turnover in the prior 
eighteen months.  RETt....RETt-5 are returns in the six-month periods t through t-5 (these past returns are 
market adjusted in cols. 1-2 and excess in col. 3).  All regressions also contain dummies for each time 
period, not shown. t-statistics, which are in parentheses, are adjusted for heteroskedasticity and serial 
correlation. 
 
Panel A : Using NCSKEW measure 
 

 
 

1. Base Case: 
Market-Adjusted 

Returns 

 
2. Beta-Adjusted 

Returns 

 
3. Excess 

Returns 
            NCSKEWt 0.053 

(7.778) 
0.051 

(7.441) 
0.052 

(7.920) 

SIGMAt -4.566 
(-7.180) 

-3.370 
(-5.242) 

-2.701 
(-4.706) 

LOGSIZEt 0.037 
(11.129) 

0.046 
(13.465) 

0.059 
(19.110) 

DTURNOVERt 0.437 
(3.839) 

0.364 
(3.175) 

0.364 
(3.329) 

RETt 0.218 
(10.701) 

0.197 
(9.638) 

0.221 
(11.607) 

RETt-1 0.082 
(4.296) 

0.082 
(4.220) 

0.109 
(6.175) 

RETt-2 0.103 
(5.497) 

0.108 
(5.675) 

0.089 
(5.149) 

RETt-3 0.054 
(2.830) 

0.067 
(3.462) 

0.053 
(3.001) 

RETt-4 0.062 
(3.403) 

0.058 
(3.133) 

0.041 
(2.477) 

RETt-5 0.071 
(3.759) 

0.083 
(4.335) 

0.092 
(5.257) 

No. of Obs. 51426 51426 51426 

R2 0.030 0.031 0.082 
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Panel B : Using DUVOL measure 
 

 
 
 

1. Market- 
Adjusted 
Returns 

 
 

2. Beta-Adjusted 
Returns 

 
 

3. Excess 
Returns 

            DUVOLt 0.096 
(16.627) 

0.085 
(14.370) 

0.047 
(8.019) 

SIGMAt -4.956 
(-15.698) 

-2.746 
(-8.274) 

-0.129 
(-0.344) 

LOGSIZEt 0.014 
(9.572) 

0.025 
(16.180) 

0.032 
(19.283) 

DTURNOVERt 0.202 
(4.346) 

0.116 
(2.451) 

0.077 
(1.391) 

RETt 0.142 
(15.810) 

0.132 
(14.298) 

0.142 
(13.509) 

RETt-1 0.014 
(1.671) 

0.016 
(1.779) 

0.014 
(1.369) 

RETt-2 0.045 
(5.587) 

0.051 
(5.965) 

0.059 
(5.894) 

RETt-3 0.009 
(1.131) 

0.019 
(2.272) 

0.006 
(0.637) 

RETt-4 0.014 
(1.808) 

0.015 
(1.800) 

0.004 
(0.421) 

RETt-5 0.014 
(1.705) 

0.020 
(2.340) 

0.021 
(2.205) 

No. of Obs. 51426 51426 51426 

R2 0.067 0.062 0.096 
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Table 3: Forecasting Skewness in the Cross-Section: Robustness Checks 
 

The sample includes only those firms with market capitalization above the 20th percentile breakpoint of 
NYSE.  In Panel A, the dependent variable is NCSKEWt+1 the negative coefficient of (daily) skewness in 
the six-month period t+1.  In Panel B, the dependent variable is DUVOLt+1 the log of the ratio of down-day 
to up-day standard deviation in the six-month period t+1.  In all columns returns are market-adjusted.  
SIGMAt is the standard deviation of (daily) returns in the six-month period t.  LOGSIZEt is the log of 
market capitalization at the end of period t.  DTURNOVERt is average monthly turnover in the six-month 
period t, detrended by a moving average of turnover in the prior eighteen months, except in column 3, 
where turnover is not detrended.  RETt....RETt-5 are returns in the six-month periods t through t-5.  
SIGMAHATt+1 is the predicted value of SIGMAt+1 calculated from a regression of SIGMAt+1 on 
SIGMAt,…,SIGMAt-2, LOGSIZEt, DTURNOVERt and RETt....RETt-5. All regressions also contain dummies 
for each time period, not shown. t-statistics, which are in parentheses, are adjusted for heteroskedasticity 
and serial correlation. 
  
Panel A : Using NCSKEW measure 
 

 1. Outliers 
Truncated 

2. Turnover not 
Detrended 

3. More Lags of 
Past Volatility 

4. Fitted Future 
Volatility 

           NCSKEWt 
 

0.050 
(8.675) 

0.053 
(7.837) 

0.053 
(7.663) 

0.051 
(7.454) 

SIGMAHATt+1    -6.178 
(-7.180) 

SIGMAt -4.994 
(-8.938) 

-6.618 
(-9.822) 

-3.953 
(-3.751) 

 

SIGMAt-1   -0.460 
(-0.384) 

 

SIGMAt-2   -0.367 
(-0.353) 

 

LOGSIZEt 0.035 
(12.047) 

0.033 
(9.980) 

0.037 
(10.898) 

0.034 
(9.351) 

DTURNOVERt 

(TURNOVERt in col. 2) 
0.375 

(3.729) 
0.761 

(7.685) 
0.411 

(3.459) 
0.387 

(3.410) 

RETt 0.206 
(11.787) 

0.217 
(10.887) 

0.218 
(10.761) 

0.208 
(10.249) 

RETt-1 0.075 
(4.587) 

0.071 
(3.828) 

0.083 
(4.329) 

0.084 
(4.428) 

RETt-2 0.100 
(6.273) 

0.088 
(4.734) 

0.104 
(5.472) 

0.106 
(5.621) 

RETt-3 0.049 
(3.030) 

0.033 
(1.727) 

0.054 
(2.819) 

0.056 
(2.943) 

RETt-4 0.048 
(3.084) 

0.041 
(2.287) 

0.060 
(3.337) 

0.064 
(3.523) 

RETt-5 0.057 
(3.580) 

0.054 
(2.923) 

0.072 
(3.789) 

0.073 
(3.820) 

No. of Obs. 51426 52229 51393 51426 
                        R2 0.039 0.031 0.030 0.030 
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Panel B : Using DUVOL measure 
 

 1. Outliers 
Truncated 

2. Turnover not 
Detrended 

3. More Lags of 
Past Volatility 

4. Fitted Future 
Volatility 

           DUVOLt 
 

0.095 
(17.149) 

0.098 
(17.047) 

0.093 
(16.253) 

0.091 
(15.734) 

SIGMAHATt+1    -6.740 
(-15.698) 

SIGMAt -4.990 
(-16.205) 

-5.315 
(-15.427) 

-3.554 
(-7.574) 

 

SIGMAt-1   -1.128 
(-2.192) 

 

SIGMAt-2   -0.768 
(-1.759) 

 

LOGSIZEt 0.013 
(9.613) 

0.013 
(9.094) 

0.013 
(8.737) 

0.010 
(6.279) 

DTURNOVERt 

(TURNOVERt in col. 2) 
0.196 

(4.335) 
0.144 

(3.629) 
0.143 

(3.038) 
0.147 

(3.180) 

RETt 0.140 
(15.997) 

0.145 
(16.464) 

0.145 
(16.199) 

0.132 
(14.691) 

RETt-1 0.012 
(1.507) 

0.015 
(1.826) 

0.020 
(2.396) 

0.017 
(2.009) 

RETt-2 0.044 
(5.758) 

0.044 
(5.509) 

0.047 
(5.765) 

0.048 
(5.900) 

RETt-3 0.009 
(1.135) 

0.003 
(0.396) 

0.010 
(1.159) 

0.012 
(1.422) 

RETt-4 0.013 
(1.692) 

0.008 
(0.997) 

0.014 
(1.774) 

0.017 
(2.104) 

RETt-5 0.012 
(1.607) 

0.009 
(1.118) 

0.014 
(1.733) 

0.015 
(1.861) 

No. of Obs. 51426 52229 51393 51426 
                        R2 0.072 0.067 0.067 0.067 
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Table 4: Forecasting Skewness in the Cross-Section: Cuts by Firm Size 

 
The dependent variable in all columns is NCSKEWt+1 the negative coefficient of (daily) skewness in the 
six-month period t+1.  In all columns, returns are market-adjusted.  SIGMAt is the standard deviation of 
(daily) returns in the six-month period t.  LOGSIZEt is the log of market capitalization at the end of period 
t.  DTURNOVERt is average monthly turnover in the six-month period t, detrended by a moving average 
of turnover in the prior eighteen months.  RETt....RETt-5 are returns in the six-month periods t through t-5.  
All regressions also contain dummies for each time period, not shown. t-statistics are adjusted for 
heteroskedasticity and serial correlation.  Firm size cuts based on NYSE breakpoints. 
 
 
 

 
 

Quintile-5 
(Largest) 

 Firms 

 
Quintile-4 

Firms 

 
Quintile-3 

Firms 

 
Quintile-2 

Firms 

Quintile-1 
(Smallest) 

Firms 
        NCSKEWt 0.053 

(3.758) 
0.059 

(3.653) 
0.054 

(4.341) 
0.043 

(3.690) 
0.045 

(5.431) 

SIGMAt -3.043 
(-1.243) 

-4.362 
(-2.263) 

-4.409 
(-3.771) 

-4.062 
(-4.612) 

2.894 
(8.793) 

LOGSIZEt 0.009 
(1.021) 

0.057 
(1.855) 

0.049 
(1.590) 

0.105 
(3.639) 

0.066 
(8.800) 

DTURNOVERt 0.404 
(1.812) 

0.637 
(2.450) 

0.551 
(2.554) 

0.264 
(1.391) 

0.079 
(1.072) 

RETt 0.260 
(5.637) 

0.335 
(7.000) 

0.215 
(5.359) 

0.155 
(4.682) 

0.010 
(0.569) 

RETt-1 0.047 
(1.009) 

0.001 
(0.024) 

0.083 
(2.157) 

0.134 
(4.269) 

0.017 
(1.076) 

RETt-2 0.163 
(3.554) 

0.165 
(3.726) 

0.104 
(2.651) 

0.069 
(2.298) 

0.014 
(0.816) 

RETt-3 0.025 
(0.535) 

0.078 
(1.682) 

0.093 
(2.334) 

0.033 
(1.112) 

0.028 
(1.823) 

RETt-4 0.162 
(3.637) 

0.101 
(2.540) 

0.071 
(1.852) 

0.006 
(0.215) 

0.014 
(0.864) 

RETt-5 0.128 
(2.906) 

0.089 
(1.801) 

0.134 
(3.503) 

0.013 
(0.465) 

-0.010 
(-0.632) 

No. of Obs. 12749 12520 12407 13750 29165 

R2 0.035 0.030 0.024 0.029 0.028 
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Table 5: Forecasting Skewness in the Cross-Section: Fama-MacBeth Approach 

 
The sample includes only those firms with market capitalization above the 20th percentile breakpoint of 
NYSE.  The dependent variable is NCSKEWt+1 the negative coefficient of (daily) skewness in the six-
month period t+1.  In all cases, returns are market-adjusted. The specification is the same as in col. 1 of 
Table 2.  SIGMAt is the standard deviation of (daily) returns in the six-month period t.  LOGSIZEt is the log 
of market capitalization at the end of period t.  DTURNOVERt is average monthly turnover in the six-
month period t, detrended by a moving average of turnover in the prior eighteen months.  RETt....RETt-5 

are returns in the six-month periods t through t-5.  Panel A reports only the coefficient on DTURNOVERt 
for each period.  Panel B reports the average coefficients for different sub-periods. 
 
Panel A: Period by Period Regressions (12/1965 to 6/1998); Coefficient on Detrended Turnover 
Only 
 
 
    1960’s                  1970’s                    1980’s                    1990’s 

12/1965 0.383 6/1970 0.129 6/1980 1.730 6/1990 1.780 

6/1966 1.053 12/1970 0.973 12/1980 0.707 12/1990 -0.194 

12/1966 0.248 6/1971 1.145 6/1981 -0.156 6/1991 1.065 

6/1967 -0.081 12/1971 0.269 12/1981 -0.757 12/1991 0.058 

12/1967 0.201 6/1972 0.955 6/1982 2.738 6/1992 0.835 

6/1968 0.468 12/1972 -0.207 12/1982 0.373 12/1992 0.569 

12/1968 1.218 6/1973 0.148 6/1983 2.314 6/1993 0.161 

6/1969 1.101 12/1973 -0.904 12/1983 0.334 12/1993 0.803 

12/1969 0.498 6/1974 2.257 6/1984 -0.751 6/1994 0.459 

  12/1974 0.579 12/1984 0.545 12/1994 0.372 

  6/1975 -0.363 6/1985 2.448 6/1995 1.026 

  12/1975 -0.083 12/1985 -0.182 12/1995 -0.913 

  6/1976 0.029 6/1986 -0.686 6/1996 -0.631 

  12/1976 -0.016 12/1986 0.388 12/1996 1.981 

  6/1977 0.876 6/1987 0.672 6/1997 0.643 

  12/1977 1.901 12/1987 0.464 12/1997 0.062 
  6/1978 0.918 6/1988 0.404 6/1998 0.381 
  12/1978 1.512 12/1988 -0.941   
  6/1979 1.506 6/1989 0.121   
  12/1979 0.210 12/1989 -0.038   
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Panel B: Average Coefficients by Sub-Periods 
 

 
 

 
All 

Periods 

 
Late 
60’s 

 
 

70’s 

 
 

80’s 

 
 

90’s 
        NCSKEWt 0.063 

(4.880) 
0.099 

(2.173) 
0.079 

(4.517) 
0.064 

(2.707) 
0.024 

(1.258) 

SIGMAt -5.017 
(-2.312) 

-11.577 
(-2.614) 

-9.507 
(-3.063) 

-3.884 
(-1.061) 

2.407 
(0.288) 

LOGSIZEt 0.030 
(4.141) 

0.005 
(0.222) 

0.040 
(2.216) 

0.027 
(2.776) 

0.032 
(4.200) 

DTURNOVERt 0.532 
(3.981) 

0.565 
(2.280) 

0.592 
(2.549) 

0.486 
(1.372) 

0.497 
(2.326) 

RETt 0.249 
(6.614) 

0.335 
(1.807) 

0.234 
(3.909) 

0.229 
(3.663) 

0.242 
(2.312) 

RETt-1 0.099 
(3.287) 

0.229 
(1.684) 

0.026 
(0.427) 

0.085 
(1.838) 

0.132 
(2.711) 

RETt-2 0.139 
(4.357) 

0.100 
(1.098) 

0.222 
(3.452) 

0.132 
(2.323) 

0.071 
(1.387) 

RETt-3 0.082 
(2.555) 

0.057 
(0.645) 

0.139 
(2.596) 

0.017 
(0.341) 

0.104 
(1.513) 

RETt-4 0.081 
(2.887) 

0.045 
(0.390) 

0.091 
(1.524) 

0.044 
(0.917) 

0.133 
(2.453) 

RETt-5 0.082 
(1.967) 

0.139 
(1.767) 

0.056 
(1.014) 

0.036 
(0.193) 

0.136 
(1.492) 

No. of Obs. 66 9 20 20 17 
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Table 6: Forecasting Skewness in the Market: Time-Series Regressions 
 

The sample is based on market returns in excess of the risk-free rate, where the market is defined as the 
value weighted portfolio of all NYSE/AMEX stocks.  The dependent variable in cols. 1 and 2 is 
NCSKEWt+1 the negative coefficient of skewness in the six-month period t+1 and in cols. 3 and 4 is 
DUVOLt+1, the log of the ratio of down-day to up-day standard deviation in the six-month period t+1.  
SIGMAt is the standard deviation of (daily) market returns in the six-month period t.  DTURNOVERt is the 
average monthly turnover of the market portfolio in the six-month period t, detrended by a moving 
average of turnover in the prior eighteen months.  RETt....RETt-5 are returns in the six-month periods t 
through t-5.  t-statistics, which are in parentheses, are adjusted for heteroskedasticity and serial 
correlation. 
 
 
 

 
 

 
 

1. Dep. Variable 
is NCSKEWt+1 

 
2. Dep. Variable 

is NCSKEWt+1, 
Excluding 10/87 

 
 

3. Dep. Variable 
is DUVOLt+1 

 
4. Dep. Variable 

is DUVOLt+1, 
Excluding 10/87 

           NCSKEWt 

(DUVOLt in col.3 
and 4) 

0.100 
(0.855) 

0.123 
(1.232) 

0.221 
(1.842) 

0.217 
(0.844) 

SIGMAt 18.183 
(1.137) 

13.708 
(0.749) 

1.196 
(0.156) 

-3.574 
(-0.300) 

DTURNOVERt 6.002 
(0.262) 

9.349 
(0.828) 

6.324 
(0.704) 

9.462 
(1.148) 

RETt 2.647 
(4.147) 

1.809 
(4.406) 

1.484 
(4.168) 

1.184 
(3.398) 

RETt-1 1.585 
(3.086) 

1.077 
(2.939) 

0.482 
(1.481) 

0.332 
(1.061) 

RETt-2 1.473 
(2.242) 

0.926 
(1.922) 

0.554 
(1.898) 

0.386 
(1.357) 

RETt-3 0.589 
(0.602) 

0.443 
(0.734) 

0.126 
(0.325) 

0.017 
(0.049) 

RETt-4 1.283 
(2.264) 

0.680 
(1.575) 

0.475 
(1.726) 

0.287 
(0.968) 

RETt-5 1.187 
(2.288) 

0.596 
(1.930) 

0.686 
(2.326) 

0.470 
(1.753) 

No. of Obs. 401 371 401 371 

R2 0.265 0.264 0.304 0.274 
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Table 7: Economic Significance of Trading Volume for Skewness in Stock 
Returns: An Option-Pricing Metric 

 
 

Using the stochastic volatility option pricing model (and notation) of Das and Sundaram (1999) we 
consider what a two-standard-deviation shock in detrended trading volume implies for the prices of 6-
month European options. 
 
Panel A: Options on Individual Stocks 
 
The benchmark parameters are as follows: stock price P=100, interest rate r=0, annualized long run 
variance V0=.16, current variance V=.16, mean reversion in variance κ=1, volatility of variance η=.4  Firm 
1 is assumed to have a value of ρ=0.  Firm 2 is assumed to have a value of ρ=-.38.  These values of ρ 
imply that the difference in daily skewness between Firm 1 and Firm 2 is equivalent to that created by a 
two-standard-deviation move in the DTURNOVER variable, using our baseline firm-level sample and 
coefficient estimates from Table 2, col.1. 
 
 

 70 80 90 100 110 120 130 

Firm 1:ρ=0 
 

6-month 
European Put 

Price 
 

B-S Implied 
Vol. 

 
 
 
 

1.197 
 
 

40.33% 

 
 
 
 

3.044 
 
 

39.79% 

 
 
 
 

6.287 
 
 

39.50% 

 
 
 
 

11.082 
 
 

39.41% 

 
 
 
 

17.325 
 
 

39.48% 

 
 
 
 

24.748 
 
 

39.67% 

 
 
 
 

33.044 
 
 

39.93% 
 
 

Firm 2: ρ=-.38 
 

6-month 
European Put 

Price 
 

B-S Implied 
Vol. 

 
 
 
 
 
 

1.438 
 
 

42.50% 

 
 
 
 
 
 

3.297 
 
 

41.16% 

 
 
 
 
 
 

6.419 
 
 

40.03% 

 
 
 
 
 
 

10.994 
 
 

39.10% 

 
 
 
 
 
 

17.011 
 
 

38.35% 

 
 
 
 
 
 

24.282 
 
 

37.77% 

 
 
 
 
 
 

32.525 
 
 

37.34% 

 
 

Percent 
Increase in Put 

Price: Firm 2 
vs. Firm1 

 
 
 
 
 

20.14% 

 
 
 
 
 

8.30% 

 
 
 
 
 

2.09% 

 
 
 
 
 

-0.80% 

 
 
 
 
 

-1.81% 

 
 
 
 
 

-1.88% 

 
 
 
 
 

-1.57% 
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Panel B: Options on the Market Portfolio 
 
The benchmark parameters are as follows: stock price P=100, interest rate r=0, annualized long run 
variance V0=.04, current variance V=.04, mean reversion in variance κ=1, volatility of variance η=.4.  
Regime 1 is assumed to have a value of ρ=0.  Regime 2 is assumed to have a value of ρ=-0.33.  These 
values of ρ imply that the difference in daily skewness between Regime 1 and Regime 2 is equivalent to 
that created by a two-standard-deviation move in the market DTURNOVER variable, using our time series 
estimates from Table 6, col. 1. 
 
 

 85 90 95 100 105 110 115 

Regime 1: ρ=0 
 

6-month 
European Put 

Price 
 
 

B-S Implied Vol. 

 
 
 
 

0.859 
 
 

20.36% 

 
 
 
 

1.693 
 
 

19.61% 

 
 
 
 

3.121 
 
 

19.09% 

 
 
 
 

5.330 
 
 

18.91% 

 
 
 
 

8.367 
 
 

19.07% 

 
 
 
 

12.093 
 
 

19.49% 

 
 
 
 

16.298 
 
 

20.04% 
 
 

Regime 2: ρ=-.33 
 
 

6-month 
European Put 

Price 
 
 

B-S Implied Vol. 

 
 

 
 
 
 
 

1.070 
 
 

21.84% 

 
 
 
 
 
 
 

1.912 
 
 

20.68% 

 
 
 
 
 
 
 

3.258 
 
 

19.63% 

 
 
 
 
 
 
 

5.289 
 
 

18.76% 

 
 
 
 
 
 
 

8.134 
 
 

18.21% 

 
 
 
 
 
 
 

11.755 
 
 

18.01% 

 
 
 
 
 
 
 

15.955 
 
 

18.10% 
 

 
Percent Increase 

in Put Price: 
Regime 2 vs. 

Regime 1 

 
 
 
 
 

24.66% 

 
 
 
 
 

12.91% 

 
 
 
 
 

4.39% 

 
 
 
 
 

-0.77% 

 
 
 
 
 

-2.79% 

 
 
 
 
 

-2.80% 

 
 
 
 
 

-2.10% 
 

 


