Forecasting Crashes: Trading Volume, Past Returns and Conditional Skewness in Stock Prices Joseph Chen Stanford Business School Harrison Hong Stanford Business School Jeremy C. Stein Harvard Business School, MIT Sloan School of Management and NBER First draft: October 1999 Abstract: This paper is an investigation into the determinants of asymmetries in stock returns. We develop a series of cross-sectional regression specifications which attempt to forecast skewness in the daily returns of individual stocks. Negative skewness is most pronounced in stocks that have experienced: 1) an increase in trading volume relative to trend over the prior six months; and 2) positive returns over the prior thirty-six months. The first finding is consistent with the model of Hong and Stein (1999), which predicts that negative asymmetries are more likely to occur when there are large differences of opinion among investors. The latter finding fits with a number of theories, most notably Blanchard and Watson's (1982) rendition of stock-price bubbles. Analogous results also obtain when we attempt to forecast the skewness of the aggregate stock market, though our statistical power in this case is limited. We are grateful to the National Science Foundation for research support, and to John Campbell, Ken Froot, and seminar participants at HBS and the Cornell Summer Finance Conference for helpful comments and suggestions. Thanks also to Jun Pan for generously sharing her option-pricing software with us. #### I. Introduction Aggregate stock-market returns are asymmetrically distributed. This asymmetry can be measured in several ways. First, and most simply, the very largest movements in the market are usually decreases, rather than increases—that is, the stock market is more prone to melt down than to melt up. For example, of the ten biggest one-day movements in the S&P 500 since 1947, nine were declines. Second, a large literature documents that market returns exhibit negative skewness, or a closely related property, "asymmetric volatility"—a tendency for volatility to go up with negative returns. Finally, since the crash of October 1987, the prices of stock-index options have been strongly indicative of a negative asymmetry in returns, with the implied volatilities of out-of-the-money puts far exceeding those of out-of-the-money calls; this pattern has come to be known as the "smirk" in index implied volatilities. While the existence of negative asymmetries in market returns is generally not disputed, it is less clear what underlying economic mechanism these asymmetries reflect. Perhaps the most venerable theory is based on leverage effects (Black (1976), Christie (1982)), whereby a drop in prices raises operating and financial leverage, and hence the volatility of subsequent returns. However, it appears that leverage effects are not of sufficient quantitative importance to explain the data (Schwert (1989), Bekaert and Wu (1997)). This is especially true if one is interested in asymmetries at a relatively high frequency, e.g., in daily data. To explain these, one has to argue that intra-day changes in leverage have a large impact on volatility—that a drop in - ¹ Moreover, the one increase—of 9.10 percent on October 21, 1987—was right on the heels of the 20.47 percent decline on October 19, and arguably represented a correction of the microstructural distortions that arose on that chaotic day, rather than an independent price change. ² If, in a discrete-time setting, a negative return in period t raises volatility in period t+1 and thereafter, returns measured over multiple periods will be negatively skewed, even if single-period returns are not. The literature on these phenomena includes Pindyck (1984), French, Schwert and Stambaugh (1987), Campbell and Hentschel (1992), Nelson (1991), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993), Braun, Nelson and Sunier (1995), Duffee (1995), Bekaert and Wu (1997) and Wu (1997). ³ See, e.g., Bates (1997), Bakshi, Cao and Chen (1997), and Dumas, Fleming and Whaley (1998). prices on Monday morning leads to a large increase in leverage and hence in volatility by Monday afternoon, so that overall, the return for the full day Monday is negatively skewed. An alternative theory is based on a "volatility feedback" mechanism. As developed by Pindyck (1984), French, Schwert and Stambaugh (1987), Campbell and Hentschel (1992) and others, the idea is as follows: When a large piece of good news arrives, this signals that market volatility has increased, so the direct positive effect of the good news is partially offset by an increase in the risk premium. On the other hand, when a large piece of bad news arrives, the direct effect and the risk-premium effect now go in the same direction, so the impact of the news is amplified. While the volatility-feedback story is in some ways more attractive than the leverage-effects story, there are again questions as to whether it has the quantitative kick that is needed to explain the data. The thrust of the critique, first articulated by Poterba and Summers (1986), is that shocks to market volatility are for the most part very short-lived, and hence cannot be expected to have a large impact on risk premia. A third explanation for asymmetries in stock-market returns comes from stochastic bubble models of the sort pioneered by Blanchard and Watson (1982). The asymmetry here is due to the popping of the bubble—a low probability event that produces large negative returns. What the leverage-effects, volatility-feedback and bubble theories all have in common is that they can be cast in a representative-investor framework.⁴ In contrast, a more recent explanation of return asymmetries, Hong and Stein (1999), argues that investor heterogeneity is central to the phenomenon. The Hong-Stein model rests on two key assumptions: there are differences of opinion among investors as to the fundamental value of the market; and there are 2 _ ⁴ This is not to say that all bubble models adopt a representative-agent approach—only that their central prediction of return asymmetries does not require investor heterogeneity. For a more recent bubble model that explicitly incorporates heterogeneity, see e.g., Allen, Morris and Postlewaite (1993). In their paper, heterogeneity is motivated by a desire to generate bubbles in a finite-horizon setting. short-sales constraints. When differences of opinion are initially large, the short-sales constraint forces the more bearsish investors to a corner solution, in which they sell all of their shares and just sit out of the market. As a consequence of being at a corner, their information is not fully incorporated into prices. However, if after this information is hidden, other, previously-more-bullish investors have a change of heart and bail out of the market, the originally-more-bearish group may become the marginal "support buyers" and hence more will be learned about their signals. Thus accumulated hidden information tends to come out during market declines, which is another way of saying that returns are negatively skewed. With its focus on differences of opinion, the Hong-Stein model has distinctive empirical implications that are not shared by the representative-investor theories. In particular, the Hong-Stein model predicts that negative skewness in returns will be most pronounced after periods of heavy trading volume. This is because—like in many models with differences of opinion—trading volume proxies for the intensity of disagreement. When disagreement (and hence trading volume) is high, it is more likely that bearish investors will be at a corner, with their information incompletely revealed in prices. And it is precisely this hiding of information that sets the stage for negative skewness in subsequent periods, when the arrival of bad news to other, previously-more bullish investors can force the hidden information to come out. In this paper, we undertake an empirical investigation that is motivated by this differences-of-opinion theory. We develop a series of cross-sectional regression specifications that attempt to forecast skewness in the daily returns to individual stocks.⁶ One of our key ⁵ See Varian (1989), Harris and Raviv (1993), Kandel and Pearson (1995) and Odean (1998a) for other models with this feature. ⁶ Thus when we speak of "forecasting crashes" in the title of the paper, we are implicitly adopting a narrow definition of the word "crashes", associating it solely with the conditional skewness of the return distribution; we are not in the business of forecasting negative expected returns. This usage follows Bates (1991, 1997), who also interprets conditional skewness—in his case, inferred from options prices—as a measure of crash expectations. forecasting variables is the recent deviation of turnover from its trend. For example, at the firm level, we ask whether the skewness in daily returns measured over a given six-month period (say July 1-December 31 1998) can be predicted from the detrended level of turnover over the prior six-month period (January 1-June 30 1998). It turns out that firms which experience larger increases in turnover relative to trend are indeed predicted to have more negative skewness; moreover, the effect of turnover is strongly statistically and economically significant. In an effort to isolate the effects of turnover, our specifications also include a number of other variables. These other variables can be divided into two categories. In the first category are those that, like detrended turnover, capture time-varying influences on skewness. The other very significant variable in this category is past returns. When past returns have been high, skewness is forecasted to become more negative. The predictive power is strongest for returns in the prior six months, but there is some ability to predict negative skewness based on returns as far back as thirty-six months. This result can be
rationalized in a number of ways, but it is perhaps most clearly suggested by models of stochastic bubbles. In the context of a bubble model, high past returns imply that the bubble has been building up for a long time, so that there is a larger drop when it pops and prices fall back to fundamentals. The second category of variables that help to explain skewness are those that appear to be picking up relatively fixed firm characteristics. For example, skewness is more negative on average for large-cap firms. We are not aware of any theories that would have naturally led one to anticipate this finding.⁷ Rather, for our purposes a variable like size is best thought of as an atheoretic control—it is included in our regressions to help ensure that we do not mistakenly attribute explanatory power to turnover when it is actually proxying for some other firm _ ⁷ Though one can of course cook up stories after the fact. We offer one such story below. characteristic. Such a control may be largely redundant to the extent that detrending the turnover variable already removes firm effects, but we keep it in to be safe. In addition to running our cross-sectional regressions with the individual-firm data, we also experiment briefly with analogous time-series regressions for the U.S. stock market as a whole. Here, we attempt to forecast the skewness in the daily returns to the market using detrended market turnover and past market returns. Obviously, this pure time-series approach entails an enormous loss in statistical power—with data going back to 1962, we have less than 70 independent observations of market skewness measured at six-month intervals—which is why it is not the main focus of our analysis. Nevertheless, it is comforting to note that the qualitative results from the aggregate-market regressions closely parallel those from the cross-sectional regressions: high values of both detrended turnover and past returns also forecast more negative market skewness. The coefficient estimates continue to imply economically meaningful effects, although that for detrended turnover is no longer statistically significant. While both the cross-sectional and time-series results are broadly consistent with the theory we are interested in, we should stress that we do not at this point view them as a tight test. For even if innovations to trading volume do proxy for the intensity of disagreement among investors, they likely capture other factors as well—such as changes in trading costs—that we have not adequately controlled for. More generally, our efforts to model the determinants of conditional skewness at the firm level are really quite exploratory in nature. Given how early it is in this game, we are naturally reluctant to declare an unqualified victory for any one theory. The remainder of the paper is organized as follows. In Section II, we review in more ⁸ By contrast, there is a huge literature on forecasting volatility. And as noted above, many models of conditional volatility have implications for the <u>average</u> degree of skewness in stock returns. But we aim to understand variation over time and across stocks in the degree of skewness, which represents different—and more uncharted—territory. detail the theoretical work that motivates our empirical specification. In Section III, we discuss our sample and the construction of our key variables. In Section IV, we present our baseline cross-sectional regressions, along with a variety of sensitivities and sample splits. In Section V, we consider the analogous time-series regressions, in which we attempt to forecast the skewness in aggregate-market returns. In Section VI, we use an option-pricing metric to evaluate the economic signficance of our results. Section VII concludes. #### II. Theoretical Background The model of Hong and Stein (1999), which provides the principal motivation for our empirical tests, begins with the assumption that there are two investors, A and B, each of whom gets a private signal about a stock's terminal payoff. As a matter of objective reality, each investor's signal contains some useful information. However, A only pays attention to his own signal, even if that of B is revealed to him, and vice-versa. This deviation from full Bayesian rationality—which can be thought of as a form of overconfidence—leads to irreducible differences of opinion about the stock's value. In addition to investors A and B, the model also incorporates a class of fully rational, risk-neutral arbitrageurs. These arbitrageurs recognize that the best estimate of the stock's true value is formed by averaging the signals of A and B. However, the arbitrageurs may not always get to see both of the signals, because A and B face short-sales constraints. Importantly, the arbitrageurs themselves are not short-sales-constrained, so they can take infinitely large positive or negative positions. Perhaps the most natural interpretation of these assumptions is not to take the short-sales constraint literally—as an absolute technological impediment to trade—but rather to think of investors A and B as institutions like equity mutual funds, many of whom are precluded by their charters or operating policies from ever taking short positions.⁹ In contrast, the arbitrageurs might be thought of as hedge funds who are not subject to such restrictions. There are two trading dates. To see how the model can generate asymmetries, imagine that at time 1, investor B gets a pessimistic signal, so that his valuation for the stock lies well below A's. Because of the short-sales constraint, B will simply sit out of the market, and the only trade will be between investor A and the arbitrageurs. The arbitrageurs are rational enough to figure out that B's signal is below A's, but they cannot know by how much. Thus the market price at time 1 impounds A's prior information, but does not fully reflect B's time-1 signal. Next, move to time 2, and suppose that A gets a new positive signal. In this case, A continues to be the more optimistic of the two, so his new time-2 signal is incorporated into the price, while B's time-1 signal remains hidden. On the other hand, if A gets a bad signal at time 2, some of B's previously-hidden information may come out. This is because as A bails out of the market at time 2, the arbitrageurs learn something by observing if and at what price B steps in and starts being willing to buy. In other words, there is information in how B responds to A's reduced demand for the stock—in whether or not B gets up off the sidelines and provides buying support. Thus more information comes out when the stock price is falling at time 2, which implies that time-2 returns will be negatively skewed. However, this logic is not sufficient to establish that unconditional returns (i.e., the average across time 1 and time 2) are negatively skewed. There is a countervailing positive-skewness effect at time 1, since the most negative draws of B's signal are the ones that get hidden from the market at this time. When A's and B's priors are sufficiently close to one 7 ⁹ That such a restriction is common is indirectly suggested by the work of Koski and Pontiff (1999), who document that 79% of equity mutual funds make no use whatsoever of derivatives (either futures or options). another, the positive time-1 skewness can actually overwhelm the negative time-2 skewness, so that returns are on average positively skewed. Nevertheless, Hong and Stein show in their Proposition 3 that if the ex ante divergence of opinion (i.e. the difference in priors) between A and B is great enough, the time-2 effect dominates, and unconditional returns are negatively skewed.¹⁰ More directly relevant for our purposes is a result (Proposition 5) about the conditional skewness of time-2 returns. When differences of opinion are particularly pronounced at time 1—i.e., when B's signal is much lower than A's—this is when B's signal is most likely to remain hidden, thereby setting the stage for negative skewness at time 2. And large differences of opinion at time 1 also manifest themselves as unusually large trading volume, with A doing the buying, and the arbitrageurs doing the selling. Thus high trading volume at time 1 forecasts more negative skewness at time 2. This conditional statement is true regardless of whether unconditional skewness is positive or negative, and it forms the basis for our empirical tests. In order to isolate this particular theoretical effect, we need to be aware of other potentially confounding factors. For example, is is well-known that trading volume is correlated with past returns (Shefrin and Statman (1985), Lakonishok and Smidt (1986), Odean (1998b)). And, as noted above, past returns might also help predict skewness, if there are stochastic bubbles of the sort described by Blanchard and Watson (1982). To account for this possibility, all of our regressions include a number of lags of past returns on the right-hand side. In a similar vein, one might also worry about skewness being correlated with volatility. . ¹⁰ It is this unconditional skewness feature—which is driven by the short-sales constraint—that most clearly distinguishes the model of Hong and Stein from other related models in which pent-up information is revealed through the trading process (e.g., Grossman (1988), Genotte and Leland (1990) Jacklin et al (1992), and Romer (1993)). In these other models, returns are on average symmetrically distributed, albeit potentially quite volatile. In the model of Coval and Hirshleifer (1998), there is also conditional negative skewness after periods of positive returns, even though unconditionally, average skewness is zero. There are a number of models which can deliver such a correlation; e.g., in the volatility-feedback model of Campbell and Hentschel (1992), higher levels of volatility are associated with more negative skewness. To the extent that such an effect is present in our data, we would like to
know whether turnover is forecasting skewness directly—as it should, according to the Hong-Stein model—or whether it is really just forecasting volatility, which is in turn correlated with skewness. To address this concern, all of our regressions include some control for volatility, and we experiment with several ways of doing this control. #### III. Data To construct our variables, we begin with data on daily stock prices and monthly trading volume for all NYSE and AMEX firms, from the CRSP daily and monthly stock files. Our sample period begins in July 1962, which is as far back as we can get the trading volume data. We do not include NASDAQ firms. This is because we want to have a uniform and accurate measure of trading volume, and the dealer nature of the NASDAQ market is likely to render turnover in its stocks not directly comparable to that of NYSE and NASDAQ stocks. We also follow convention and exclude ADRs, REITs, closed-end funds, primes and scores—i.e., stocks that do not have a CRSP share type code of 10 or 11. For most of our analysis, we further truncate the sample by eliminating the very smallest stocks in the NYSE/AMEX universe—in particular, those with a market capitalization below the 20th percentile NYSE breakpoint. We do so because our goal is to use trading volume as a proxy for differences of opinion. Theoretical models that relate trading volume to differences of opinion typically assume that transactions costs are zero. In reality, variations in transactions costs are likely to be an important driver of trading volume, and more so for very small stocks. By eliminating the smallest stocks, we hope to raise the ratio of signal (differences of opinion) to noise (transactions costs) in our key explanatory variable. We also report some sensitivities in which the smallest stocks are analyzed separately (see Table 4 below), and as one would expect from this discussion, the coefficients on turnover for this subsample are noticeably smaller. Our baseline measure of skewness, which we denote NCSKEW, for "negative coefficient of skewness", is calculated by taking the negative of (the sample analog to) the third moment of daily returns, and dividing it by (the sample analog to) the standard deviation of daily returns raised to the third power. Thus for any stock i over any six-month period t, we have: $$NCSKEW_{it} = -(n(n-1)^{3/2} \sum_{i} R_{it}^{3})/((n-1)(n-2)(\sum_{i} R_{it}^{2})^{3/2})$$ (1) where R_{it} represents the sequence of demeaned daily returns to stock i during period t, and n is the number of observations on daily returns during the period.¹² These daily "returns" are, more precisely, actually log changes in price. We use log changes as opposed to simple daily percentage returns because they allow for a natural benchmark—if stock returns were lognormally distributed, then an NCSKEW measure based on log changes should have a mean of zero. However, we have also redone everything with an NCSKEW measure based instead on simple daily percentage returns, and none of our main results are affected.¹³ . ¹² In calculating NCSKEW, as well as any other moments which rely on daily return data, we drop any firm which has more than five missing observations on daily returns in a given period. ¹³ Using simple percentage returns instead of log changes does have two (predictable) effects: 1) it makes returns look more postively skewed on average; and 2) it induces a pronounced correlation between skewness and contemporaneously measured volatility. However, given that we control for volatility in all of our regression specifications, using simple percentage returns does not materially alter the coefficients on turnover and past returns. Scaling the raw third moment by the standard deviation cubed allows for comparisons across stocks with different variances; this is the usual normalization for skewness statistics.¹⁴ By putting a minus sign in front of the third moment, we are adopting the convention that an increase in NCSKEW corresponds to a stock being more "crash prone"—i.e., having a more left-skewed distribution. For most of our regressions, the daily firm-level returns that go into the calculation of the NCSKEW variable are market-adjusted returns—the log change in stock i less the log change in the value-weighted CRSP index for that day. However, we also rerun everything with variations of NCSKEW based on both: 1) excess returns (the log change in stock i less the T-bill return); as well as 2) beta-adjusted returns. As will be seen, these variations do not make much difference to our results with NCSKEW. In addition to NCSKEW, we also work with a second measure of return asymmetries which does not involve third moments, and hence is less likely to be overly influenced by a handful of extreme days. This alternative measure, which we denote by DUVOL, for "down-to-up volatility", is computed as follows. For any stock i over any six-month period t, we separate all the days with returns below the period mean ("down" days) from those with returns above the period mean ("up" days), and compute the standard deviation for each of these sub-samples separately. We then take the log of the ratio of (the sample analog to) the standard deviation on the down days to (the sample analog to) the standard deviation on the up days. Thus we have: $$DUVOL_{it} = \log\{(n_u-1)\sum_{DOWN} R_{it}^2/((n_d-1)\sum_{UP} R_{it}^2)\}$$ (2) _ ¹⁴ See, e.g., Greene (1993). where n_u and n_d are the number of up and down days, respectively. Again, the convention is that a higher value of this measure corresponds to a more left-skewed distribution. To preview, our results with NCSKEW and DUVOL are for the most part quite similar, so it does not appear that they depend on a particular parametric representation of return asymmetries. In our regressions with firm-level data, we use non-overlapping six-month observations on skewness. In particular, the NCSKEW and DUVOL measures are calculated using either data from January 1- June 30, or July 1-December 31 of each calendar year. We could in principle use overlapping data—so that we would have a new skewness measure every month—but there is little payoff to doing so, since, as will become clear shortly, we already have more than enough statistical power as is.¹⁵ When we turn to the time-series regressions with aggregate-market data, statistical power becomes a real issue, and we use overlapping observations. Besides the skewness measures, the other variables that we use are very familiar and do not merit much discussion. SIGMA_{it} is the standard deviation of stock i's daily returns, measured over the six-month period t. RET_{it} is the cumulative return on stock i, also measured over the six-month period t. LOGSIZE_{it} is the log of firm i's stock-market capitalization at the end of period t. TURNOVER_{it} is the average monthly share turnover in stock i—defined as shares traded divided by shares outstanding—over period t. In our baseline specification, we work with detrended turnover, which we denote DTURNOVER. The detrending is done very simply, by subtracting from the TURNOVER variable a moving average of its value over the prior eighteen months. Again, the rationale for doing this detrending is that, as a matter of ¹⁵ We have, however, checked our results by re-running everything using different non-overlapping intervals—e.g., February 1-July 31 and August 1-January 31; March 1-August 31 and September 1-February 28, etc. In all cases, the results are essentially identical. ¹⁶ When NCSKEW or DUVOL is computed using either market-adjusted or beta-adjusted returns, SIGMA and RET are computed using market-adjusted returns. When NCSKEW or DUVOL is computed using excess returns, SIGMA and RET are based on excess returns as well. conservatism, we want to eliminate any component of turnover that can be thought of as a relatively fixed firm characteristic.¹⁷ Table 1 presents a variety of summary statistics for our sample. Panel A shows the means and standard deviations of all of our variables for: 1) the full sample of individual firms; 2) five size-based sub-samples; and 3) the market as a whole, defined as the value-weighted NYSE/AMEX index.¹⁸ Panels B and C look at contemporaneous correlations and autocorrelations respectively, for the sample of individual firms. In Panels B and C, as in most of our subsequent regression analysis, we restrict the sample to those firms with a market capitalization above the 20th percentile NYSE breakpoint. One interesting point that emerges from Panel A is that while there is negative skewness—i.e., positive mean values of NCSKEW and DUVOL—for the market as a whole, the opposite is true for individual stocks, which are positively skewed. This discrepancy can in principle be understood within the strict confines of the Hong-Stein (1999) model, since, as was noted above, the model allows for either positive or negative unconditional skewness, depending on the degree of ex-ante investor heterogeneity. In other words, if one is willing to assume that differences of opinion about the market are on average more pronounced than differences of opinion about individual stocks, the model can produce negative skewness for the latter and positive skewness for the former. However, it is not clear that such an assumption is empirically defensible. An alternative interpretation of the data in Table 1.A is that even if the Hong-Stein model provides a reasonable account of skewnness in market returns, it must be missing something when it comes to 13 ¹⁷ This detrending is roughly analogous to doing a fixed-effects specification in a shorter-lived panel. Since we have such a long time series, it makes little sense to impose that firm effects are literally constant over the entire sample period. Instead, the detrending controls for firm characteristics that adjust gradually. ¹⁸ When working with the market as a whole, all the variables are based on simple excess
returns relative to T-Bills. explaining the mean skewness of individual stocks. For example, it might be that large positive events like hostile takeovers—which the theory ignores—impart an added degree of positive skewness to individual stocks but wash out across the market as a whole. This view does not imply that we cannot learn something about the theory by looking at firm-level data; the theory will certainly gain some credence if it does a good job of explaining cross-sectional variation in skewness, even if it cannot fit the mean skewness at the firm level. Nevertheless, it is worth emphasizing the caveat that, without further embellishments, the theory may not provide a convincing rationale for everything that is going on at the individual stock level. Perhaps the most noteworthy fact shown in Panel B of Table 1 is the contemporaneous correlation between our two skewness measures, NCSKEW and DUVOL, which is .88. While these two measures are quite different in their construction, they appear to be picking up much the same information. Also worth pointing out is that the correlation between NCSKEW and SIGMA is less than .01, while that between DUVOL and SIGMA is about -.08; these low correlations lend some preliminary (and comforting) support to the notion that forecasting either of our skewness measures is a quite distinct exercise from forecasting volatility. Panel C documents that, unlike SIGMA—which has an autocorrelation coefficient of .72—neither of our skewness measures has much persistence. For NCSKEW the autocorrelation is on the order of .05; for DUVOL it is .09. ### IV. Forecasting Skewness in the Cross-Section #### A. Baseline Specification Panel A of Table 2 presents our baseline cross-sectional regression specification. We pool all the data (excluding firms with market capitalization below the 20th percentile NYSE breakpoint) and regress NCSKEW_{it+1} against: its own lagged value, NCSKEW_{it}; as well as SIGMA_{it}; LOGSIZE_{it}; DTURNOVER_{it}; and six lags of past returns, RET_{it}RET_{it-5}. We also include dummy variables for each time period t. The regression can be interpreted as an effort to predict—based on information available at the end of period t—which firms will have the most negative skewness in period t+1. In column 1, we use market-adjusted returns as the basis for computing the NCSKEW measure. In column 2 we use beta-adjusted returns, and in column 3 we use simple excess returns. As can be seen, the results are quite similar in all three cases. In particular, the coefficients on detrended turnover are positive and strongly statistically significant in each of the three columns, albeit somewhat larger (by about 20%) in magnitude when market-adjusted returns are used. The past return terms are also always positive and strongly significant. Thus stocks that have experienced either a surge in turnover or high past returns are predicted to have more negative skewness—i.e., to become more crash-prone, all else equal. In addition, the coefficient on size is also positive, suggesting that negative skewness is more likely to be seen in large-cap stocks. As noted above, the positive coefficient on size is not something one would have necessarily predicted ex ante. Nevertheless, it is possible to come up with rationalizations after the fact. For example, suppose that managers can to some extent control the rate at which information about their firms gets out. It seems plausible that if managers uncover good news, they will disclose all this good news right away. In contrast, if they are sitting on bad news, they may try to delay its release, with the result that the bad news dribbles out slowly. This type of behavior will tend to impart positive skewness to firm-level returns, and may explain why returns on individual stocks are on average positively skewed at the same time that market returns are negatively skewed. Moreover, if one adds the further assumption that it is easier for managers of small firms to temporarily hide bad news—since they face less scrutiny from outside analysts than managers of large firms—the resulting positive skewness will be more pronounced for small firms. ¹⁹ In Panel B of Table 2, we repeat everything from Panel A, except that we replace the NCSKEW measure of return asymmetry with the DUVOL measure. Although the difference in units precludes a direct comparison of the point estimates, the qualitative patterns are generally the same as in Panel A. Focusing on the base case of market-adjusted returns, the t-statistic on DTURNOVER is actually a bit higher than in Panel A (4.35 vs. 3.84) as is the R² of the regression (6.7% vs. 3.0%). The one distinction worth noting is that there is now a somewhat more pronounced drop in the coefficient on DTURNOVER when we move away from the base case of market-adjusted returns, especially when we go to simple excess returns. On the one hand, we should expect to get lower coefficient estimates when using simple excess returns as compared to market-adjusted returns—after all, DTURNOVER is a firm-specific variable, so it should have more ability to explain skewness in the purely idiosyncratic component of stock returns. On the other hand, we do not know why the dropoff in explanatory power is greater when we use the DUVOL measure of skewness, as opposed to the NCSKEW measure. ¹⁹ This line of argument is loosely supported by the results in Hong, Lim and Stein (1999), who find that negative information is only slowly incorporated into the prices of small stocks with low analyst coverage. Following the empirical strategy of that paper, one might also ask whether, controlling for size, there is more positive skewness in the returns of stocks that have relatively few analysts. #### **B.** Robustness In Table 3 we conduct a number of further robustness checks. In Panel A, everything is a variation on column 1 of Table 2.A, and uses an NCSKEW measure based on market-adjusted returns. In Panel B, everything is a variation on column 1 of Table 2.B, and uses a DUVOL measure based on market-adjusted returns. Since the conclusions from Panels A and B of Table 3 are quite similar, we focus the bulk of our discussion on Panel A. First, in column 1 of Panel A, we truncate outliers of the NCSKEW variable, setting all observations that are more than three standard deviations from the mean in any period t to the three-standard-deviation tail values in that period. As can be seen, this has little impact on the results, suggesting that they are not driven by a handful of outlier observations. In column 2, we replace the DTURNOVER variable with its un-detrended analog, TURNOVER. This means that we are now admitting into consideration differences in turnover across firms that are not merely temporary deviations from trend, but rather, more long-run firm characteristics. In other words, we are essentially removing our fixed-effect control from the turnover variable. According to the theory, one might expect that long-run cross-firm variation in turnover would also predict skewness—some firms might be subject to persistently large differences in investor opinion, and these too should matter for return asymmetries. The coefficient estimate on TURNVOVER in column 2 confirms this notion, roughly doubling in magnitude from its base-case value. This implies that our fixed-effect approach of using DTURNOVER instead of TURNOVER everywhere else in the paper is in fact quite conservative—in doing so, we are throwing out a dimension of the data that is strongly supportive of the theory. In columns 3 and 4, we investigate whether our results are somehow tied to the way that we have controlled for volatility. Recall that the central issue here is whether DTURNOVER_{it} is really forecasting NCSKEW_{it+1} directly, or whether it is instead forecasting SIGMA_{it+1}, and showing up in the regression only because SIGMA_{it+1} is correlated with NCSKEW_{it+1}. Thus ideally, we would like to add a period-t control variable to the regression that is a good forecast of SIGMA_{it+1}, so that we can verify that DTURNOVER_{it} is still significant even after the inclusion of this control. Our use of SIGMA_{it} in the base-case specification can be motivated on the grounds that it is probably the best univariate predictor of SIGMA_{it+1}, given the very pronounced serial correlation in the SIGMA variable. But of course, just using one past lag is not necessarily the best way to forecast SIGMA_{it+1}. One can presumably do better by allowing for richer dynamics. In this spirit, we add in column 3 two further lags of SIGMA (SIGMA_{it-1} and SIGMA_{it-2}) to the base-case specification. These two lags are completely insignificant, and hence our coefficient on DTURNOVER_{it}, as well as those on the six RET terms, are virtually unchanged. In column 4 we take this logic one step further. We create a fitted value of SIGMA_{it+1}—which we denote by SIGMAHAT_{it+1}—based on the following information set available in period t: SIGMA_{it}; SIGMA_{it-1}; SIGMA_{it-2}; LOGSIZE_{it}; DTURNOVER_{it}; and RET_{it}RET_{it-5}. We then replace SIGMA_{it} in the base case with this fitted value of future volatility, SIGMAHAT_{it+1}. This is equivalent to running an instrumental-variables regression where future volatility SIGMA_{it+1} is included on the right-hand side, but is instrumented for using the information available in period t. As can be seen, this variation leads to almost exactly the same results as in the base case. Overall, based on the evidence in columns 3 and 4 of Table 3.A, we conclude that it is highly unlikely that our base-case success in forecasting NCSKEW with the DTURNOVER and RET variables arises because these variables are able to forecast SIGMA. In other words, these variables really appear to be predicting cross-firm differences in the <u>asymmetry</u> of stock returns, rather than just differences in volatility. Panel B of Table 3 replicates
everything in Panel A, but using the DUVOL measure of asymmetry in place of NCSKEW. And as mentioned above, the same basic conclusions about the robustness of the results emerge. The only noteworthy difference is that, unlike in Panel A, using the un-detrended version of turnover in column 2 does not in this case lead to a higher coefficient estimate. #### C. Cuts on Firm Size In Table 4, we disaggregate our base-case analysis by size. To conserve on space, we only report the results using the NCSKEW measure of asymmetry; those for the DUVOL measure are much the same. In particular, we take the specification from column 1 of Table 2.A, and run it separately for five size-based sub-samples, corresponding to quintiles based on NYSE breakpoints. (Recall that in Tables 2 and 3, we omitted the smallest of these five quintiles from our sample.) Two conclusions stand out. First, as one might have suspected, the coefficient on DTURNOVER for the very smallest category of firms is noticeably smaller than for any other group, albeit still positive. Again, this is probably because variation in turnover for these very small firms is driven in large part by variation in trading costs, whereas our theory requires a good proxy for differences of opinion. Second, once one moves beyond the smallest quintile, the coefficients look reasonably stable. There is certainly no hint that the effects that we are interested in go away for larger firms. Indeed, the highest point estimate for the DTURNOVER coefficient comes from the next-to-largest quintile. The fact that the coefficients on DTURNOVER are robust for large firms is not surprising in light of the underlying theory. The model of Hong and Stein (1999) is not predicated on impediments to arbitrage—it incorporates a class of fully risk-neutral arbitrageurs who can take infinite long or short positions. Thus in contrast to limited-arbitrage behavioral models which aim to forecast the first moment of stock returns (e.g., DeLong et al (1990)), the Hong-Stein model does not have the feature that the key effects diminish as one moves to larger stocks, where arbitrage activity is presumably more efficient.^{20,21} ### **D.** Stability Over Sub-Periods In Table 5, we examine the intertemporal stability of our baseline regression, using a Fama-MacBeth (1973) approach. Specifically, we now run a separate, purely cross-sectional variant of the regression in column 1 of Table 2.A (without the time dummies, naturally) for every one of the 66 six-month periods in our sample. We then take simple time-averages of the cross-sectional regression coefficients over various sub-periods, and compute the associated t-statistics based on the time-series properties of the coefficients. In Panel A of Table 5, we display the coefficient on DTURNOVER from every one of the 66 regressions. In Panel B, we show time-averages of all the regression coefficients for the full sample and for each of four decade-based sub-periods: the 1960's; the 1970's; the 1980's; and the 1990's. - ²⁰ This is true as long as some investors (other than the arbitrageurs) continue to be effectively short-sales constrained in large stocks. Hong and Stein (1999) argue that beyond any "technological" constraints on shorting, many institutions such as mutual funds are prohibited by their charters or operating policies from ever taking short positions. This represents a constraint that is equally binding for any stock, regardless of market cap. ²¹ Several recent papers establish that stock-return predictability—based on either "momentum" or "value" ²¹ Several recent papers establish that stock-return predictability—based on either "momentum" or "value" strategies—is more pronounced in smaller-cap stocks. See, e.g., Fama (1998), Hong, Lim and Stein (1999), and Griffin and Lemmon (1999). The overriding conclusion that emerges from Table 5 is that our results are remarkably stable over time. For example, the coefficient on DTURNOVER—which averages .532 over the full sample period—reaches a low of .486 in the 1980's and a high of .592 in the 1970's. Moreover, even taken alone, three of the four decade-based subperiods produce a statistically significant result for DTURNOVER. #### V. Forecasting Market Skewness We now turn to forecasting skewness in the returns to the aggregate market. While this is in many ways the more interesting exercise from an economic viewpoint, our statistical power is severely limited. Thus it may be asking too much to expect that the results here will be strongly statistically significant in their own right; rather one might more reasonably hope that they look qualitatively similar to those from the cross-sectional regressions. Our definition of the aggregate market is the value-weighted NYSE-AMEX index, and all returns are excess returns relative to T-bills. To avoid any temptation to further mine the data, we use essentially the same specification as in our baseline cross-sectional analysis. Specifically, we use all the same right-hand-side variables, except for LOGSIZE and the time dummies. The DTURNOVER variable is constructed exactly as before, by detrending TURNOVER with its own moving average over the prior 18 months. In an effort to get the most out of the little time-series data that we have, we now use monthly overlapping observations. (The t-statistics we report are adjusted accordingly.) This yields a total of 401 observations that can be used in the regressions. However, a new concern that arises with the time-series approach is the extent to which our inferences are dominated by the enormous daily movements during October 1987. To address this concern, we also re-run our regressions omitting October 1987. This brings us down to 371 observations.²³ The results are summarized in Table 6. In columns 1 and 2 we use the NCSKEW measure of skewness, and run the regressions with and without October 1987, respectively. In columns 3 and 4 we use the DUVOL measure of skewness, and again run the regression with and without October 1987. The basic story is the same in all four columns.²⁴ The six past return terms are always positive, and many are individually statistically significant. In contrast, the coefficient on DTURNOVER, while it is positive in each of the four regressions, is never statistically significant. Dropping October 1987 seems to increase the precision of the DTURNOVER coefficient estimate somewhat, but the highest t-statistic across the four specifications is only 1.15. Nevertheless, holding statistical significance aside, the point estimates suggest large quantitative effects relative to the cross-sectional regressions. Indeed, the coefficients on DTURNOVER and the RET terms are now on the order of ten times bigger than they were in the previous tables. Relatedly, the R²'s of the time-series regressions are much higher, at roughly 25%, as opposed to the 3%-7% range seen in most of the cross-sectional regressions. Thus both turnover and past returns may well be very important for forecasting the skewness of market ²² October 1987 should be expected to have less influence on the cross-sectional regressions because they use market-adjusted returns and time dummies. We have also verified directly that our cross-sectional results do not change when we omit October 1987 from our sample. ²³ The reason that we lose 30 observations is that we do not allow any observation on NCSKEW, DUVOL, SIGMA or DTURNOVER to enter the regression if it draws on data from October 1987. Because of the detrending, the DTURNOVER variable in any given month draws on 24 months' worth of data. ²⁴ We have also experimented with adding further lags of SIGMA to our base-case time-series specifications. As in the cross-sectional regressions, this does not make any meaningful difference. returns, but we lack the statistical power to assert these conclusions—particularly that for turnover—with much confidence.²⁵ #### VI. Economic Significance of the Results: An Option-Pricing Metric Thus far, we have focused on the statistical significance of our results, and have not really asked whether they imply magnitudes that are economically meaningful. Assessing economic significance in the current context is a bit tricky. The thought experiment that is typically undertaken is something like this: suppose that the right-hand-side variable of interest—in this case, DTURNOVER—is shocked by two standard deviations. How much does the left-hand-side variable—NCSKEW or DUVOL—move? What makes things difficult here is that most people have little sense for what would constitute an economically interesting change in NCSKEW or DUVOL. To help frame things in a way that is hopefully more intuitive, we can translate statements about NCSKEW into statements about the prices of out-of-the-money put options. The idea behind our metric can be understood as follows. Imagine that you are pricing an out-of-the-money put on a stock whose returns you initially believe to be symmetrically distributed—i.e., a stock for which you believe that NCSKEW is equal to zero. Now the stock experiences a surge in turnover. As a result, you revise your forecast of NCSKEW, using the DTURNOVER coefficient estimate from our regressions. Given this new forecast of NCSKEW—but holding volatility fixed—by how much does the value of the put option increase? To answer this sort of question precisely, we need to: 1) find an option-pricing model that admits skewness in returns; and 2) create a mapping from the parameters of this model to our 23 ²⁵ In light of this power problem, a natural thing to do would be to run comparable time-series regressions for other stock markets outside the U.S. We hope to pursue this in future research. NCSKEW variable. The model we use is the stochastic-volatility model of Das and Sundaram (1999), in which the dynamics of stock prices are summarized by the following two diffusion equations: $$dp_t = \alpha dt + V_t^{1/2} dz_1 \tag{3}$$ $$dV_{t} =
\kappa(V_{0} - V_{t})dt + \eta V_{t}^{1/2}dz_{2}$$ (4) Here p_t is the log of the stock price, α is the expected return on the stock, V_t is the current variance, κ is the mean reversion parameter for the variance process, V_0 is the long-run mean level of variance and η is the volatility of the variance process. The two Wiener processes dz_1 and dz_2 are instantaneously correlated, with a correlation coefficient of ρ . The parameter ρ is the one of central interest for our purposes, as it governs the skewness of stock returns: when $\rho=0$, log returns are symmetrically distributed; when $\rho<0$, log returns are negatively skewed. In order to map the parameters of the option-pricing model into our NCSKEW variable, we draw on formulas given in Das and Sundaram (1999) that express the skewness in daily log returns as a function of the diffusion parameters. If we are willing to fix all the other parameters besides ρ , these formulas allow us to ask: "to what value of ρ does a given value of NCSKEW correspond?" Once we have obtained the implied value of ρ in this way, we can calculate options prices and thereby see the impact of a given value of NCSKEW. Table 7 illustrates the results of this exercise. Consider first Panel A, where the parameters are chosen so as to be reasonable for individual stocks: $\kappa=1$; $V_0=0.16$; $V_t=0.16$; and $\eta=0.1$. (Setting the variance V to 0.16 corresponds to an annual standard deviation of returns of 40%.) We also set the stock price P=100, and the riskless rate r=0. We begin with a hypothetical Firm 1, which has symmetrically distributed returns—i.e., it has NCSKEW = 0. This is equivalent to a value of $\rho=0$. Next, we take Firm 2, which is identical to Firm 1, except that it has a two standard-deviation higher value of DTURNOVER. The standard deviation of DTURNOVER (for firms above the 20^{th} percentile NYSE breakpoint) is 0.042, and from Table 2.A, column 1, the coefficient on DTURNOVER is 0.437. Hence the value of NCSKEW for Firm 2 is 0.037 (2 x 0.042 x 0.437 = 0.037). Using equation (21) in Das and Sundaram (1999, page 223) this value of skewness in daily returns for Firm 2 can be shown to imply $\rho=-0.38$, assuming all the other diffusion parameters stay fixed. Panel A of Table 7 displays the impact of this change in ρ for the prices of six-month European put options. That is, it calculates put prices for both Firm 1 (which has NCKSEW = 0 and thus $\rho = 0$) and Firm 2 (which has NCSKEW = 0.037 and thus $\rho = -0.38$). As can be seen, the impact on put prices is substantial, particularly if one goes relatively far out-of-the-money. For example, a put with a strike of 70 is worth 1.20 for Firm 1, but 1.44 for Firm 2, an increase of 20.14%. Or expressed in a different way, the Firm-1 put has a Black-Scholes (1973) implied volatility of 40.33%, while the Firm-2 put has an implied volatility of 42.50%. Panel B undertakes a similar experiment to gauge the significance of our time-series results. We keep all the diffusion parameters the same as in Panel A, except that we now set $V_0 = V_t = 0.04$, corresponding to an annual standard deviation of returns of 20%. For the market as a whole, the standard deviation of DTURNOVER is 0.005 (see Table 1.A). Using the coefficient estimate on DTURNOVER of 6.00 from Table 6, column 1, a two-standard-deviation shock to DTURNOVER translates into a movement of 0.06 in the NCSKEW variable. Given the other diffusion parameters, this value of 0.06 for NCSKEW is equivalent to $\rho = -0.33$. Panel B then compares the prices of six-month European puts across two regimes, the first with $\rho=0$, and the second with $\rho=-0.33$. Once again, the differences appear to be meaningful. For example, a put with a strike price of 85 is worth 0.86 in Regime 1, but 1.07 in Regime 2, an increase of 24.66%. The corresponding implied volatilities are 20.36% and 21.84% respectively. These results reinforce a point made above: while the time-series estimates may be statistically much weaker than those from the cross-section, they are no less suggestive of important economic effects. #### VII. Conclusions Three robust findings about conditional skewness emerge from our analysis of individual stocks. In the cross-section, negative skewness is greater in stocks that: 1) have experienced an increase in trading volume relative to trend over the prior six months; 2) have had positive returns over the prior thirty-six months; and 3) are larger in terms of market capitalization. The first two results also have direct analogs in the time-series behavior of the aggregate market, though the statistical power of our tests in this case (especially with respect to trading volume) is quite limited. Let us try to put each of these findings into some perspective. The first, regarding trading volume, is the one we were looking for based on a specific theoretical prediction from the model of Hong and Stein (1999). Clearly, our results here are supportive of the theory. At the same time, this does not mean that there are not other plausible interpretations. While we have attempted to control for some of the most obvious alternative stories, no doubt there are others that can be thought up. This caveat would seem to be particularly relevant given that there has been so little research to date on conditional skewness at the individual stock level. The second finding, having to do with the effect of past returns on skewness, is not something we were anticipating per se. It is more accurate to say that we tripped over it in our efforts to isolate the effects of trading volume from other factors. Having uncovered this very strong regularity in the data, we have found it helpful to think about it in terms of models of stochastic bubbles, such as that developed by Blanchard and Watson (1982). However, we would stop well short of claiming to have strong evidence in favor of the existence of bubbles. Indeed, there is a large body of research from the 1980's (see, e.g., West (1988) and Flood and Hodrick (1990) for reviews) that—focusing on a very different set of implications of bubble models—tends to come to mostly skeptical conclusions on this question. Rather, the more modest statement to be made is that previous research has not examined the implications of bubble models for conditional skewness, and that on this one score, the bubble models look pretty good. The third finding—that small-cap stocks are more positively skewed than large-cap stocks—is again something that we tripped over in the data. And here we are not even aware of an existing theoretical model that provides a simple and satisfying explanation. Instead, we have concocted a loose hypothesis after the fact, based on the ideas that: 1) managers prefer to disclose good news right away, while dribbling bad news out slowly; and 2) managers of small companies have more scope for hiding bad news from the market in this way. This hypothesis can probably be fleshed out to the point where it yields further and more distinctive empirical implications; this might make an interesting subject for future research. _ ²⁶ To oversimplify, the earlier empirical literature on bubbles can be characterized as primarily focusing on the relationship between prices and measures of fundamentals, such as dividends. #### References Allen, Franklin, Morris, Stephen and Postlewaite, Andrew, 1993, "Finite Bubbles with Short Sales Constraints and Asymmetric Information," *Journal of Economic Theory* 61, 206-229. Bakshi, Gurdip, Cao, Charles and Chen, Zhiwu, 1997, "Empirical Performance of Alternative Option Pricing Models," *Journal of Finance* 52, 2003-49. Bates, David, 1991, "The Crash of '87: Was It Expected? The Evidence from Options Markets," *Journal of Finance* 46, 1009-1044. Bates, David, 1997, "Post-'87 Crash Fears in S&P 500 Futures Options," NBER Working Paper 5894. Bekaert, Geert and Wu, Goujun, 1997, "Asymmetric Volatility and Risk in Equity Markets," Stanford Business School Working Paper. Black, Fischer, 1976, "Studies of Stock Price Volatility Changes," *Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section*, 177-81. Black, Fischer and Scholes, Myron, 1973, "The Pricing of Options and Corporate Liabilities," *Journal of Political Economy* 81, 637-659. Blanchard, Olivier J. and Watson, Mark W., 1982, "Bubbles, Rational Expectations, and Financial Markets," in Paul Wachtel, ed., *Crises in Economic and Financial Structure*. Lexington MA: Lexington Books, 295-315. Braun, Phillip A., Nelson, Daniel B. and Sunier, Alain M., 1995, "Good News, Bad News, Volatility, and Betas," *Journal of Finance* 50, 1575-1603. Campbell, John Y. and Hentschel, Ludger, 1992, "No News Is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," *Journal of Financial Economics* 31, 281-318. Christie, Andrew A., 1982, "The Stochastic Behavior of Common Stock Variances—Value, Leverage and Interest Rate Effects," *Journal of Financial Economics* 10, 407-432. Coval, Joshua D. and Hirshleifer, David, 1998, "Trading-Generated News, Sidelined Investors, and Conditional Patterns in Security Returns," University of Michigan Business School Working Paper. DeLong, J. Bradford, Shleifer, Andrei, Summers, Lawrence H and Waldmann, Robert J, 1990, "Noise Trader Risk in Financial Markets," *Journal of Political Economy* 98, 703-38. Das, Sanjiv R. and Sundaram, Rangarajan K., 1999, "Of Smiles and Smirks: A Term Structure Perspective," *Journal of Financial and Quantitative Analysis* 34, 211-239. Duffee, Gregory R., 1995, "Stock Returns and Volatility: A Firm-Level Analysis," *Journal of Financial Economics* 37, 399-420. Dumas, Bernard, Fleming, Jeff and Whaley, Robert E., 1998, "Implied Volatility Functions: Empirical Tests," *Journal of Finance* 53, 2059-2106. Engle, Robert F. and Ng, Victor K., 1993,
"Measuring and Testing the Impact of News on Volatility," *Journal of Finance* 48, 1749-78. Fama, Eugene F., 1998, "Market Efficiency, Long-Term Returns and Behavioral Finance," *Journal of Financial Economics* 49, 283-306. Fama, Eugene F. and MacBeth, James D., 1973, "Risk, Return and Equilibrium: Empirical Tests," *Journal of Political Economy* 81, 607-636. Flood, Robert P. and Hodrick, Robert J., 1990, "On Testing for Speculative Bubbles," *Journal of Economic Perspectives* 4, 85-101. French, Kenneth R., Schwert, G. William and Stambaugh, Robert F., 1987, "Expected Stock Returns and Volatility," *Journal of Financial Economics* 19, 3-29. Genotte, Gerard and Leland, Hayne, 1990, "Market Liquidity, Hedging and Crashes," *American Economic Review* 80, 999-1021. Glosten, Lawrence, Jagannathan, Ravi and Runkle, David E., 1993, "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," *Journal of Finance* 48, 1779-1801. Greene, William H., 1993, Econometric Analysis. New York: Macmillan Publishing Co. Griffin, John M. and Lemmon, Michael L., "Does Book-to-Market Equity Proxy for Distress Risk or Over-reaction?" Arizona State Working Paper. Grossman, Sanford J., 1988, "An Analysis of the Implications for Stock and Futures Price Volatility of Program Trading and Dynamic Hedging Strategies," *Journal of Business* 61, 275-98. Harris, Milton and Raviv, Artur, 1993, "Differences of Opinion Make a Horse Race," *Review of Financial Studies* 6, 473-506. Hong, Harrison, Lim, Terence, and Stein, Jeremy C., 1999, "Bad News Travels Slowly: Size, Analyst Coverage and the Profitability of Momentum Strategies," forthcoming in *Journal of Finance*. - Hong, Harrison and Stein, Jeremy C., 1999, "Differences of Opinion, Rational Arbitrage and Market Crashes," NBER Working Paper. - Jacklin, Charles J., Kleidon, Allan W. and Pfleiderer, Paul, 1992, "Underestimation of Portfolio Insurance and the Crash of October 1987," *Review of Financial Studies* 5, 35-63. - Kandel, Eugene and Pearson, Neil D., 1995, "Differential Interpretation of Public Signals and Trade in Speculative Markets," *Journal of Political Economy* 103, 831-72. - Koski, Jennifer Lynch and Pontiff, Jeffrey, 1999, "How Are Derivatives Used? Evidence from the Mutual Fund Industry," *Journal of Finance* 54, 791-816. - Lakonishok, Josef and Smidt, Seymour, 1986, "Volume for Winners and Losers: Taxation and Other Motives for Stock Trading," *Journal of Finance* 41, 951-974. - Nelson, Daniel, 1991, "Conditional Heteroskedasticity in Asset Returns: A New Approach," *Econometrica* 59, 347-370. - Odean, Terrance, 1998a, "Volume, Volatility, Price and Profit When all Traders Are Above Average," *Journal of Finance*, 53, 1887-1934. - Odean, Terrance, 1998b, "Are Investors Reluctant to Realize Their Losses?," *Journal of Finance*, 53, 1775-1798. - Pindyck, Robert S., 1984, Risk, "Inflation, and the Stock Market," *American Economic Review* 74, 334-351. - Poterba, James M. and Summers, Lawrence H., 1986, "The Persistence of Volatility and Stock Market Fluctuations," *American Economic Review* 76, 1142-1151. - Romer, David, 1993, "Rational Asset-Price Movements without News," *American Economic Review* 83, 1112-30. - Schwert, G. William, 1989, "Why Does Stock Market Volatility Change over Time?," *Journal of Finance* 44, 1115-1153. - Shefrin, Hersh and Statman, Meir, 1985, "The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theory and Evidence," *Journal of Finance*, 40, 777-790. - Varian, H.R., 1989, Differences of Opinion in Financial Markets," in *Financial Risk: Theory, Evidence and Implications: Proceedings of the 11-th Annual Economic Policy Conference of the Federal Reserve Bank of St. Louis*, ed. by C.C. Stone. Boston: Kluwer Academic Publishers, 3-37. West, Kenneth D., 1988, "Bubbles, Fads and Stock Price Volatility Tests: A Partial Evaluation," *Journal of Finance* 43, 639-656. Wu, Guojun, 1997, "The Determinants of Asymmetric Volatility," Stanford Business School Working Paper. **Table 1: Summary Statistics** NCSKEW $_t$ is the negative coefficient of (daily) skewness, measured using market-adjusted returns in the six-month period t. DUVOL $_t$ is the log of the ratio of down-day to up-day standard deviation, measured using market-adjusted returns in the six-month period t. SIGMA $_t$ is the standard deviation of (daily) market-adjusted returns measured in the six-month period t. LOGSIZE $_t$ is the log of market capitalization measured at the end of period t. DTURNOVER $_t$ is average monthly turnover in the six-month period t, detrended by a moving average of turnover in the prior eighteen months. TURNOVER $_t$ is the average monthly turnover measured in the six-month period t. RET $_t$ is market-adjusted cumulative return in the six-month period t. **Panel A: First and Second Moments** | | All Firms | Quintile-5
(Largest)
Firms | Quintile-4
Firms | Quintile-3
Firms | Quintile-2
Firms | Quintile-1
(Smallest)
Firms | Market
Portfolio | |-----------------------|-----------|----------------------------------|---------------------|---------------------|---------------------|-----------------------------------|---------------------| | NCSKEW _t | | | | | | | | | Mean | -0.262 | -0.139 | -0.155 | -0.198 | -0.266 | -0.362 | 0.268 | | Standard Dev. | 0.939 | 0.806 | 0.904 | 0.923 | 0.994 | 0.964 | 0.735 | | DUVOL, | | | | | | | | | Mean | -0.190 | -0.128 | -0.141 | -0.171 | -0.213 | -0.224 | 0.172 | | Standard Dev. | 0.436 | 0.364 | 0.391 | 0.406 | 0.437 | 0.476 | 0.377 | | SIGMA, | | | | | | | | | Mean | 0.025 | 0.015 | 0.017 | 0.020 | 0.023 | 0.034 | 0.008 | | Standard Dev. | 0.018 | 0.005 | 0.007 | 0.008 | 0.010 | 0.023 | 0.003 | | LOGSIZE, | | | | | | | | | Mean | 5.177 | 8.249 | 6.860 | 5.924 | 4.984 | 3.121 | N/A | | Standard Dev. | 2.073 | 1.035 | 0.653 | 0.642 | 0.656 | 1.108 | | | DTURNOVER, | | | | | | | | | Mean | 0.001 | 0.000 | 0.002 | 0.002 | 0.001 | -0.000 | 0.002 | | Standard Dev. | 0.066 | 0.039 | 0.040 | 0.042 | 0.046 | 0.095 | 0.005 | | TURNOVER _t | | | | | | | | | Mean | 0.050 | 0.051 | 0.056 | 0.055 | 0.054 | 0.043 | 0.037 | | Standard Dev. | 0.075 | 0.050 | 0.055 | 0.060 | 0.063 | 0.098 | 0.022 | | RET, | | | | | | | | | Mean | 0.003 | 0.024 | 0.015 | 0.021 | 0.017 | -0.019 | 0.029 | | Standard Dev. | 0.297 | 0.164 | 0.202 | 0.240 | 0.288 | 0.372 | 0.108 | | No. of Obs. | 100895 | 13988 | 14291 | 14727 | 16651 | 41238 | 421 | Panel B: Contemporaneous Correlations (Using only firms above 20th percentile in size) | | NCSKEW, | DUVOL₁ | SIGMA, LO | OGSIZE₁ | DTURN-
OVER | TURN-
OVER | RET_t | |---|---------|--------|-----------|---------|----------------|---------------|---------| | NCSKEW _t | • | 0.875 | 0.008 | 0.038 | 0.007 | 0.028 | -0.302 | | DUVOL | | | -0.076 | 0.045 | -0.013 | -0.042 | -0.371 | | SIGMA | | | | -0.307 | 0.130 | 0.398 | 0.034 | | LOGSIZE | | | | | 0.002 | 0.101 | -0.014 | | DTURN- | | | | | | 0.376 | 0.133 | | OVER _t
TURN-
OVER _t | | | | | | | 0.061 | | RET _t | | | | | | | | Panel C: Autocorrelations (Using only firms above 20th percentile in size) | | NC-
SKEW _{t-1} | DUVOL _{t-1} | SIGMA _{t-1} | LOG-
SIZE _{t-1} | DTURN-
OVER _{t-1} | TURN-
OVER _{t-1} | RET _{t-1} | |----------------------|----------------------------|----------------------|----------------------|-----------------------------|-------------------------------|------------------------------|--------------------| | NCSKEW _t | 0.047 | 0.059 | -0.047 | 0.063 | 0.022 | 0.032 | 0.043 | | $DUVOL_t$ | 0.061 | 0.090 | -0.109 | 0.068 | 0.016 | -0.024 | 0.047 | | SIGMA _t | -0.008 | -0.071 | 0.715 | -0.292 | 0.042 | 0.318 | -0.014 | | LOGSIZE _t | 0.049 | 0.055 | -0.342 | 0.976 | 0.000 | 0.093 | -0.011 | | DTURN- $OVER_t$ | -0.028 | -0.028 | -0.059 | 0.009 | 0.381 | -0.130 | 0.119 | | TURN- $OVER_t$ | 0.015 | -0.052 | 0.294 | 0.104 | 0.195 | 0.781 | 0.086 | | RET_t | -0.002 | 0.006 | -0.032 | -0.042 | -0.013 | -0.064 | 0.030 | # Table 2: Forecasting Skewness in the Cross-Section: Pooled Regressions The sample includes only those firms with market capitalization above the 20th percentile breakpoint of NYSE. In Panel A, the dependent variable is NCSKEW_{t+1} the negative coefficient of (daily) skewness in the six-month period t+1. NCSKEW_{t+1} is computed based on returns that are market-adjusted, beta-adjusted and simple excess returns in cols 1-3 respectively. In Panel B, the dependent variable is DUVOL_{t+1} the log of the ratio of down-day to up-day standard deviation in the six-month period t+1. DUVOL_{t+1} is computed based on returns that are market-adjusted, beta-adjusted and simple excess returns in cols 1-3 respectively. SIGMA_t is the (daily) standard deviation of returns in the six-month period t. LOGSIZE_t is the log of market capitalization at the end of period t. DTURNOVER_t is average monthly turnover in the six-month period t, detrended by a moving average of turnover in the prior eighteen months. RET_{t---}.RET_{t-5} are returns in the six-month periods t through t-5 (these past returns are market adjusted in cols. 1-2 and excess in col. 3). All regressions also contain dummies for each time period, not shown. t-statistics, which are in parentheses, are adjusted for heteroskedasticity and serial correlation. Panel A: Using NCSKEW measure | | 1. Base Case: | | | |------------------------|-----------------|----------|-----------| | | Market-Adjusted | | 3. Excess | | | Returns | Returns | Returns | | NCSKEW _t | 0.053 | 0.051 | 0.052 | | | (7.778) | (7.441) | (7.920) | | SIGMA _t | -4.566 | -3.370 | -2.701 | | | (-7.180) | (-5.242) | (-4.706) | | LOGSIZE _t | 0.037 | 0.046 | 0.059 | | | (11.129) | (13.465) | (19.110) | | DTURNOVER _t | 0.437 | 0.364 | 0.364 | | | (3.839) | (3.175) | (3.329) | | RET_t | 0.218 | 0.197 | 0.221 | | | (10.701) | (9.638) | (11.607) | | RET _{t-1} | 0.082 | 0.082 | 0.109
 | | (4.296) | (4.220) | (6.175) | | RET _{t-2} | 0.103 | 0.108 | 0.089 | | | (5.497) | (5.675) | (5.149) | | RET _{t-3} | 0.054 | 0.067 | 0.053 | | | (2.830) | (3.462) | (3.001) | | RET _{t-4} | 0.062 | 0.058 | 0.041 | | | (3.403) | (3.133) | (2.477) | | RET _{t-5} | 0.071 | 0.083 | 0.092 | | | (3.759) | (4.335) | (5.257) | | No. of Obs. | 51426 | 51426 | 51426 | | R ² | 0.030 | 0.031 | 0.082 | Panel B : Using DUVOL measure | | 1. Market-
Adjusted : | 2. Beta-Adjusted | 3. Excess | |------------------------|--------------------------|------------------|-----------| | | Returns | Returns | Returns | | DUVOL | 0.096 | 0.085 | 0.047 | | | (16.627) | (14.370) | (8.019) | | $SIGMA_t$ | -4.956 | -2.746 | -0.129 | | | (-15.698) | (-8.274) | (-0.344) | | LOGSIZEt | 0.014 | 0.025 | 0.032 | | | (9.572) | (16.180) | (19.283) | | DTURNOVER _t | 0.202 | 0.116 | 0.077 | | | (4.346) | (2.451) | (1.391) | | RET_t | 0.142 | 0.132 | 0.142 | | | (15.810) | (14.298) | (13.509) | | RET _{t-1} | 0.014 | 0.016 | 0.014 | | | (1.671) | (1.779) | (1.369) | | RET _{t-2} | 0.045 | 0.051 | 0.059 | | | (5.587) | (5.965) | (5.894) | | RET _{t-3} | 0.009 | 0.019 | 0.006 | | | (1.131) | (2.272) | (0.637) | | RET _{t-4} | 0.014 | 0.015 | 0.004 | | | (1.808) | (1.800) | (0.421) | | RET _{t-5} | 0.014 | 0.020 | 0.021 | | | (1.705) | (2.340) | (2.205) | | No. of Obs. | 51426 | 51426 | 51426 | | R^2 | 0.067 | 0.062 | 0.096 | # Table 3: Forecasting Skewness in the Cross-Section: Robustness Checks The sample includes only those firms with market capitalization above the 20^{th} percentile breakpoint of NYSE. In Panel A, the dependent variable is NCSKEW_{t+1} the negative coefficient of (daily) skewness in the six-month period t+1. In Panel B, the dependent variable is DUVOL_{t+1} the log of the ratio of down-day to up-day standard deviation in the six-month period t+1. In all columns returns are market-adjusted. SIGMA_t is the standard deviation of (daily) returns in the six-month period t. LOGSIZE_t is the log of market capitalization at the end of period t. DTURNOVER_t is average monthly turnover in the six-month period t, detrended by a moving average of turnover in the prior eighteen months, except in column 3, where turnover is not detrended. RET_{t----}RET_{t-5} are returns in the six-month periods t through t-5. SIGMAHAT_{t+1} is the predicted value of SIGMA_{t+1} calculated from a regression of SIGMA_{t+1} on SIGMA_{t---}, LOGSIZE_t, DTURNOVER_t and RET_{t---}. RET_{t-5}. All regressions also contain dummies for each time period, not shown. t-statistics, which are in parentheses, are adjusted for heteroskedasticity and serial correlation. Panel A: Using NCSKEW measure | | 1. Outliers
Truncated | 2. Turnover not
Detrended | 3. More Lags of
Past Volatility | 4. Fitted Future Volatility | |---|--------------------------|------------------------------|------------------------------------|-----------------------------| | NCSKEW _t | 0.050 | 0.053 | 0.053 | 0.051 | | | (8.675) | (7.837) | (7.663) | (7.454) | | SIGMAHAT _{t+1} | | | | -6.178
(-7.180) | | SIGMA _t | -4.994
(-8.938) | -6.618
(-9.822) | -3.953
(-3.751) | | | SIGMA _{t-1} | | | -0.460
(-0.384) | | | SIGMA _{t-2} | | | -0.367
(-0.353) | | | LOGSIZE _t | 0.035 | 0.033 | 0.037 | 0.034 | | | (12.047) | (9.980) | (10.898) | (9.351) | | $\begin{array}{c} DTURNOVER_t\\ (TURNOVER_t \text{ in col. 2}) \end{array}$ | 0.375 | 0.761 | 0.411 | 0.387 | | | (3.729) | (7.685) | (3.459) | (3.410) | | RET _t | 0.206 | 0.217 | 0.218 | 0.208 | | | (11.787) | (10.887) | (10.761) | (10.249) | | RET _{t-1} | 0.075 | 0.071 | 0.083 | 0.084 | | | (4.587) | (3.828) | (4.329) | (4.428) | | RET _{t-2} | 0.100 | 0.088 | 0.104 | 0.106 | | | (6.273) | (4.734) | (5.472) | (5.621) | | RET _{t-3} | 0.049 | 0.033 | 0.054 | 0.056 | | | (3.030) | (1.727) | (2.819) | (2.943) | | RET _{t-4} | 0.048 | 0.041 | 0.060 | 0.064 | | | (3.084) | (2.287) | (3.337) | (3.523) | | RET _{t-5} | 0.057 | 0.054 | 0.072 | 0.073 | | | (3.580) | (2.923) | (3.789) | (3.820) | | No. of Obs. R^2 | 51426 | 52229 | 51393 | 51426 | | | 0.039 | 0.031 | 0.030 | 0.030 | Panel B : Using DUVOL measure | | 1. Outliers
Truncated | 2. Turnover not
Detrended | 3. More Lags of
Past Volatility | 4. Fitted Future Volatility | |---|--------------------------|------------------------------|------------------------------------|-----------------------------| | DUVOL | 0.095 | 0.098 | 0.093 | 0.091 | | | (17.149) | (17.047) | (16.253) | (15.734) | | SIGMAHAT _{t+1} | | | | -6.740
(-15.698) | | SIGMA _t | -4.990
(-16.205) | -5.315
(-15.427) | -3.554
(-7.574) | | | SIGMA _{t-1} | | | -1.128
(-2.192) | | | SIGMA _{t-2} | | | -0.768
(-1.759) | | | LOGSIZE _t | 0.013 | 0.013 | 0.013 | 0.010 | | | (9.613) | (9.094) | (8.737) | (6.279) | | $\begin{array}{c} DTURNOVER_t\\ (TURNOVER_t \text{ in col. 2}) \end{array}$ | 0.196 | 0.144 | 0.143 | 0.147 | | | (4.335) | (3.629) | (3.038) | (3.180) | | RET _t | 0.140 | 0.145 | 0.145 | 0.132 | | | (15.997) | (16.464) | (16.199) | (14.691) | | RET _{t-1} | 0.012 | 0.015 | 0.020 | 0.017 | | | (1.507) | (1.826) | (2.396) | (2.009) | | RET _{t-2} | 0.044 | 0.044 | 0.047 | 0.048 | | | (5.758) | (5.509) | (5.765) | (5.900) | | RET _{t-3} | 0.009 | 0.003 | 0.010 | 0.012 | | | (1.135) | (0.396) | (1.159) | (1.422) | | RET _{t-4} | 0.013 | 0.008 | 0.014 | 0.017 | | | (1.692) | (0.997) | (1.774) | (2.104) | | RET _{t-5} | 0.012 | 0.009 | 0.014 | 0.015 | | | (1.607) | (1.118) | (1.733) | (1.861) | | No. of Obs. R^2 | 51426 | 52229 | 51393 | 51426 | | | 0.072 | 0.067 | 0.067 | 0.067 | Table 4: Forecasting Skewness in the Cross-Section: Cuts by Firm Size The dependent variable in all columns is $NCSKEW_{t+1}$ the negative coefficient of (daily) skewness in the six-month period t+1. In all columns, returns are market-adjusted. $SIGMA_t$ is the standard deviation of (daily) returns in the six-month period t. $LOGSIZE_t$ is the log of market capitalization at the end of period t. $DTURNOVER_t$ is average monthly turnover in the six-month period t, detrended by a moving average of turnover in the prior eighteen months. $RET_{t-1}RET_{t-1}$ are returns in the six-month periods t through t-5. All regressions also contain dummies for each time period, not shown. t-statistics are adjusted for heteroskedasticity and serial correlation. Firm size cuts based on NYSE breakpoints. | | Quintile-5 | 0 1 411 4 | | | Quintile-1 | |------------------------|------------|------------|------------|------------|------------| | | (Largest) | Quintile-4 | Quintile-3 | Quintile-2 | (Smallest) | | | Firms | Firms | Firms | Firms | Firms | | NCSKEW _t | 0.053 | 0.059 | 0.054 | 0.043 | 0.045 | | | (3.758) | (3.653) | (4.341) | (3.690) | (5.431) | | SIGMA _t | -3.043 | -4.362 | -4.409 | -4.062 | 2.894 | | | (-1.243) | (-2.263) | (-3.771) | (-4.612) | (8.793) | | LOGSIZE _t | 0.009 | 0.057 | 0.049 | 0.105 | 0.066 | | | (1.021) | (1.855) | (1.590) | (3.639) | (8.800) | | DTURNOVER _t | 0.404 | 0.637 | 0.551 | 0.264 | 0.079 | | | (1.812) | (2.450) | (2.554) | (1.391) | (1.072) | | RET_t | 0.260 | 0.335 | 0.215 | 0.155 | 0.010 | | | (5.637) | (7.000) | (5.359) | (4.682) | (0.569) | | RET _{t-1} | 0.047 | 0.001 | 0.083 | 0.134 | 0.017 | | | (1.009) | (0.024) | (2.157) | (4.269) | (1.076) | | RET _{t-2} | 0.163 | 0.165 | 0.104 | 0.069 | 0.014 | | | (3.554) | (3.726) | (2.651) | (2.298) | (0.816) | | RET _{t-3} | 0.025 | 0.078 | 0.093 | 0.033 | 0.028 | | | (0.535) | (1.682) | (2.334) | (1.112) | (1.823) | | RET _{t-4} | 0.162 | 0.101 | 0.071 | 0.006 | 0.014 | | | (3.637) | (2.540) | (1.852) | (0.215) | (0.864) | | RET _{t-5} | 0.128 | 0.089 | 0.134 | 0.013 | -0.010 | | | (2.906) | (1.801) | (3.503) | (0.465) | (-0.632) | | No. of Obs. | 12749 | 12520 | 12407 | 13750 | 29165 | | R^2 | 0.035 | 0.030 | 0.024 | 0.029 | 0.028 | # Table 5: Forecasting Skewness in the Cross-Section: Fama-MacBeth Approach The sample includes only those firms with market capitalization above the 20^{th} percentile breakpoint of NYSE. The dependent variable is NCSKEW_{t+1} the negative coefficient of (daily) skewness in the sixmonth period t+1. In all cases, returns are market-adjusted. The specification is the same as in col. 1 of Table 2. SIGMA_t is the standard deviation of (daily) returns in the six-month period t. LOGSIZE_t is the log of market capitalization at the end of period t. DTURNOVER_t is average monthly turnover in the sixmonth period t, detrended by a moving average of turnover in the prior eighteen months. RET_{t--}...RET_{t-5} are returns in the six-month periods t through t-5. Panel A reports only the coefficient on DTURNOVER_t for each period. Panel B reports the average coefficients for different sub-periods. Panel A: Period by Period Regressions (12/1965 to 6/1998); Coefficient on Detrended Turnover Only | 1960 | O's | 197 | 0's | 1980's | | 199 | 1990's | | |---------|--------|---------|--------|---------|--------|---------|--------|--| | 12/1965 | 0.383 | 6/1970 | 0.129 | 6/1980 | 1.730 | 6/1990 | 1.780 | | | 6/1966 | 1.053 | 12/1970 | 0.973 | 12/1980 | 0.707 | 12/1990 | -0.194 | | | 12/1966 | 0.248 | 6/1971 | 1.145 | 6/1981 | -0.156 | 6/1991 | 1.065 | | | 6/1967 | -0.081 | 12/1971 | 0.269 | 12/1981 | -0.757 | 12/1991 | 0.058 | | | 12/1967 | 0.201 | 6/1972 | 0.955 | 6/1982 | 2.738 | 6/1992 | 0.835 | | | 6/1968 | 0.468 | 12/1972 | -0.207 | 12/1982 | 0.373 | 12/1992 | 0.569 | | | 12/1968 | 1.218 | 6/1973 | 0.148 | 6/1983 | 2.314 | 6/1993 | 0.161 | | | 6/1969 | 1.101 | 12/1973 | -0.904 | 12/1983 | 0.334 | 12/1993 | 0.803 | | | 12/1969 | 0.498 | 6/1974 | 2.257 | 6/1984 | -0.751 | 6/1994 | 0.459 | | | | | 12/1974 | 0.579 | 12/1984 | 0.545 | 12/1994 | 0.372 | | | | | 6/1975 | -0.363 | 6/1985 | 2.448 | 6/1995 | 1.026 | | | | | 12/1975 | -0.083 | 12/1985 | -0.182 | 12/1995
| -0.913 | | | | | 6/1976 | 0.029 | 6/1986 | -0.686 | 6/1996 | -0.631 | | | | | 12/1976 | -0.016 | 12/1986 | 0.388 | 12/1996 | 1.981 | | | | | 6/1977 | 0.876 | 6/1987 | 0.672 | 6/1997 | 0.643 | | | | | 12/1977 | 1.901 | 12/1987 | 0.464 | 12/1997 | 0.062 | | | | | 6/1978 | 0.918 | 6/1988 | 0.404 | 6/1998 | 0.381 | | | | | 12/1978 | 1.512 | 12/1988 | -0.941 | | | | | | | 6/1979 | 1.506 | 6/1989 | 0.121 | | | | | | | 12/1979 | 0.210 | 12/1989 | -0.038 | | | | Panel B: Average Coefficients by Sub-Periods | | | _ | | | | |------------------------|----------------|--------------|----------|----------|---------| | | All
Periods | Late
60's | 70's | 80's | 90's | | NCSKEW _t | 0.063 | 0.099 | 0.079 | 0.064 | 0.024 | | | (4.880) | (2.173) | (4.517) | (2.707) | (1.258) | | SIGMA _t | -5.017 | -11.577 | -9.507 | -3.884 | 2.407 | | | (-2.312) | (-2.614) | (-3.063) | (-1.061) | (0.288) | | LOGSIZE _t | 0.030 | 0.005 | 0.040 | 0.027 | 0.032 | | | (4.141) | (0.222) | (2.216) | (2.776) | (4.200) | | DTURNOVER _t | 0.532 | 0.565 | 0.592 | 0.486 | 0.497 | | | (3.981) | (2.280) | (2.549) | (1.372) | (2.326) | | RET_t | 0.249 | 0.335 | 0.234 | 0.229 | 0.242 | | | (6.614) | (1.807) | (3.909) | (3.663) | (2.312) | | RET _{t-1} | 0.099 | 0.229 | 0.026 | 0.085 | 0.132 | | | (3.287) | (1.684) | (0.427) | (1.838) | (2.711) | | RET _{t-2} | 0.139 | 0.100 | 0.222 | 0.132 | 0.071 | | | (4.357) | (1.098) | (3.452) | (2.323) | (1.387) | | RET _{t-3} | 0.082 | 0.057 | 0.139 | 0.017 | 0.104 | | | (2.555) | (0.645) | (2.596) | (0.341) | (1.513) | | RET _{t-4} | 0.081 | 0.045 | 0.091 | 0.044 | 0.133 | | | (2.887) | (0.390) | (1.524) | (0.917) | (2.453) | | RET _{t-5} | 0.082 | 0.139 | 0.056 | 0.036 | 0.136 | | | (1.967) | (1.767) | (1.014) | (0.193) | (1.492) | | No. of Obs. | 66 | 9 | 20 | 20 | 17 | # **Table 6: Forecasting Skewness in the Market: Time-Series Regressions** The sample is based on market returns in excess of the risk-free rate, where the market is defined as the value weighted portfolio of all NYSE/AMEX stocks. The dependent variable in cols. 1 and 2 is $NCSKEW_{t+1}$ the negative coefficient of skewness in the six-month period t+1 and in cols. 3 and 4 is $DUVOL_{t+1}$, the log of the ratio of down-day to up-day standard deviation in the six-month period t+1. $SIGMA_t$ is the standard deviation of (daily) market returns in the six-month period t. $DTURNOVER_t$ is the average monthly turnover of the market portfolio in the six-month period t, detrended by a moving average of turnover in the prior eighteen months. $RET_{t-1}RET_{t-2}$ are returns in the six-month periods t through t-5. t-statistics, which are in parentheses, are adjusted for heteroskedasticity and serial correlation. | | | 2. Dep. Variable is NCSKEW _{t+1} , Excluding 10/87 | - | 4. Dep. Variable is DUVOL _{t+1} , Excluding 10/87 | |-------------------------------------|------------------|---|------------------|--| | NCSKEW _t | | 0.123 | 0.221 | 0.217 | | (DUVOL _t in col.3 and 4) | (0.855) | (1.232) | (1.842) | (0.844) | | SIGMA _t | 18.183 | 13.708 | 1.196 | -3.574 | | J. J | (1.137) | (0.749) | (0.156) | (-0.300) | | DTURNOVER _t | 6.002 | 9.349 | 6.324 | 9.462 | | | (0.262) | (0.828) | (0.704) | (1.148) | | RET_t | 2.647 | 1.809 | 1.484 | 1.184 | | | (4.147) | (4.406) | (4.168) | (3.398) | | RET _{t-1} | 1.585 | 1.077 | 0.482 | 0.332 | | | (3.086) | (2.939) | (1.481) | (1.061) | | RET _{t-2} | 1.473 | 0.926 | 0.554 | 0.386 | | | (2.242) | (1.922) | (1.898) | (1.357) | | RET _{t-3} | 0.589 | 0.443 | 0.126 | 0.017 | | | (0.602) | (0.734) | (0.325) | (0.049) | | RET _{t-4} | 1.283
(2.264) | 0.680
(1.575) | 0.475
(1.726) | 0.287
(0.968) | | DET | , , | , | ` , | , , | | RET _{t-5} | 1.187
(2.288) | 0.596
(1.930) | 0.686
(2.326) | 0.470
(1.753) | | No. of Obs. | 401 | 371 | 401 | 371 | | INO. OI ODS. | 401 | 371 | 401 | 371 | | R ² | 0.265 | 0.264 | 0.304 | 0.274 | Table 7: Economic Significance of Trading Volume for Skewness in Stock Returns: An Option-Pricing Metric Using the stochastic volatility option pricing model (and notation) of Das and Sundaram (1999) we consider what a two-standard-deviation shock in detrended trading volume implies for the prices of 6-month European options. ### Panel A: Options on Individual Stocks The benchmark parameters are as follows: stock price P=100, interest rate r=0, annualized long run variance V_0 =.16, current variance V=.16, mean reversion in variance κ =1, volatility of variance η =.4 Firm 1 is assumed to have a value of ρ =0. Firm 2 is assumed to have a value of ρ =-.38. These values of ρ imply that the difference in daily skewness between Firm 1 and Firm 2 is equivalent to that created by a two-standard-deviation move in the DTURNOVER variable, using our baseline firm-level sample and coefficient estimates from Table 2, col.1. | | 70 | 80 | 90 | 100 | 110 | 120 | 130 | |--|--------|--------|--------|--------|----------|--------|-------------| | Firm 1:ρ=0 | | | | | <u> </u> | | | | 6-month
European Put
Price | 1.197 | 3.044 | 6.287 | 11.082 | 17.325 | 24.748 | 33.044 | | B-S Implied
Vol. | 40.33% | 39.79% | 39.50% | 39.41% | 39.48% | 39.67% | 39.93% | | Firm 2: ρ=38 | | | | | | | | | 6-month
European Put
Price | 1.438 | 3.297 | 6.419 | 10.994 | 17.011 | 24.282 | 32.525 | | B-S Implied
Vol. | 42.50% | 41.16% | 40.03% | 39.10% | 38.35% | 37.77% | 37.34% | | Percent
Increase in Put
Price: Firm 2
vs. Firm1 | 20.14% | 8.30% | 2.09% | -0.80% | -1.81% | -1.88% | -1.57% | ## Panel B: Options on the Market Portfolio The benchmark parameters are as follows: stock price P=100, interest rate r=0, annualized long run variance V_0 =.04, current variance V=.04, mean reversion in variance κ =1, volatility of variance η =.4. Regime 1 is assumed to have a value of ρ =0. Regime 2 is assumed to have a value of ρ =-0.33. These values of ρ imply that the difference in daily skewness between Regime 1 and Regime 2 is equivalent to that created by a two-standard-deviation move in the market DTURNOVER variable, using our time series estimates from Table 6, col. 1. | | 85 | 90 | 95 | 100 | 105 | 110 | 115 | |---|--------|--------|--------|--------|--------|--------|--------| | Regime 1: ρ=0 | | | | | | | | | 6-month
European Put
Price | 0.859 | 1.693 | 3.121 | 5.330 | 8.367 | 12.093 | 16.298 | | B-S Implied Vol. | 20.36% | 19.61% | 19.09% | 18.91% | 19.07% | 19.49% | 20.04% | | Regime 2: ρ=33 | | | | | | | | | 6-month
European Put
Price | 1.070 | 1.912 | 3.258 | 5.289 | 8.134 | 11.755 | 15.955 | | B-S Implied Vol. | 21.84% | 20.68% | 19.63% | 18.76% | 18.21% | 18.01% | 18.10% | | Percent Increase
in Put Price:
Regime 2 vs.
Regime 1 | 24.66% | 12.91% | 4.39% | -0.77% | -2.79% | -2.80% | -2.10% |