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Abstract
Dell’s supply chain for desktops involves Asian vendors shipping components by sea to several U.S.

plants. While suppliers are responsible for shipping enough inventory, Dell can re-route and expedite their
shipments while in transit and also transfer on-hand inventory in order to balance supply across sites. This
paper describes the development, implementation and impact of the process and optimization-based control
system now used by Dell to address this supply routing challenge for its US-bound monitors. This new
methodology is estimated to have reduced Dell’s inventory re-positioning costs for monitors by about 60%.

1 Introduction

Like many other manufacturers, Dell Computers has seen growth come with a significant

increase in the complexity of its operations. Over the last ten years, this evolution has

specifically taken the following forms for Dell’s North American desktop division: (i) increase

of the number of assembly plants and warehouse facilities; (ii) replacement of most US-based

suppliers with Asian suppliers; and (iii) extension of the product line offered to customers.

Although these changes have directly impacted most of Dell’s operational functions, they

have in particular drastically complicated the mission of its procurement group. Indeed, that

group has thus become responsible for maintaining the availability of more components in

more locations, working with suppliers having longer transportation lead-times.

In order to address this supply availability challenge, Dell has long relied on Vendor-

Managed Inventory (VMI) relationships, whereby its suppliers are responsible for maintain-

ing a sufficient inventory of components in each one of Dell’s relevant locations, relative to

a demand forecast periodically communicated by Dell, e.g. 14 Days of Supply in Inventory

(DSI). As part of that relationship, component inventory continues to be owned by suppliers
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until only a couple of hours before that inventory is pulled onto Dell’s production line (or

warehouse pick process) for assembly, and suppliers are mostly free to follow any schedule

of shipments as long as it meets the service level requirements just mentioned. In order to

benefit from transportation volume discounts however, these shipments are typically done

through ocean and air carriers directly contracted by Dell. Also, Dell centralizes inventory

and shipment information, in part because it often uses several suppliers for the same compo-

nent. As a result, Dell has retained the function of managing both the routing of its pipeline

inventory and the transhipments of its on-hand inventory between various facilities (supply

routing), even though that inventory may still be on suppliers’ books at the time when it is

moved or re-routed (see Reyner 2006 and Kapuscinski et al. 2004 for more background and

references on Dell’s business model, supply chain and history).

The supply routing function just defined is particularly important for components such

as desktop chassis and monitors, which account for a substantial proportion of total supply

transportation costs. These components are typically shipped by ocean from Asia to the US

in full containers of a single part type because of their large volume and weight, and therefore

also have long delivery lead-times. As a result, gaps between actual realized demand in each

assembly or warehouse facility and the corresponding forecasts driving these shipments can

become quite large over this transportation delay, causing potentially large imbalances in

the inventory positions of Dell’s various sites. In turn, these imbalances may cause customer

delivery delays due to component shortages as well as additional inventory holding costs,

which Dell is keen to reduce through various means. Specifically, in North America Dell

can change at some cost the final destination of any container still on the Pacific ocean

(diversion) as well as its planned ground transportation mode (expedition) up until a couple

of days before it is disembarked in Long Beach, CA; available ground transportation modes

include, with increasing cost and decreasing lead-time, the default rail and truck mode; a

single driver truck-only mode; and a two driver (team) truck-only mode. In addition, Dell

can also perform transhipments (transfers) of on-hand inventory between its facilities. The

available transportation modes for these include a set schedule of pre-contracted truck "milk

runs" between Dell US facilities, which have low relative cost but limited capacity, as well as

specially affreighted single or team trucks. Figure 1 illustrates the supply-chain structure and

the associated supply routing decisions just defined, and also shows the four main locations in

the US where chassis and monitors are shipped for assembly and/or inclusion into customer
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orders as well as typical transportation lead-times.
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Figure 1: Dell’s Supply-Chain Structure and Supply Routing Decisions for US-Bound Desktop
Chassis and Monitors.

The volume of material continuously going through the supply chain just described is

very significant: a rough estimate from Dell’s public 10-K filing for fiscal year 2008 reveals

that tens of thousands of units of each component type must have been shipped every

week on average to Dell US facilities over that period. The challenge of making all the

associated diversion, expedition and transfer decisions in a timely and cost-effective manner

thus constitutes a supply chain control problem that is both important and difficult. The

present paper summarizes the collaboration conducted by Dell Computers and university

researchers over several years to develop the optimization-based control system now used

by Dell to address this supply routing challenge for its US-bound monitors. It contributes

to the operations management literature by providing a detailed description of a real-world

control challenge which has not been discussed extensively so far even though it is critical

to the operation of an important supply chain. It also describes a model for addressing this

challenge along with a process for implementing it which have been tested and validated by

practice.

The remainder is organized as follows. After a discussion of the related literature in

§2, we present the two main successive phases of that collaboration in §3 and §4. When

describing each phase, we first define the processes and tools developed (§3.1, §4.1), then

discuss implementation issues (§3.2, §4.2) as well as observed impact, both quantitative and

3



qualitative (§3.3, §4.3). Finally, §5 contains concluding remarks pertaining to the limitations

of our work, ongoing related developments, possible future research and key learnings from

this collaboration. An important notational convention used throughout this paper consists

of using symbols in bold for random variables, and the same symbols with no highlight for

their mathematical expectations, e.g. d , E[d]. Also, notations with an upper bar denote
cumulative quantities, e.g. d̄t =

Pt
k=1 dk. In order to protect the confidentiality of Dell’s

sensitive information, some of the numerical data included in this paper is disguised.

2 Literature Review

The reader may have noted from §1 that the high-level structure of Dell’s supply chain

for large desktop components in North America closely resembles that considered in the

inventory distribution model of Eppen and Schrage (1981) except that, using the terminology

introduced in that paper, Dell only performs the allocation function (splitting incoming

quantities among final destinations) and has delegated the ordering function (determining

incoming quantities) to its suppliers. Among common features, Dell’s supply routing problem

also involves the centralized allocation of incoming inventory among several facilities where it

is stored and consumed, and its cross-docking disembarkment operation in Long Beach, CA

exactly matches the definition of a "stockless depot" considered in Eppen and Schrage (1981).

Consequently, many of the results and insights described in the body of literature on multi-

echelon inventory distribution theory that started with that seminal paper (see Axsäter,

Marklund and Silver 2002 for a recent survey) are conceptually relevant to the problem

considered. In addition, several of these papers analyze extensions of Eppen and Schrage’s

assumptions which capture key operational features of Dell’s supply chain: Among others,

Federgruen and Zipkin (1984) consider facilities with non-identical cost structure facing non-

stationary demands, Jönsson and Silver (1987) consider transhipments between facilities and

Jackson (1988) considers non-identical transportation lead-times to the facilities. Another

relevant extension to the theory of multi-echelon inventory control, albeit one only carried

out so far for serial systems, is the inclusion of expedited transportation modes, as described

in Lawson and Porteus (2000).

In spite of all these papers’ contextual relevance, both our goal and methodology differ

substantially from theirs. Specifically, our objective is to develop and implement an oper-

ational system for a large real life supply chain, as opposed to deriving theoretical insights
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from a stylized model. Consequently, our approach sacrifices tractability for realism and

operational applicability, and the model we formulate is a mixed-integer program solved

over a rolling horizon using numerical (branch and bound) algorithms, as opposed to say a

dynamic program — see Chand, Hsu and Sethi (2002) for a more general review of rolling

horizon methods.

Some insights on the very supply chain motivating our work may be gained from Ka-

puscinski et al. (2004), which describes the development and implementation by Dell of

replenishment models for its component inventory. That paper is thus an important comple-

ment to ours, in that it focuses on how the inventory ordering decisions, which we assume

exogenous in the problem we consider, should be generated by Dell’s suppliers as part of

their VMI relationship (see §1).

The paper most related to ours however is Caggiano, Muckstadt and Rappold (2006),

which considers operational models for inventory and capacity allocation decisions in a multi-

item reparable service part system with a central warehouse and field stocking locations. In

particular, their Extended Stock Allocation Model (ESAM), which leaves the repair decisions

aside, is similar in many respects to the one we describe in §4: it is a mathematical program

meant to be solved on a rolling horizon basis; its decision variables comprise inventory

allocation and expedited shipment decisions; its objective function includes a transportation

component and a newsboy-like backorder component; it assumes deterministic lead-times and

an exogenous supply pipeline. However, the ESAM is still simpler than our model, in that it

does not capture transhipments, considers a single expedited transportation mode, assumes

a linear transportation cost structure and ignores transportation scheduling and capacity

constraints. These differences are material, as the solution approach ultimately followed in

Caggiano, Muckstadt and Rappold (2006) consists of developing heuristic solutions exploiting

the structural properties which can be established in their setting, while we compute instead

solutions to an approximate (linearized) version of our model (see §4.1). Most importantly

however, the present paper describes an actual implementation by an industrial firm of the

optimization model presented along with an assessment of its impact, and thus offers a

grounded perspective on the many important practical issues involved. This practical focus

is reflected by the structure of this paper, whereby we now describe in turn the two successive

phases followed by Dell as part of that implementation.
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3 First Phase: Process Design

3.1 Development The first phase of this project, which is described more extensively

in Reyner (2006), started in the Spring of 2005 with the determination by Dell executives

that the increasing trend in expediting and transfer costs which had been observed over

the previous months should be corrected. A team that was tasked then to investigate this

problem and issue recommendations identified two root causes. The first was that supply

routing decisions (i.e. diversions, transfers and expeditions) were being made by members

of several internal groups within Dell, and that the coordination between these groups only

occurred on an ad-hoc basis. The second root cause identified was that the information

relevant to supply routing decisions (at a minimum, the demand forecast, current inventory

and supply pipeline) was scattered, difficult to obtain in a timely fashion, and occasionally

unreliable.

The associated solution designed and implemented later that year comprised two key

components. The first was organizational, and involved the creation (and staffing) of a

specific job definition named supply chain analyst, with the explicit responsibility of gathering

and analyzing all relevant information in order to make and implement all inventory routing

decisions for a specified set of components. The second component was the development of

a spreadsheet-based information acquisition and visualization tool in support of that role,

which became known as the Balance Tool. As Figure 2 illustrates, this tool simultaneously

displays all available demand forecasts and scheduled supply deliveries for each component

in each of the relevant factories and warehouses over a rolling horizon of several weeks, with

a planning period of one day. Combining that information with the current inventory on

hand and backlog in the various sites allows Dell to compute a projected net inventory and

equivalent DSI (days of supply in inventory) levels in all the relevant locations over this

horizon, and highlight any anticipated shortages. Specifically, the Balance Tool uses a color

code and associated categories of DSI levels to show each day of the horizon in each facility as

red (critical situation), yellow (should be monitored) or green (sufficient inventory). Based

on daily automatic updates of the information displayed for each component and using

special entry cells, the supply chain analysts can then manually explore the implications of

all possible routing decisions. For example, a container scheduled to arrive in Austin in the

later part of the horizon could be diverted to Nashville and expedited by team truck, which
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the Balance Tool would reflect by removing that container from Austin’s supply line on its

original scheduled arrival date and adding it to that of Nashville on a closer date (determined

by the difference between the transportation times from Long Beach to Austin by rail and to

Nashville by team truck, respectively). The resulting new inventory and DSI levels in both

sites resulting from such a move would then be instantly displayed, showing for example the

extent to which this action would help correct a projected shortage situation in Nashville

in the short term when Austin is projected to have excess inventory later in the horizon.

Finally, the length of the planning horizon was chosen so that it would always include any

containers located before the diversion cut-off point of 2-3 days before port, assuming the

longest possible ground transportation lead-time and then adding an additional time buffer.

Figure 2: Visualization of Dynamic Routing Decisions with the Balance Tool (from Reyner
2006)

3.2 Implementation The creation of the supply routing analyst position was welcomed
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as a relief by the various groups previously involved in making these decisions, in part because

many involved regarded supply routing as a non-explicit yet time-consuming part of their

mission. Also, there was a fairly large consensus that the previous ad-hoc process could be

improved upon, and a sense of urgency created by the executive directions mentioned in

§3.1. The Balance Tool was implemented with the spreadsheet program Microsoft Excel,

augmented with Visual Basic macros which automated certain functions such as retrieval of

external data as well as creation and deletion of parts. A first technical challenge consisted

of identifying the diverse heterogeneous databases containing the relevant data (demand

forecasts, available inventory and projected deliveries) and developing ways to query them.

Another challenge consisted of working with the groups primarily responsible for entering

any new information to these databases in order to ensure that these entries would be

systematically submitted in a timely manner and consistent format. This proved particularly

challenging with the external suppliers and carriers, who were responsible for submitting

expected arrival dates of all incoming shipments and updating them whenever appropriate.

Difficulties stemmed in part from incentive issues as well as the variety of information systems

used at the time by Dell to communicate with suppliers.

A key implementation and development strategy in this phase was to organize a live

pilot of the newly designed decision process for a selected subset of components (monitors)

relatively early on (September 2005). The associated pressure to generate actual decisions

allowed the analyst to quickly identify and address many improvement opportunities for

the Balance Tool and the communication formats used with suppliers and carriers. It also

allowed the analyst to quickly identify the information sources which were most problematic

(see above), and thus dedicate time to checking input information only selectively. Finally,

the pilot forced a grounded reflection on how supply routing decisions should be made in

specific situations and helped quantify the impact of the new process, as we discuss next.

3.3 Impact The financial impact of this first phase was estimated using a fairly coarse

methodology. Specifically, managers reviewed all the decisions made over a limited period

of time during the live pilot described above, along with the associated input data. In each

case, they determined which alternative decisions would likely have been made under the

previous process, along with their associated transportation costs. Because the part shortages

were generally perceived to have improved during the pilot, the transportation cost savings
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associated with the new process that were calculated in this way were considered meaningful.

Although this methodology involves many subjective and arguably biased inputs, its results

were still deemed valid by Dell’s managers and led to their conclusion that the new process

reduced the transportation costs associated with supply routing by about 40% (Reyner 2006).

This quantitative impact estimation seems to have been easily accepted because it had

a clear qualitative explanation. Specifically, the new process generated comparatively more

rail diversions, which only involve a small bill of lading splitting fee, and fewer transfers and

expeditions, which are considerably costlier decisions. This can be traced back to the orga-

nizational structure previously underlying supply routing decisions, whereby responsibilities

for continuity of supply were allocated based in part on when in the future that supply would

be needed for production. For example, the Production Control group is concerned with on

hand inventory, the Purchasing group monitors any supplier capacity problems potentially

impacting production one or two months into the future, etc. In this setting, rail diversions

had been a neglected lever because they required more information than transfers and needed

to be executed about a couple of weeks before delivery, a domain whose organizational own-

ership was unclear. In contrast, the new process allowed for all supply routing decisions to

be considered in a coordinated fashion.

Dell started using the new process described above continuously for all its monitors (about

two dozen different part types) in January 2006, shortly after the live pilot and its assessment

were completed. It was also deployed later that year for chassis. In spite of their many

benefits, these deployments also revealed additional improvement opportunities, linked to

the absence of formal decision rules for how routing decisions should be made as a function of

the input data available. Relying exclusively on the analysts’ judgement proved problematic

from a time efficiency standpoint, because of the high number of parts to manage, the

very high number of potential decisions involved for each part, the large amount of relevant

information and the high decision-making frequency: while forecasts can change daily, for

example whenever a large customer order "drops", the analysts were thus only able to review

and affect the status of any particular part once a week on average. From a resiliency

standpoint, it also seemed problematic for Dell to depend entirely on a handful of individuals

for such frequent and critical control decisions. Finally, the Balance Tool only characterized

expected shortages very coarsely through the net inventory levels displayed and the color
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code described above, and did not provide an estimate of the transportation costs associated

with the decisions considered. It was thus suspected that even an expert analyst could easily

make sub-optimal decisions in this setting. These considerations all motivated the second

phase of this collaboration, which is described next.

4 Second Phase: Optimization

The second phase of this project started in September 2006. Its objective was to develop

and implement a formal optimization model that could automatically generate Dell’s supply

routing decisions as part of the process described in §3, or at least serve as a decision support

system to assist the supply routing analysts.

4.1 Development It was quickly realized that any optimization model serving the

purpose just stated would need to quantify the main trade-off involved in Dell’s supply

routing decisions, namely the tension between transportation costs on one hand and shortage

costs on the other hand. While expressing the transportation costs incurred as a function

of the routing decisions considered is relatively straightforward as will be seen shortly, the

critical modeling challenge was to quantify the benefits associated with these decisions,

that is the overall change of expected shortage costs in all of the sites where the projected

inventory levels were affected. We describe our work on this problem in §4.1.1, then present

the resulting complete optimization model in §4.1.2.

4.1.1 Expected Shortage Costs We adopted a standard linear structure B
P

t∈T , ∈L vt

for the total expected shortage costs predicted in all facilities ∈ L , {Austin, Nashville,
Reno, Winston-Salem} for a specific part over the rolling horizon t ∈ T , {1, .., T} con-
sidered, where B is a unit daily shortage cost rate and vt is the expected average shortage

level for future day t in location . In practice, shortage costs stem from a variety of fac-

tors including primarily: order cancellations by impatient customers; expedited shipping to

customers with late orders; substitutions of more expensive components for the same price;

lost profit from customers turned away by long posted lead-times; price concessions on fu-

ture orders... We refer the reader to Kapuscinski et al. (2004) and Dhalla (2008) for more

exhaustive and detailed descriptions. While B is assumed available input data for now, we

return to this issue in §4.2, and develop next an expression for vt as a function of the supply

routing decisions considered and the inventory and demand data available.
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In the absence of forecasting errors, maintaining barely positive net inventory levels would

suffice to ensure supply continuity; the quantity of component inventory that should be

maintained at or shipped to any location must therefore depend directly on these errors.

Our first step thus consisted of characterizing the distribution of actual demand relative

to the forecast available for that quantity at the time when routing decisions need to be

made, as this information was not available to us at the outset. This empirical study of the

cumulative forecast error (see §A.1 in the Online Appendix) both suggested the structure

and provided the standard deviation input data σt for the stochastic model

tX
k=1

dk ∼ N(
tX

k=1

fk , σt ), (1)

where: dt is the random variable representing demand on day t for a given part in a given

location ∈ {Austin, Nashville, Reno, Winston-Salem}, as estimated at the beginning of the
current day (always indexed by 1 in our rolling horizon model), so that

Pt
k=1 dk , d̄t is the

cumulative demand for the next t days; N(f, σ) refers to a normal distribution with mean f

and standard deviation σ; ft is the (deterministic) forecast of the same quantity generated

by Dell and provided to the supply-chain analyst on day 1, so that
Pt

k=1 fk , f̄t is the

corresponding cumulative forecast of demand up to day t; and finally σt is the standard

deviation of the forecasting error d̄t − f̄t . Note that the forecasting error study mentioned

above did identify some systematic biases. However, because they were relatively small and

convincingly explained by the forecasting team, we decided to ignore them as part of our

model. The notations ft and dt , E[dt ] will thus be used interchangeably from now on.

The inventory dynamics over the rolling horizon considered are described in our model

by the following balance equation, which assumes that any unmet demand is backlogged:

I(t+1) = I1 +
tX

k=1

sk − d̄t for t ≥ 1. (2)

In (2), It is the (random) net inventory level available at the beginning of day t in location

, as predicted at the beginning of day 1 (so that I1 = I1 is deterministic input data), and

st is the net result of deliveries into and transfers out of location on day t (which is directly

affected by the supply routing decisions we seek to determine). Note that st is assumed to

be deterministic in our model, which ignores supply uncertainty. This is justified by the fact

that in Dell’s setting supply uncertainty is small relative to demand uncertainty given the
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(daily) time granularity considered. As a result, the ranges of lead-times appearing in Figure

1 are essentially driven by the differences across destinations, as opposed to any potential

unpredictable variability affecting the lead-time associated with a given transportation mode

on a specific leg. Also, that assumption does not affect the operational applicability of the

model output, as will be seen further.

Next, we characterize the average shortage level vt for day t in location predicted at

the beginning of day 1 as

vt , (It − dt )− . (3)

The expression It −dt for the average net inventory level during day t which appears in (3)
corresponds to the most pessimistic assumption for the daily schedule of supply and demand.

That is, demand is assumed to occur entirely at the very beginning, and supply deliveries

at the very end, of day t. This approach was followed because the expressions derived from

other assumptions (say continuous supply and demand processes) are less tractable, detailed

hourly demand and supply data was not easily accessible, and because of Dell’s expressed

desire to err on the conservative side when predicting shortages8. Substituting (2) and (1)

in (3) yields

vt ∼ [N(It − ft , σt )]
− for t ≥ 1, (4)

which characterizes the distribution of average shortages in terms of decision variables and

input data9. The expectation of the random variable in (4) is thus given by the standard

expression

vt = σt φ

µ
ft − It
σt

¶
+ (ft − It )Φ

µ
ft − It

σt

¶
, (5)

where φ and Φ are the standard normal p.d.f. and c.d.f., respectively.

Because the r.h.s. of (5) as a function of ft − It is convex, the upper envelope of a finite

number of its tangents constitutes an approximation that can be made arbitrarily accurate

and is particularly efficient from a computational standpoint. To construct this approxima-

tion, we first determine upper and lower bounds ILBt and IUBt for It that are independent

of decision variables and only depend on input data. A tight upper bound IUBt is easily

computed by observing that in any given situation, the maximum expected net inventory
8 The alternative definition vt , (It + st )

− is equally tractable and is the most optimistic in the sense
just defined. It thus allowed us to verify that the modeling assumption reflected by (3) was relatively immaterial.
9 Random variables and their distributions are used interchangeably in (4), as no related ambiguity arises here.
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level in location at the beginning of time t would be obtained by instantly transferring

to all inventory from other facilities, and re-routing towards with the fastest ground

transportation mode (team truck) all divertable containers which can arrive to by time t.

Likewise, a tight lower bound ILBt corresponds to the situation where all inventory available

in is transferred immediately to other facilities, and all containers initially bound to

are diverted away while demand continues to deplete this facility10. Secondly, we calculate

iteratively a discrete set of sampling points Pt ⊂ [ILBt , IUBt ] indexed by p, and the slopes

at p and intercepts bt p of the corresponding tangents to the r.h.s. of (5), using numerical

implementations of φ and Φ along with the maximum error rule method described in Rote

(1992)11. This approximation is amenable to implementation as part of a linear optimization

model, which we now proceed to describe.

4.1.2 Optimization Model Formulation The basic optimization model we developed

to generate supply routing recommendations for each individual part at a specific point in

time is the following mixed integer program:

Input Data: Besides the rolling horizon T , {1, .., T} and the set of relevant
locations L , {Austin, Nashville, Reno, Winston-Salem} previously introduced, the part
considered is characterized by a maximum number of parts per truckQ and a number of parts

per pallet J ; Incoming supply consists of a set C of containers indexed by i, each containing
a quantity of parts qi with a current destination i ∈ L and an expected arrival date Ai ∈ T .
Containers that are still divertable (typically all containers still on the ocean and at least 2

or 3 days away from port) form a subset CRT⊂ C, while the containers in the complement set
CNRT , C\CRT may no longer be re-routed before they arrive to destination. The expected
arrival date at the port (Long Beach, CA) of containers i in CRT is denoted ALB

i ∈ T . Often
containers travel as a group of multiple containers all sharing the same bill of lading, and

therefore the same destination, transportation mode and expected arrival time. Containers

with the same bill of lading may be split however, provided they belong to CRT . In this
case, the carrier creates as many new bills of lading as the new resulting number of container

groups traveling together, incurring an administrative fee of cBL times the number of new

10 The equations for ILBt and IUBt in terms of input data are straightforward and omitted here.
11 This algorithm initiates with Pt = {ILBt , IUBt }. In each iteraction, tangents are constructed for each new point
in Pt , and the x-axis values of the intersection of tangents corresponding to adjacent points in
Pt are added as new points. The algorithm terminates when the maximum difference between
the y-axis values of these intersections and the corresponding function values reaches a specified upper bound.
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bills of lading created. Bills of lading are indexed by j ∈ J , and the subset of containers
sharing each bill of lading j is denoted Cj, so that C = ∪j∈J Cj; Current net inventory
(on-hand inventory minus backorders) currently available in each location ∈ L (that is
at the beginning of day 1 of the rolling horizon) is denoted I1 ; Forecast of demand in

location ∈ L during day t is denoted ft , while the cumulative forecast of demand from day
1 to day t (included) is denoted f̄t ; Container ground transportation modes between

the port and Dell’s facilities are indexed by m ∈MRT , {rail,single truck,team truck} and
characterized for each destination ∈ L by a cost per container cRTm and an average lead-time

LRT
m (expressed in days). The potential expected delivery date in location of any divertable

container i ∈ CRT is thus ALB
i +LRT

m ; Specially affreighted transfers of inventory between

two facilities and 0 in L are characterized by their expedition mode m ∈MSP , {single
truck,team truck}, their cost per truck cSP0m and their lead-time LSP

0m;Milk run transfers

of inventory from facility to facility 0 are characterized by their schedule of departures

SMR
t 0 (equal to 1 if a run from to 0 is scheduled on day t and 0 otherwise), their cost per

pallet cMR
0 , the maximum number of pallets of a given part allowed in each run R, and their

lead-time LMR
0 ; Shortage cost parameters include the unit daily shortage cost rate B

as well as each slope at p and intercept bt pof the approximating tangents to the expected

shortage cost function indexed by p ∈ Pt for each day t and location . An associated upper

bound for the absolute value of the expected net inventory level at the beginning of day t in

location is Mt = max(|IUBt |, |ILBt |) (see §4.1.1).

Decision Variables: Container routing decisions are captured by binary variables

yi m equal to 1 if container i ∈ CRT is routed from the port to facility using transportation

mode m ∈MRT , and 0 otherwise. In addition, binary variables zj m take the value 1 if at

least one container i ∈ Cj from bill of lading j is routed to facility using transportation mode

m ∈MRT , and 0 otherwise; Special transfer decisions are captured by integer variables

Xt 0m representing the number of full trucks sent from facility to facility 0 on day t using

expedition mode m ∈MSP , binary variables xt 0m equal to 1 if a less-than-full truck is used

between and 0 on day t with modem and 0 otherwise, and continuous variables wt 0m ≤ Q

representing the number of parts carried in that truck12; Milk run transfer decisions are

captured by integer variables rt 0 representing the number of pallets included in the run from

12 The integrality of xt 0m is immaterial in light of the quantities at stake here.
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facility to facility 0 on day t; Inventory variables include the expected net inventory

level It at the beginning of day t > 1 in location , its positive part I+t and negative part I
−
t ,

and a binary indicator variable I1t = 1{It ≥0}; Expected average shortages during each

day t in each location are captured by continuous variables vt (approximately, see §4.1.1).

Formulation:

Min
X

i∈CRT , ,m∈MRT

cRTm yi m +
X
j∈J

cBL

⎛⎝ X
,m∈MRT

zj m − 1

⎞⎠
+

X
{t, , 0,m∈MSP : 6= 0}

cSP0m (Xt 0m + xt 0m) +
X

{t, , 0: 6= 0}

cMR
0 rt 0 +B

X
t,

vt (6)

subject to:

It = I1 − f̄(t−1) +
X

{i∈CNRT : i= ,:Ai≤t−1}

qi +
X

{(i,m)∈CRT×MRT :ALB
i +LRTm≤t−1}

qiyi m

+
X

{(τ, 0,m)∈T ×L×MSP : 0 6= ,τ+LSP0 m≤t−1}

(QXτ 0 m + wτ 0 m) +
X

{(τ, 0)∈T ×L: 0 6= ,τ+LMR0 ≤t−1}

Jrτ 0

−
X

{(τ, 0,m)∈T ×L×MSP : 0 6= ,τ≤t−1}

(QXτ 0m + wτ 0m)−
X

{(τ, 0)∈T ×L: 0 6= ,τ≤t−1}

Jrτ 0 (7)

X
m∈MRT ,

yi m = 1 ∀i ∈ CRT (8)

zj m ≥ yi m ∀j ∈ J , ∈ L,m ∈MRT , i ∈ Cj (9)

It = I+t − I−t ∀t ∈ T , ∈ L (10)

I+t ≤Mt .I
1
t ∀t ∈ T , ∈ L (11)

I−t ≤Mt .(1− I1t ) ∀t ∈ T , ∈ L (12)X
{( 0,m)∈T ×L×MSP : 0 6= }

(QXt 0m + wt 0m) +
X

{ 0∈L: 0 6= }

Jrt 0 ≤ I+t ∀t ∈ T , ∈ L (13)

wt 0m ≤ Q.xt 0m ∀t ∈ T , ( , 0) ∈ L2,m ∈MSP (14)

rt 0 ≤ R.SMR
t 0 ∀t ∈ T , ( , 0) ∈ L2 (15)

vt ≥ at p(ftl − It ) + bt p ∀t ∈ T , ∈ L, p ∈ Pt (16)

yi m, zj m, xt 0m, I
1
t ∈ {0, 1} (17)

Xt 0m, rt 0 ∈ N (18)

wt 0m, vt , It , I
+
t , I

−
t ≥ 0 (19)

The objective (6) is the sum of all transportation costs associated with the decisions con-
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sidered, including container re-routing (first term), bill of lading fees (second term), special

trucks (third term) and milk runs (fourth term), along with the corresponding expected

shortage costs (last term). Note that our choice of minimizing total costs, as opposed to

say minimizing transportation costs subject to a service level constraint on total expected

shortages, is dictated by the problem at stake. Specifically, Dell’s suppliers are responsible

for all initial shipment decisions (see §1), which are thus exogenous to the routing problem

considered. As a result, such a service level constraint could lead to infeasibility problems.

We also observe that the transportation costs captured in (6) do not include all inbound

transportation costs paid by Dell, and in particular exclude the cost of ocean transportation

— this is because only the portion corresponding to ground transportation is affected by the

decision variables. Finally, (6) does not account for any inventory costs which could arise

from excessive inventory in a given location. While it would be straightforward to add a

term summing the on-hand inventory variables I+t multiplied by an inventory holding cost

rate, it turns out that the relevant costs associated with excessive inventory mostly stem

here from the additional storage required in the warehouses adjacent to its factories when

the overall amount of inventory across all parts exceeds a threshold. While the inventory

holding costs incurred by Dell’s suppliers in those warehouses may in turn affect Dell in

important ways, these primarily depend on the overall quantity of inventory shipped (as

opposed to the allocation of this inventory across sites), which is an exogenous quantity. In

light of these considerations and because the inventory storage costs incurred historically

represent only a very small fraction of the transportation costs, it was decided to leave these

costs out of the optimization model.

Constraints (7) are inventory balance equations defining the relationship between the ex-

pected net inventory variables It and the inventory currently available (It ), the demand

forecasts (f̄(t−1) ), the pipeline of non-routable containers (
P

{i∈CNRT : i= ,:Ai≤t−1} qi), and all

the supply routing decisions considered (all subsequent terms in the r.h.s.). Constraints (8)

ensure that every container is routed to exactly one destination through one transporta-

tion mode. Constraints (9) ensure that the term
P

,m zj m − 1 appearing in the objective
corresponds indeed to the number of new bills of lading created for the containers initially

included in bill of lading j as a result of the routing decisions. Constraints (10)-(12) en-

sure that variables I+t , I
−
t and I1t correspond indeed to the positive part, negative part and
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non-negativity indicator of variable It , respectively. Constraints (13) state that the total

inventory transferred out of any facility during a given day t, either through special trucks

or a milk run, may not exceed the inventory on hand expected to be available in that fa-

cility at the beginning of that day. Constraints (14) ensure both that the quantity of parts

recommended for transportation aboard a less-than-full specially affreighted truck does not

exceed its capacity, and that the binary variables signalling the existence of such trucks take

values consistent with their definition. Similarly, (15) enforces both the capacity and the

scheduling restrictions of milk runs between facilities. Note that the variables SMR
t 0 are only

introduced here to simplify exposition, as for implementation purposes it is more computa-

tionally efficient to only define variables rt 0 over the set of indices (t, , 0) such that there

exists a run from to 0 on day t. Finally, constraints (16) together with the minimization

objective ensure that in any optimal solution (and any solution computed through a branch

and bound MIP algorithm) the variables vt implement indeed the approximate expected

average shortage level during day t in location which is described in §4.1.1.

An important observation is that the formulation (6)-(19) only considers one part at a

time, and thus implicitly assumes that parts are independent from each other. This is partly

justified for monitors and chassis, which are shipped in full containers of a single part type.

It does represent a limitation of our approach however, and we return to this issue in §5.

4.2 Implementation The technical implementation of the model described in §4.1 was

performed using the development environment OPL Studio linked with the optimization

engine CPLEX 9.1, usingMicrosoft Excel as a repository for the static input data (costs, lead-

times, forecast accuracy parameters, shortage costs) and also to visualize the output data

(see Figure 3 for an illustration13). In addition, links were created with some of Dell’s existing

databases in order to automatically import the dynamic input data (current inventory levels,

forecasts, pipeline inventory) whenever required. An unexpected data acquisition challenge

was created by the difficulty to obtain accurate rail transportation costs. This stemmed

from the division of Dell’s total inbound transportation costs for accounting purposes in two

categories: embedded costs which correspond to a default transportation mode (for monitors,

transit by ocean and rail) and are included in the price per part charged by suppliers; and

13 Figure 3 note: The entries "Red Ball" appearing in the 7th column of the table under the heading "Mode" refer
to the name of a carrier contracted by Dell to perform the milk runs between sites described in
§1, which has become synonymous with that transportation mode within Dell.
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re-positioning costs which include any additional ground transportation costs incurred (i.e.

expeditions by truck and transfers) and are paid separately. Because it was known however

that the costs of transportation by rail between Long Beach and Dell’s US facilities only differ

by very small amounts relative to all the other ground transportation costs and fees, it was

decided that (6) would only capture re-positioning costs. After checking through sensitivity

analysis that this would have little impact if any on the decisions recommended, we thus

set cRTm = 0 for m ="rail". Finally, the pre-processing necessary to compute the piecewise

linear approximations to the expected shortage cost functions (see §4.1.1) was implemented

using Microsoft Visual Basic. The creation of this software tool from complete specifications

required approximately 6 months of full-time work by an experienced developer familiar with

optimization theory at an introductory graduate course level. We refer the reader to §A.2 in

the Online Appendix for a more detailed description of this software (including additional

screen copies of its interface), and to Foreman (2008) for the source code.
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Figure 3: Output Interface of the Model Software Implementation

It was decided at the outset that the model implementation would be initially limited to

monitors, which are very large contributors to Dell’s total inbound transportation costs. A

first preliminary step consisted of gathering a large and representative collection of input

data sets in order to evaluate the computational time associated with executing the branch

and bound algorithm on realistic problem instances, and possibly identify the run parameters

for this algorithm yielding the fastest computations. This study demonstrated that while

achieving optimality occasionally required more than an hour for these problems, a subopti-
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mality gap equivalent to a bill of lading creation fee (the smallest individual transportation

cost component appearing in the objective function (6)) was almost always achieved in a

matter of seconds using standard search strategies. As a result, the achievement of a sub-

optimality gap equal to that amount was set as our algorithm termination criteria, and we

did not further investigate the computational solution time for this problem, nor attempt to

reduce it through additional efforts.

An important implementation issue was to decide how the model output data should

affect operational decisions. While each optimization run produces a set of recommended

supply routing decisions for each part, some of these are decisions that can possibly be only

enacted on some distant day in the future, since the optimization model considers a rolling

horizon of several weeks. As seen in the last column of the model output table in Figure 3,

the software was thus made to calculate and display the time sensitivity of each decision,

defined as the number of days before the opportunity to enact that decision will disappear

(e.g. a generated diversion decision affecting a container on a vessel five days away from

Long Beach would have a time sensitivity of three days if the diversion cutoff point for this

part was two days before port). This enabled the analysts to only enact the decisions with a

time criticality lower than a set threshold (for example the number of days before the next

anticipated run on that part), with the overall goal of waiting for as long as possible for the

most recent data before committing to any decision.

The ultimate execution plan envisioned consisted of performing an optimization run for

every part on a daily basis. However, a key aspect of the implementation strategy was

to first go through a pilot period of several weeks during which the model output would

be systematically compared to the supply routing decisions generated manually with the

Balance Tool beforehand, with the following objectives: (i) improve the software interface

and functionalities with observations grounded in practice; and (ii) build an archive of input

and output data in order to evaluate the qualitative and quantitative impact of the model

(see §4.3). An important implementation hurdle faced at that point was to determine which

value(s) should be used in practice for the unit shortage cost rateB introduced in §4.1. As the

model’s main input parameter for resolving the trade-off between shortage and transportation

costs, it had a significant impact on the output: with a low value of B most decisions

generated could be container diversions with no expeditions and some milk-run transfers,
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while in the same situation a high value of B could generate many container expeditions and

transfers through team trucks. At the same time however, no study previously performed

within Dell was available to guide the implementation team towards an objective value for

that parameter. The strategy decided then was two-fold: For the long term, an in-depth

study of Dell’s shortage costs was initiated, following a methodology similar to that described

by Oral et al. (1972) (see Dhalla 2008 for more details); In the short term, B was to be

treated as a control lever which the supply chain analyst could initially adjust, with the

goal of achieving through experimentation the same trade-off between transportation costs

and service level as the one that was implicitly associated with the decisions made to date

with the Balance Tool. That short term strategy clearly would not be optimal with respect

to the key trade-off just mentioned. However, it would still hopefully generate in a more

efficient manner recommended supply routing decisions that would be consistent in terms of

that trade-off, at least after the initial experimentation phase would converge to a relatively

stable set of values for B. In addition, these decisions could still possibly produce substantial

savings in transportation costs.

The determination by the supply analyst of a value for the unit cost rate per shortage

B achieving a status quo in the sense just stated proved more difficult than anticipated.

In other words, the experimentation process described above did not seem to converge very

fast, at least initially. Through extensive interviews and analysis of specific cases, we became

convinced that this was due to intrinsic differences in the metrics respectively used by the

model and by the analyst when assessing expected shortages. Specifically, the analyst would

primarily evaluate the criticality of a given supply situation by inspecting on the Balance

Tool the DSI levels projected in all of Dell’s facilities over the planning horizon, as described

in §3.1. Given only limited time and input data, the analyst thus relied on an empirical

notion of the relationship between these DSI levels and the corresponding expected shortages.

While that approach usually provided a good qualitative appreciation of the criticality of

the situation in any given site, it sometimes seemed too coarse for correct comparisons of the

situation across sites and time periods, which are needed to inform inventory balancing and

expedition decisions. In particular, the implicit empirical relationship just mentioned seemed

to occasionally ignore the increase in variability of the projected net inventory levels with

time, which is driven by the error of the cumulative demand forecast. Also, it sometimes
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failed to capture the differences of that variability across sites, which could be significant

because sites could face fairly distinct demand patterns. For example, one of the facilities in

Dell’s network is used to fulfill a larger proportion of the "option" orders for monitors only

(i.e. without a computer system), which are harder to forecast accurately than regular orders.

In contrast, the model would base its assessment of expected shortages on a stochastic model

informed by historical forecast accuracy data, which for example captured the two effects

just described through the dependence of its input parameter σt on both time t and location

, respectively (see §4.1.1). Incidentally, this model feature was perhaps the most difficult

for the implementation team to convey to relevant stakeholders within Dell. This stemmed

occasionally from a lack of familiarity with probability concepts, but more generally because

the use of quantitative forecast accuracy data represented for Dell a cultural departure from

a pervasive reliance on DSI levels as the sole relevant explicit information when estimating

future shortages.

In the end, the implementation team resolved the question of which values for B should

be chosen in order to implement the current implicit shortage costs through a study of

historical data. Specifically, we constructed a database where each entry corresponds to a

set of routing decisions made by the analyst for a given part on a given day, and includes both

the associated transportation costs as well as the corresponding reduction in total expected

shortages over the planning horizon, as estimated by the model using all relevant input data

available at the time. As Figure 4 illustrates, we then performed a linear regression with

forced zero intercept of the reduction in expected shortages achieved (dependent variable)

as a function of the re-positioning transportation costs incurred (independent variable) for

each part over that dataset, which spanned several weeks of decisions.An interesting aspect

of these regressions is that their fit provided a measure for the consistency of the analysts’

historical decisions with respect to the trade-off between transportation costs and expected

shortages, as determined through our stochastic evaluation model. From this standpoint, it

was found that these regressions yielded in fact a fit with the data which was higher than

expected, as reflected by their relatively high R2 values (the value of .75 reported in Figure

4 is typical). Consequently, we decided to use their slopes as an (inverse) estimate of the

unit shortage cost rate B corresponding to the current implicit trade-off. These new starting

points greatly facilitated the determination of which unit shortage cost rate values should
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Figure 4: Linear Regression of Expected Shortage Reductions Achieved Against Re-Routing
Transportation Costs Incurred

be used initially.

The systematic comparison between the model output and the decisions generated manu-

ally by the analyst beforehand also led to several improvements of the implemented software.

A first improvement consisted of eliminating the "flipped expeditions" initially observed as

part of the model output. This would arise when two sites in short supply were scheduled

to receive at some point in the future some containers loaded by a common supplier in the

same ship, and therefore with the same expected port arrival date. As illustrated in Figure 5,

the model could then recommend to use expedited ground transportation (e.g. team truck)

for all containers, but also switch the containers’ destinations. We found out however that,

for reasons not captured by the initial model (an expedition decision entails a bill of lading

creation expense independently of the chosen destination), both the carriers and the supply

chain analysts prefer the simpler communications associated with a small number of destina-

tion changes, provided this does not impact transportation costs. To capture this preference

we introduced the additional objective function term
P

i∈CRT , ∈L\{ i} yi m, which essentially

adds a dollar penalty for such destination changes. This modification indeed eliminated all

such "flipped expeditions" without affecting the transportation costs of computed solutions,
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and thus improved the simplicity of the model output.
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Figure 5: Example of Model Output with Swapped Container Destinations

Another feature addition was prompted by the realization that the routing analysts occa-

sionally found issues with the demand forecasts imported by the model from Dell databases,

in particular those covering the next 7 days of demand. In the analysts’ opinion, these were

not updated by the forecasting team as frequently as desirable for daily decision-making,

at least at the time when the pilot was run. As a result, the routing analysts often took it

upon themselves to correct these forecasts so they would better reflect the actual parts con-

sumption patterns they had observed over the previous days, which could of course lead to

drastically different routing (in particular transfer) decisions relative to those recommended

by the model with the original forecasts. In addition, our review of the historical demand

and forecast data suggested that these ad-hoc forecast corrections often seemed justified.

From an organizational standpoint, we believe that such forecast corrections are better done

centrally by the forecasting team, perhaps by making better use of relevant decentralized

input data such as these recent actual parts consumption patterns. However, we also recog-

nized that some hurdles pertaining to the implementation of such coordination between the

forecasting and the procurement teams would likely take some time to overcome. This cre-

ated a need for the software to support the ad-hoc forecast correction practice just described.

Specifically, we added a feature whereby the historical consumption of each part in every

site is stored in a database covering the past ten days of actual demand, and any major

discrepancy between some time series-based forecasts constructed from that database and

those provided by the forecasting team is automatically highlighted. The analyst can then

decide to automatically modify the model input data f̄t by replacing the original forecast

for the next 7 days of the horizon with the alternative one based on time series calculations.

Finally, a particularly topical question at the beginning of the pilot was to determine

how large orders from retailers distributing Dell’s computers should be captured by the

model. That question arose in a context of strategic change for Dell, which in 2007 started

a far-reaching transformation involving some distribution partnerships with large retailers,
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whereas it had almost exclusively relied on direct channels to customers until then. As a

result, large customer orders for a single type of computer with some advance lead-time

became more frequent. In particular, the supply routing analysts were starting to receive

notes informing them of committed schedules of large retailer deliveries for specific parts,

which they were asked to plan for in addition to the existing forecasts for direct channels.

The approach followed to account for these special orders with the model was initially the

same as that employed as part of the manual decision process supported by the Balance

Tool, and consisted of simply adding these large customer orders to the existing forecasts

for the day of their shipment deadline. That method however resulted in transfers and

diversions to sites with large retail orders which were sometimes thought to be excessive.

We determined that this resulted from a substantial overestimation of demand variability

(and therefore expected shortages) in those sites, as the original demand model resulting

from our forecast accuracy study evaluated the standard deviation of (cumulative) demand

σt as a coefficient of variation coefficient times the corresponding forecast value f̄t (see §A.1

in the Online Appendix). This did not reflect the fact that these special retail orders have a

substantially lower associated uncertainty than the direct channel orders. In order to address

this issue, we created a feature to capture these special orders by modifying the means of

demand forecasts f̄t correspondingly, but without affecting the forecast standard deviations

σt (see §4.1.1 and §A.1 in the Online Appendix). This drastically reduced the seemingly

unnecessary diversions and transfers.

4.3 Impact The quantitative impact evaluation of the model implementation described

in §4.2 had an important methodological requirement, which was to account for any effects

on both transportation costs and part shortages — a reduction in transportation costs alone

is easily obtained by eliminating all ground expedition modes for example, and may thus not

represent an improvement if it is associated with an increase of shortages. Conversely, only

using team trucks for all ground transportation would likely reduce part shortages, but also

drastically increase transportation costs. In order to construct an unambiguous measure of

overall impact, one method considered was to use the current implicit shortage cost rate B

(see §4.2) in order to estimate shortage costs, and then measure any changes in the sum of

transportation and shortage costs. Out of concern that that shortage cost rate was affected

by subjective factors however, Dell executives expressed that it would be desirable to not
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rely on its inferred value for impact evaluation purposes.

For this reason, we followed an alternative methodology consisting of computing a poste-

riori the reduction of re-positioning transportation costs achieved by the optimization model

relative to the legacy process, under the additional constraint that its output may not result

in higher shortages than that achieved historically. More specifically, for a representative

group of monitors K representing approximately half of total monitor sales and over a pe-

riod of 14 weeks in 2007 preceding the implementation of the optimization-based process for

those monitors, we recorded every individual routing decision made by the analysts using

the existing manual process and the Balance Tool described in §3, along with all the cor-

responding input data (inventory, forecasts, supply line) available at the time when these

decisions were made. From that database, we were thus able to construct an instance of

the optimization problem (6)-(19) for every week that the analysts made a set of routing

decisions for each monitor k within that group. Note that the set of historical routing deci-

sions recorded that week along with their corresponding expected shortage variables v̂kt (and

associated secondary variables) constitute a feasible solution to that problem instance, with

re-positioning transportation cost Ĉk and total objective value Ĉk +B
P

t, v̂
k
t . Our impact

assessment was then based on the solution to the modified optimization problem obtained

by minimizing only the transportation cost components of (6) subject to the previous con-

straints (7)-(19) along with the additional constraint that
P

t, v
k
t ≤

P
t, v̂

k
t . Denoting by

Ck the optimal value of that modified objective (i.e. the lowest re-positioning transporta-

tion costs achievable when allowing no more expected shortages than achieved historically),

Figure 6 contains a plot of the weekly re-positioning transportation costs
P

k∈K Ĉk incurred

historically for all these parts as well as data labels indicating the corresponding relative

total reduction k∈K Ĉk−Ck
k∈K Ĉk

achieved by the optimization model14.

When summed over all 14 weeks of the data collection period defined above, the cumulated

transportation cost savings associated with these optimization model runs represent approx-

imately 46% of the total incurred historically, which provides an aggregate measure for the

impact of this implementation. However, these relative savings seem to depend on the overall

scarcity of supply, which is driven by the total quantities of components shipped by suppliers

14 While the qualifyer re-positioning may occasionally be omitted for brevity in this section, we
emphasize that, as stated in §4.2, the only transportation costs considered here are re-positioning
costs which do not include ocean and rail transportation.
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Figure 6: Weekly Re-Positioning Transportation Costs Incurred and Relative Reduction
Achieved by the Optimization Model for Six Monitors from February 26 to June 1, 2007

relative to demand and is thus exogenous to the routing model considered here. This can be

seen from Figure 6, where the average weekly transportation costs plotted increase several

folds in the second half of the data collection period (April 16 — June 1) compared to its first

half (February 26 — April 13). This increase corresponds to an industry-wide shortage of

glass substrates and color filters which began to impact the deliveries of flat panel monitors

by Dell’s suppliers in the middle of April that year (Uno 2008), and in turn resulted in

additional transportation costs (in particular expeditions). This affected the corresponding

relative transportation cost savings, which can be evaluated independently for the first and

second halves of the data collection period at 38% and 48% respectively. These observations

suggest that the lower of these last two numbers constitutes a better estimation for the

relative transportation cost savings attributable to the optimization model during normal

periods characterized by appropriate overall supply quantities. It is noteworthy however

that the relative benefits derived from the optimization model seem to increase during dras-

tic shortage situations; our explanation of this observation is that under the legacy process,

the analysts are typically required then to execute a higher number of routing decisions every

day, leaving them with less time for performing extensive analyses of these decisions.

More generally, we wanted to identify the main qualitative reasons explaining the cost
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savings attributed to the optimization model. This led us to inspect the output of many

of the optimization runs we conducted a posteriori as described above, and compare them

with the historical transportation decisions made by the analysts with the same input data.

Although we cannot provide an exhaustive description of these qualitative comparisons due

to space constraints, the two representative examples illustrated by Figures 7 to 10 convey

the main insights we obtained. Figure 7 shows a disguised but qualitatively representative

version of the Balance Tool interface for a specific 15 inch monitor and a portion of the

planning horizon as it appeared to the analyst on March 13, 2007. It shows a situation with

an apparent excess of inventory relative to predicted demand in Nashville andWinston-Salem

(NCO), and a shortage of inventory appearing in Austin and Reno (RFC) at some point over

the horizon considered. The situation in Austin would be particularly preoccupying at that

point, as the shortages there are predicted to be higher and occur sooner than in Reno, which

is only attributed a small demand forecast. Indeed, the (disguised) total number of expected

shortages across all sites and days in the (complete) horizon predicted by our shortage model

in the case where no action would be taken then is 50,000 unit-days of shortages (i.e. a

measurement corresponding for example to predicted shortages of 2,500 units across all Dell

sites in each day of a 20 day horizon). Note also that no upcoming deliveries of containers

by suppliers for that component are visible within the planning horizon, leaving transfers as

the only supply routing decisions available.

On that day, the analyst decided in fact to order a transfer of 5000 parts from Winston-

Salem (NCO) to Austin with three full specially affreighted team trucks, for a (disguised)

cost of $30,000. NCO was chosen as the location providing inventory because it had the

largest amount of inventory available, both in absolute terms and when evaluated through

DSI levels. Also, note that NCO has a forecasted demand about 30% lower than that of

Nashville over the horizon considered, so that a transfer of a given quantity out of that

facility results in a larger decrease of its DSI level, a metric which is closely monitored. Fi-

nally, observe that no inventory was transferred to Reno, presumably because the potential

corresponding transportation costs were not justified by the minor and distant predicted

shortages at stake in that location. These decisions therefore suggest a qualitatively correct

appreciation by the analyst of the overall directions, criticality and time-sensitivity of in-

ventory imbalances across sites, and indeed decreased by 59% the total expected shortages
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Figure 7: Disguised Copy of the Balance Tool Interface for a 15 inch Monitor on March 14,
2007

predicted by our stochastic model, down to about 20,450 unit-days of shortages (note that

because the overall supply quantity is exogenous, in many situations such as this one routing

decisions may not reduce expected shortages below a certain level). In the same situation

however, the optimization model recommended two regular truck transfers of 1,665 parts

each (this quantity corresponds to a full truckload for that part) from Nashville and NCO

respectively, along with a schedule of subsequent milk run transfers from Nashville to Austin

containing each the maximum number of parts allowed — this solution is illustrated by Figure

8, which also shows the impact of these decisions on the predicted inventory and DSI levels.

By construction, that solution achieved the same total expected shortages as the analyst’s,

however its total transportation cost amounts to $20,010, which represents a 33% reduc-

tion relative to the cost incurred historically. Remarkably, the total quantity of inventory

transferred to Austin according to that solution (5,175) is very similar to that decided by

the analyst, which is a by-product of the additional constraint on expected shortages. How-

ever, it exploits the lower transfer cost to Texas from Nashville (Tennessee) than from NCO

(North Carolina), and is immune to considerations about the potential perceptions of high

DSI levels in NCO — the reason here why the model does not recommend in fact all inventory

to be transferred from Nashville is that this would generate more expected shortages for that

facility in the later part of the horizon, which is not shown in Figure 8. Another source of
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Figure 8: Routing Decisions Recommended by the Optimization Model for the Example Il-
lustrated by Figure 7

cost difference is the use of regular trucks as opposed to team trucks, which results from the

model’s determination that the corresponding lead-time difference of one day (delivery on

March 15 instead of March 16) does not justify this additional cost in light of the predicted

inventory situation in Austin over these couple of days — as seen in Figure 7 Austin is still

predicted to have 5.6 DSI on March 19 absent any transfer decisions, also this time period

(March 15-19) is situated very early in the rolling horizon. As discussed in §4.2, the ana-

lysts tend to infer the criticality of shortages based on DSI levels alone, whereas the model

also takes into account whether that level is predicted early or late in the planning horizon,

which affects the variability of the corresponding cumulative demand forecast, and therefore

the estimation of expected shortages. As a result, for a given DSI level the analysts tend

to overestimate expected shortages relative to the model in the early part of the horizon,

and underestimate them in the more distant part. Finally, the model solution also exploits

the lower transportation costs associated with milk run transfers (RB) than with specially

affreighted trucks, even though the capacity restrictions of milk run transfers result in a

higher number of individual transfer decisions. In addition, milk run transfers for a given

leg are only available on specific days, and therefore require the additional step of checking

their current weekly schedule. These last observations explains why the analysts, who are

subject to time pressure and human cognitive limitations, are unlikely to devise this type of
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transportation plan, which is more cost effective but also more complex.

More generally, when working with the Balance Tool alone the analysts tended to order

few routing decisions affecting large quantities of parts. As a result, they missed important

cost reduction opportunities associated with staggering deliveries and using multiple trans-

portation modes to the same destination. Figure 9 illustrates a representative example, and

shows a disguised portion of the Balance Tool interface for a 20 inch monitor in the morning

of April 17, 2007. That initial situation is characterized by insufficient inventory in Nashville,

with the other facilities showing sufficient inventory levels that are initially comparable in

terms of DSI. Also, there are planned container arrivals in Reno on May 7 (960 parts), and

in Nashville on May 10 (3564 parts, not visible in Figure 9). Absent any routing decisions

in that initial situation, our stochastic model predicts a (disguised) total of 80,000 expected

unit-days of shortages over the complete rolling horizon.

Figure 9: Disguised Copy of the Balance Tool Interface for a 20 inch Monitor on April 17,
2007

On that day however, the analyst ordered an immediate transfer of 5000 parts from Austin

to Nashville using 4 team trucks, and a ground transportation expedition by team truck of all

3564 parts (3 containers) initially scheduled to arrive in Nashville on May 10, which advanced

their arrival date to April 30 (and thus mitigated the predicted shortages in Nashville from

April 30 to May 10). The (disguised) total transportation cost of these decisions was $71,400.
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Rail Diversion, Delivery May 14 

Figure 10: Routing Decisions Recommended by the Optimization Model for the Example
Illustrated by Figure 9

The optimization model solution for the same situation is illustrated by Figure 10, and consist

of two immediate regular truck transfers of two full trucks each (2,500 parts) from Austin

and Winston Salem (NCO) to Nashville, two milk run transfers from Austin to Nashville

and a diversion to Nashville by rail of the 980 parts initially scheduled to arrive in Reno on

May 7, which postponed their arrival date to May 14 because of the longer lead-time from

California to Nashville (see §1 for background). It achieves by construction the same number

of expected unit-days of shortages, but costs 53% less than the manual solution implemented

historically (or $33,450).

Observe that both the manual and the model solutions involve initial transfers to Nashville

of the same quantity of parts (5000). However, the model does not use costly team trucks for

these transfers, for reasons that are similar to those explained in the previous example. Also,

it spreads the origins of these transfers across two locations (Austin and NCO), which saves

many expected shortages in the later part of the horizon in Austin: note that with only 2,875

parts withdrawn from Austin in the model’s solution (against 5,000 for the manual one), the

last day of the horizon portion shown in Figure 10 (May 8) shows only 6.2 predicted DSI,

with continued demand and no subsequent container arrival in Austin in the time horizon

beyond that — the situation in Austin from then on is thus significantly worse with the

analyst’s solution. More generally, this model behavior is consistent with the convexity of

expected shortages as a function of the opposite of inventory level, which is an important
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feature of both our model and the actual situation at stake (see discussion following (5)).

Indeed, from that property total expected shortages are lower when the "pain" (that is low

inventory levels) is shared across several locations rather than concentrated in one location

only. This is also consistent with using two milk run transfers from Austin and a diversion

from Reno instead of the simpler but much more expensive expedition by team truck of the

containers bound to Nashville in the manual solution. Note also that, in contrast with the

model’s decisions, that expedition decision by the analyst does not affect the shortages in

Nashville beyond May 10 (the original container arrival date), a distant time period with high

cumulative demand forecast variability (see interpretation of previous example). Finally, we

observe that the cheaper model solutions with multiple origin facilities for inventory transfers

and diversions conflict with a second aspect of the former manual decision process besides

the analysts’ preference for (and possibly ability to handle) only a small number of decisions.

Specifically, analysts often needed to quickly evaluate the situation for many different parts

and quickly determine whether any specific one deserved some attention. When doing so,

they tended to inspect the total number of cells showing in red or yellow on each part’s

Balance Tool for any day and location because of a low predicted DSI level (see Figure 2),

and use that number as an overall indicator of criticality. By extension, they had come to

also use that metric as a proxy for total expected shortages when making routing decisions.

Indeed, the first reaction of an analyst with whom we shared the model solution illustrated

in Figure 10 was that it was a worse solution than the one determined manually, because it

happens to entail a larger area of the Balance Tool showing in red. Because of the convexity

property just discussed however, that metric can in fact lead to an increase of total expected

shortages in some cases, as is shown by the simple example of two locations facing the

same demand on a given day with a total of 3 DSI available for both (allocating 1.5 DSI to

each minimizes total expected shortages but results in both location showing in red on the

Balance Tool, whereas allocating all 3 DSI to a single location only puts the other one in the

red). Indeed, we have found several instances in our dataset where, in contrast with the two

examples just discussed, the locations receiving inventory according to the analyst and the

model solutions are different, with the analyst moving inventory to a location with slightly

lower DSI levels but much smaller demand forecasts, because this increased these DSI levels

by a larger amount (although these decisions reduced total expected shortages by a smaller
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quantity).

5 Conclusion

Although the process and optimization model for supply routing described earlier have

been successfully implemented by Dell, this work has several important limitations, all of

which motivate ongoing or future research. A first opportunity is the implementation of unit

shortage costs resulting from a rigorous evaluation of the main cost components involved.

The related study mentioned in §4.2 (Dhalla 2008) is now completed, and has already been

used to generate more objective estimates for the value of the unit shortage cost rate B

that should be used in optimization model runs. In particular, that study investigated the

average margin of customer orders associated with a given part and shipped from a given

location, and thus showed how the parameter B should depend not only on the part, but also

the location considered — a key factor is that one of the facilities in Dell’s network receives a

larger proportion of option orders (e.g. for monitors only), for which the cost consequences

of delays are milder than for complete system orders. That study also showed that in some

cases our (standard) assumption of a linear structure for shortage costs (see §4.1.1) was

fairly coarse, in part because the likelihood of order cancellation by a customer does not

seem to increase linearly with the number of days of delay relative to the promised delivery

date. This motivates ongoing efforts to develop and test an optimization model reflecting

these non-linear shortage costs, however because of the significant associated increases in

model complexity and data maintenance requirements, it is not clear yet that this work may

ultimately affect Dell’s practice. Another opportunity would be to capture the dependencies

across different parts when generating supply routing decisions. A first avenue would be

to extend the current model structure to components which, unlike monitors and chassis,

are shipped in mixed containers of several part types. While we did not focus on these

"mixed" parts initially because they account for less transportation costs, that extension

may still generate substantial savings over time. A more ambitious goal would be to take

into account the inventory situation of several components likely to be required by the same

customer orders when determining supply routing (and more generally ordering) decisions

for each. Interestingly, while the academic literature discusses the potential benefits of this

practice (see Song and Zipkin 2003), it does not seem to have impacted operations at Dell

yet, in part because of concerns linked to organizational incentives (e.g. two managers
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responsible for the supply of different components both saving on expedition costs because

of a simultaneous belief that the other manager’s component will be short anyway). Finally,

another opportunity is to relax the assumption that demand in individual sites is endogenous,

i.e. jointly optimize the allocation of customer orders to manufacturing sites and inventory

transfer decisions. The approach followed in the present paper seems correct as a first

approximation, because Dell ships directly to most of its customers, so that the differences in

(unit) outbound shipping costs for complete systems across different manufacturing sites are

often substantially larger than the average (bulk) inbound transportation costs for individual

components. In certain situations however, for example when transfering customer orders to

a different factory may avoid some overtime, such joint optimization could prove profitable.

Despite all these limitations, the financial impact assessment presented earlier (the relative

cost reduction estimates of 40% and 38% discussed in §3.3 and §4.3 amount to a cumulative

reduction of inventory re-positioning costs for monitors by about 60% since the beginning

of this collaboration) suggest that the model described in the present paper is already quite

valuable for operational purposes. This is also supported by several recent developments

at Dell. Specifically, Dell has committed some resources to implement that model in its

European manufacturing network, where the supply chain structure is somewhat more com-

plex because it involves several disembarkation ports where inventory can be held at and

re-routed from. In addition, Dell is funding an effort to develop and test an extension of

that model to compute recommended quantities, timing and transportation modes for all

component shipments between a global Asian warehouse and all of its manufacturing sites

worldwide (see Foreman 2008). Finally, we note that many features of the model defined in

§4 do not seem specific to Dell, so that part or all of it may also be useful in the future to

other firms facing supply routing and/or transportation mode decisions.

From a methodological standpoint, we observed that the small scale but real pilot im-

plementation experiments we organized in each phase of this collaboration (see §3.2, §4.2)

were a particularly effective way to improve the process or model tested, but also to mo-

tivate and coordinate the joint work of practitioners and academic researchers, who can

otherwise be subject to different timelines and environmental constraints. Also, this work

gave us an appreciation for the recent advances in computational power, development en-

vironments and computational engines for optimization applications, and database software
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tools. It led us to revise downwards our estimates of the resources required to implement

large optimization-based control systems, which is consistent with recent reports of other

similar successful implementations by relatively small teams combining both practitioners

and academic researchers (Caro and Gallien 2008, Durbin and Hoffman 2008). This may

signal a larger opportunity for many firms to develop their own customized supply-chain

control optimization systems, either internally or as part of a collaboration with academia,

and possibly a competitive threat to some vendors of generic enterprise software.
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Online Appendix to:
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Make-To-Order Manufacturing Network
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A.1. Forecast Accuracy Study

Assuming a single location and part for now, this study can be described by defining d∗t

as the demand for that part actually observed in that location on day t, and f t+δt as the

corresponding demand forecast available at the beginning of day t for day t + δ, so that

f t
0
t = d∗t for t

0 < t. Because of the inventory balance equation stated in Section §4.1 of the

paper, we were primarily interested in the cumulative forecast error ε̄t+δt , d̄∗t,t+δ− f̄ t+δt with

d̄∗t,t+δ ,
Pt+δ

k=t d
∗
k (sum of demand observed from day t to day t + δ) and f̄ t+δt ,

Pt+δ
k=t f

k
t

(forecast of the same quantity available at the beginning of day t). We first collected a

large number of actual observations of the cumulative forecast error ε̄t+δt for all part types,

all locations ∈ {Austin, Nashville, Reno, Winston-Salem} and all values of δ lower than
the length T of the relevant planning horizon for supply routing decisions (about 4 weeks).

Considering observations corresponding to disjoint sets of days (i.e. {ε̄kδ+δkδ , k ∈ N}) in order
to avoid correlation biases due to time period overlaps, we then constructed and studied the

associated empirical distributions of ε̄t+δt . This study led to the following observations:

1. These empirical distributions were well fitted by the normal distribution, which is un-

surprising in light of the central limit theorem given the definition of ε̄t+δt . In order to

establish this, we performed χ2 and Kolmogorov-Smirnov goodness of fit tests for the

hypotheses that the empirical data for the cumulative forecasting error ε̄t+δt had been

1 MIT Operations Research Center, Cambridge, MA 02142
2 MIT Sloan School of Management, Cambridge, MA 02142 (corresponding author, e-mail: jgallien@mit.edu)
3 Dell Computers, Inc., Round Rock, TX 78682
4 Dell Computers, Inc., Round Rock, TX 78682
5 Nanyang Technological University, Singapore
6 Nanyang Technological University, Singapore
7 Ecole des Mines de Paris, France
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generated by normal, uniform and gamma distributions, respectively. The typical results

of these tests were that the hypothesis of normality was accepted by both tests for all

but the smallest values of the forecast horizon δ, whereas the hypotheses that the data

had been generated by either the uniform or the gamma distribution were rejected. To

illustrate this fit, Figure A.1 provides a plot of the cumulative distribution functions of

the empirical data and the normal distribution for a particular part (a 17 inch flat panel)

and location (Nashville), and δ = 5 days;

Figure A.1: Empirical Cumulative Distribution of the Cumulative Forecast Error ε̄t+δt for Part
HC545 in Nashville and δ = 5 days, and Normal Cumulative Distribution (Units Disguised).

2. The standard deviations σδ of these distributions for ε̄t+δt were well predicted by a coeffi-

cient of variation factor Kδ times the demand forecast f̄ t+δt , with Kδ only depending on

the location and the number of days of demand predicted δ, and exhibiting a decreasing

trend with δ.

3. The expected values E[ε̄t+δt ], representing the systematic forecasting bias, reflected two

effects: (i) over the data collection period, the daily forecasts provided to the supply

routing analysts were actually obtained by dividing a weekly forecast equally among all

days of each week. Because Dell’s demand within the week does exhibit a seasonality

pattern, that construction method for the daily forecasts induced some bias; and (ii)

2



Dell’s demand exhibited a general downwards trend for some components over a portion

of the data collection period, which was slightly underestimated by the forecasting team

in each one of its successive forecast revision steps. Because these biases were relatively

small overall and accounted for by the two effects just described, we decided however to

ignore them as part of our model.

These results suggested the structure and provided the input data for the stochastic model

of cumulative demand stated in Section §4.1.1 of the paper.

A.2. Software Implementation

The software implementing the optimization model described in section §4 of the paper was

developed using the environment and modeling language Ilog OPL and relied on the integer

optimization engine Ilog CPLEX 9.1. The user interface was embedded in several Microsoft

Excel spreadsheets, which are illustrated in Figures A.2 to A.4 below, and Figure 3 in the

paper. Specifically, Figure A.2 shows the spreadsheet serving as a repository for control

commands such as execution of optimization runs, choice of method used to generate the

forecasting data, addition and removal of parts, visualization and enactment of decisions.

Figure A.3 shows a portion of the spreadsheet developed to enter and modify the static

input data, which includes costs, lead-times and forecast coefficients of variation. Figure A.4

shows a portion of the interface developed to visualize jointly some of dynamic input data

(inventory, incoming supply, forecast), as well as the output data (transportation decisions,

expected inventory and resulting expected shortages, denoted "Expected Backlog" in Figure

A.4). Note that the interface shown in Figure A.4 was designed in order to represent the

model output and its rationale in a format that would be familiar to the supply chain analysts,

hence its similarity with the Balance Tool described in Section §3 of the paper. Finally, we

refer the reader to Figure 3 in the paper for a screen copy of the interface developed to

represent each individual supply routing decision generated by the optimization model runs.

3



Figure A.2: Screen Copy of the Control Interface (Disguised Data)
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Figure A.3: Screen Copy of the Interface for Entering and Modifying Cost and Lead-Time
Data for Transfer Decisions (Disguised Data)

Figure A.4: Screen Copy of the Output Visualization Interface (Disguised Data)
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