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Abstract

Companies such as Zara and World Co. have recently implemented novel product devel-

opment processes and supply chain architectures enabling them to make many more product

design and assortment decisions during the selling season, when actual demand information

becomes available. How should such retail firms modify their product assortment over time in

order to maximize overall profits for a given selling season? We formulate this problem as a

finite horizon multiarmed bandit with several plays per stage, Bayesian learning and response

lag. Our analysis involves the Lagrangian relaxation of weakly coupled dynamic programs, re-

sults contributing to the emerging theory of DP duality, and various approximations; it yields a

closed-form dynamic index policy capturing the key exploration vs. exploitation trade-off, and

associated suboptimality bounds. Numerical experiments suggest that our index policy is near-

optimal, and outperforms the greedy policy with passive learning; its relative superiority seems

particularly significant in environments with little prior information and long design-to-shelf

leadtimes.
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1 Introduction

1.1 Motivation

Long development, procurement, and production lead times resulting in part from a widespread

reliance on overseas suppliers have traditionally constrained fashion retailers to make supply and

assortment decisions well in advance of the selling season, when only limited and uncertain demand

information is available. With only little ability to modify product assortments and order quantities

after the season starts and demand forecasts can be refined, many retailers are seemingly cursed

with simultaneously missing sales for want of popular products, while having to use markdowns in

order to sell the many unpopular products still accumulating in their stores (see Fisher et al. 2000).

Since the late 1980’s an industry-wide initiative known as ”Quick Response” (see Hammond

1990 for a more detailed description) has focused on attenuating that curse, meeting some success.

Leveraging information technologies, improved product designs and manufacturing schemes as well

as faster transportation modes, some of its followers have significantly improved the flexibility of

their overseas supply networks, thus managing to postpone part of their production until more

demand information can be gathered.

Recently however, a few innovative firms including Spain-based Zara, Mango and Japan-based

World Co. (sometimes referred to as ”Fast Fashion” companies) have gone substantially further,

implementing product development processes and supply chain architectures allowing them to make

most product design and assortment decisions during the selling season. Remarkably, their higher

flexibility and responsiveness is partly achieved through an increased reliance on more costly local

production relative to the supply networks of more traditional retailers. The contrast between

these two supply-chain design alternatives seems particularly drastic: Zara’s design-to-shelf lead

time range for new or modified product is 2− 5 weeks, versus 6− 9 months for a more traditional

retailer; in-house production during the season is reported to be approximately 85% for Zara,

versus less than 20% for other retailers; Zara manufactures about 11, 000 different products per

year (excluding variations in color, size and fabric), compared to only 2, 000− 4, 000 items for key

competitors; only 15−20% of Zara’s sales are typically generated at marked-down prices, compared

with 30−40% for most of its European peers, furthermore the percentage discount for their marked-

down items was estimated as roughly half of the 30% average for other European apparel retailers

(see Ghemawat and Nueno 2003).

At the operational level, leveraging the ability to introduce and test new products once the

season has started motivates a new and important decision problem, which seems key to the success

of these fast-fashion companies: given the constantly evolving demand information available, which

products should be included in the assortment at each point in time? Figure 1 provides a conceptual

representation of this operational challenge: in each period over a finite horizon (representing the

whole season T ), the retailer must decide the subset (N) of products that will be offered from a

larger set (S) of all retail introduction candidates. As sales occur, the retailer gathers new demand
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information about each particular product that was included in the latest assortment, which may

be combined with prior historical demand information to select the next assortment – although not

shown in Figure 1 for simplicity, it must be noted that the assortment decision can typically only

be implemented after a lag (`) corresponding to the design-to-shelves lead time.

Figure 1: The dynamic assortment problem.

The problem just described seems challenging, in part because it relates to the classical trade-off

known as exploration versus exploitation: in each period the retailer must choose between including

in the assortment products for which he has a “good sense” that they are profitable (exploitation),

or products for which he would like to gather more demand information (exploration); that is, he

must decide between being “greedy” based on his current information, or try to learn more about

product demand (which might be more profitable in the future). In addition, this problem poses

itself frequently, for a high number of products, and involves a large amount of data. Incidentally,

we only have limited understanding at present of how these companies actually solve this dynamic

assortment problem in practice, and all studies focusing on fast-fashion companies we are aware of

(e.g. Fisher et al. 2000, Ghemawat and Nueno 2003, and Ferdows et al. 2003) only describe this

challenge in qualitative terms. Our main objective in the present paper is thus to develop and

analyze a quantitative optimization model capturing the main features of this dynamic assortment

problem, with a view towards eventually creating an operational decision support system.

The remainder is organized as follows: the next subsection §1.2 is an overview of the relevant

literature, and we present and discuss our mathematical model in §2. Section §3 is devoted to the

analysis, and contains in particular the derivation of our proposed dynamic index policy as well as

an upper performance bound. An extensive simulation study is reported in §4, Section §5 focuses

on possible model extensions, and Section §6 contains our concluding remarks. All proofs are given
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in the Appendix.

1.2 Literature Review

We first discuss papers focusing on assortment problems. A first subset is found in the Marketing

literature, where several studies, typically motivated by supermarkets, consider static assortment

problems formulated as deterministic nonlinear optimization models in which the demand of a

product depends on the allocated shelf space, and the overall space available is a limited resource.

A classical example in this vein is Bultez and Naert (1988); for more recent work see Kök and

Fisher (2004) and references therein. In the Operations Management literature, van Ryzin and

Mahajan (1999) and Smith and Agrawal (2000) are two papers also considering static assortment

problems, but with a stochastic demand model and static product substitution. That is, customer

demand reflects aggregated substitution effects depending on the initial assortment decision, but

not on the actual inventory levels observed by individual customers once arrived to the store. In

contrast, Mahajan and van Ryzin (2001) describe a more detailed assortment model capturing

dynamic substitutions, that is substitutions due to stockouts experienced by individual customers,

and analyze it using sample path methods.

None of the papers just cited considers demand learning, and accordingly the assortment prob-

lems they investigate are static, not dynamic. Presumably because of the relative novelty of fast

fashion companies, we have in fact not found in the literature any dynamic assortment model

explicitly described as such. While papers underlying the quick response initiative described in

the previous section do place much emphasis on learning and exploiting early sales information,

the demand information acquired over time is primarily exploited by the manufacturer to make

better ordering and production quantities decisions, as opposed to product design or assortment

decisions; the seminal paper by Fisher and Raman (1996), motivated by skiwear manufacturer

Sport Obermeyer, presents a two-stage stochastic programming model in which initial production

commitments are made before any sales occur, but further production decisions are made in a

second stage after receiving some customer orders and refining total sales forecasts. Note that the

trade-off between exploration and exploitation is not present in the problem just described, where

in fact the optimal policy consists of postponing the ordering of products for which demand is most

uncertain.

As may already be clear from Figure 1, our work is closely related to the multiarmed bandit

problem, which has been extensively studied in the literature (see Berry and Fristedt 1985, Kumar

1985, and Brezzi and Lai 2002). In the discrete-time version, a player chooses N arms to pull

out of a total of S available in each one of T periods. Whenever pulled, each arm generates a

stochastic reward following an arm-dependent distribution, which is initially unknown but can be

inferred with experience as successive rewards are observed; the player’s objective is to maximize

total reward over the game horizon. In the present paper, pulling an arm is equivalent to including

in the assortment the product to which it is associated.
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A remarkable result for the multiarmed bandit problem is due to Gittins (see Gittins and

Jones 1974, and Gittins 1979). It involves the definition of the so-called Gittins’ index for each

arm s, equal to the lump sum that would make the player indifferent between retiring or playing

arm s individually, ignoring the other arms (cf. Bertsekas 2001, Vol. II, pp. 60-70). Assuming

independent arms, infinite horizon (T = ∞), exactly one arm pulled in each stage (N = 1) and a

discount factor strictly smaller than one, the optimal policy is to play in each stage the arm with

the highest Gittins’ index. Among several subsequent extensions to Gittins’ result we highlight the

work on restless bandits by Whittle (1988), whose analysis is related to ours in that it also involves

Lagrangian multipliers.

In the finite horizon case (T < ∞), it is known that Gittins’ index policy is in general not

optimal. Relevant references include the book by Berry and Fristedt (1985), which presents ana-

lytical techniques similar to the ones we use in the next sections. Lai (1987) develops a policy (or

allocation rule) based on the calculation of an upper confidence bound for each arm (which can

also be seen as an index). For the case with multiple plays per stage, Anantharam et al. (1987)

consider the frequentist version of the problem, where the objective is to minimizing regret. While

the allocation rule they propose is asymptotically efficient, it does not seem directly applicable to

our problem because it requires a setup phase of at least S ×N periods in order to have N initial

observations per arm, and does not allow for a response lag (stemming in our context from the

design-to-shelf lead times).

Finally, the paper by Bertsimas and Mersereau (2004), which focuses on an adaptive sampling

problem, is the reference that is methodologically closest to our work – their model is a finite

horizon version of the multiarmed bandit problem, and their analysis also involves Lagrangian

decomposition. However, they do not consider response lags and assume a Beta-Bernoulli learning

model, while we use the Gamma-Poisson model. Besides, in contrast to that paper we provide a

suboptimality bound for the policy we derive.

2 Model Definition and Discussion

We now formulate our dynamic assortment model in §2.1, then discuss its applicability and justify

our assumptions in §2.2. Throughout the remaining of the paper all symbols in boldface represent

vectors, subscripts represent the components of a vector, and superscripts represent elements in a

sequence.

2.1 Model Definition

2.1.1 Supply

Consider a retailer selling products in a store during a limited selling season. The set of all products

that the retailer may potentially sell is denoted by S = {1, 2, . . . , S}; this set includes both the

products already available when the season starts and all the variants and new products that may
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be designed during the season. The net margin rs of product s ∈ S is assumed to be exogenously

given, positive, and constant. In line with the features of fast fashion companies described in §1,

we assume that the selling season can be divided into T periods, and that at the beginning of each

of these periods the product assortment in the store may be revised; time is counted backwards

and denoted by the index t (thus representing the number of periods remaining before the end of

the season). Due to design, production and distribution delays, there may be a lag ` between the

period t when an assortment decision is made and the period t − ` at which this assortment is

actually implemented in the store (this also occurs at the beginning of period t− `). However, our

approach in this paper is to perform our analysis in subsections §3.1 to §3.5 under the assumption

that the lag is zero (` = 0), then adapt the policy and performance upper bound we derive to the

case with a positive lag ` > 0 in subsection §3.6.

The store’s limited shelf space (or desire to limit in-store product variety due to other consid-

erations) is captured by the constraint that the assortment in each period may include at most N

different products out of the S available; we are thus implicitly assuming that all products require

the same shelf space. We also assume a perfect inventory replenishment process during each as-

sortment period, so that there are no stockouts or lost sales. Consequently, in our model, realized

sales equal total demand, and we focus for each product on assortment inclusion or exclusion as

opposed to order quantity. Finally, holding costs are ignored in our formulation.

2.1.2 Demand

In our model, demand for each product in the assortment is exogenous and stationary but stochastic,

and we do not capture substitution effects. Specifically, we assume that customers willing to buy

one unit of each product s in the assortment arrive to the store according to a Poisson process with

an unknown but constant rate γs. That is, the underlying arrival rate γs is assumed to remain

constant throughout the entire season, but the resulting actual demand for product s may only be

observed in the periods when that product is included in the assortment. In addition, the arrival

processes corresponding to different products are assumed to be independent.

We adopt a standard Gamma-Poisson Bayesian learning mechanism (also used for instance in

Aviv and Pazgal 2002): The underlying demand rate γs for each product s is initially unknown

to the retailer, however he starts each period with a prior belief on the value of that parameter

represented by a Gamma distribution with shape parameter ms and scale parameter αs (ms and

αs must be positive, and ms is assumed to be integer1). Redefining time units if necessary, we

can assume with no loss of generality that the length of each assortment period is 1; the predictive

demand distribution under that belief for selling ns units of product s in the upcoming assortment

period is then given by:
1The model can be extended to consider non integer values of ms but the binomial coefficient in equation (1) must

be replaced with the corresponding Γ(·) terms, and the interpretation as a negative binomial (to be given) would not

be valid.
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Pr(ns) =
(

ns + ms − 1
ms − 1

)( 1
αs + 1

)ns
( αs

αs + 1

)ms

, (1)

which is a negative binomial distribution with parameters ms and αs(αs+1)−1. When necessary,

we will write ns(ms, αs) to make the parameter dependence explicit. If now product s is included

in the assortment and ns actual sales are observed in that period, it follows from Bayes’ rule that

the posterior distribution of γs has a Gamma distribution with shape parameter (ms + ns) and

scale parameter (αs +1). In summary, for each product s and period t, the parameters of the prior

distribution on γs are updated as follows:

(ms, αs) −→





(ms + ns, αs + 1) If product s is in the assortment and ns sales

are observed during period t

(ms, αs) If product s is not in the assortment
. (2)

The intuition for the update procedure (2) is straightforward: the retailer initially believes that ms

units of product s will sell in αs periods on average, so that the expected sales rate is E[γs] = ms/αs;

after observing then ns sales of product s he subsequently expects (ms + ns) units of product s to

sell in (αs + 1) periods. Note that the retailer’s beliefs become more accurate with the number of

observed sales, since the variance of the prior is V[γs] = ms/α2
s so that its coefficient of variation

equals 1/
√

ms.

2.1.3 Dynamic Programming Formulation

Given the discrete and sequential character of our problem, the natural solution approach is dynamic

programming (DP); the state at time t is given in our model by the parameter vector It = (m, α),

which summarizes all relevant information including past assortments and observed sales2 (cf.

Bertsekas 2001, Vol I. Chapter 6). In each period, the decision to include product s in the assortment

or not can be represented by a binary variable us ∈ {0, 1}, where us = 1 means that product s is

included. The set U of all feasible assortments (i.e. the control space) corresponding to the shelf

space constraint described above can then be defined as U =
{
u ∈ {0, 1}S :

∑S
s=1 us ≤ N

}
.

The optimal profit-to-go function J∗t (m, α) given state (m, α) and t remaining periods must

then satisfy the following Bellman equation:

J∗t (m, α) = max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

rs
ms

αs
us + En

[
J∗t−1(m + n · u, α + u)

]
, (3)

where v · u represents the componentwise product of two vectors, and the terminal condition is

J∗0 (m, α) = 0 for all states; the expectation En[·] is with respect to the product demand vector n

with distribution
∏S

s=1 Pr(ns), where Pr(ns) is given by equation (1).
2For ease of notation, we omit the dependence of m and α on t.
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Note that the only link between consecutive periods in this model is the information acquired

about demand, and that different products are only coupled at a given period through the shelf space

constraint
∑S

s=1 us ≤ N (clearly S > N , otherwise the retailer would always include all available

products in the assortment); this type of problem is known as a weakly coupled DP. Observe also

that the summation on the right hand side of (3) includes the immediate expected profit associated

with each product and represents the exploitation component, while the expectation term that

follows captures the future benefits from exploration.

2.2 Model Discussion

This subsection begins with a discussion of the model realism grounded in a potential application

to the company Zara, and ends with comments on what we believe to be our three most salient

assumptions (independent products, no lost sales and stationary demand).

At Zara, assortment periods (i.e. the time between two consecutive assortment decisions)

seem to correspond to one week (Ghemawat and Nueno 2003), and the length T of the whole

selling season thus falls between 12 and 24 periods (Zara has only two seasons Spring/Summer and

Fall/Winter); incidentally the assumption that all periods have equal length can easily be relaxed in

our model. A typical Zara store is divided into three essentially independent sections (Women, Men

and Children), and each section is further divided into categories. As an example, the categories

for the Women section include: lower garment, upper garment, underwear, footware, accessories,

and suits. Within a category, the number N of different products seems to roughly vary between 20

and 60.3 These numbers do not take into account differences in size, color and fabric however; more

generally in our model a product may represent an individual stock keeping unit (SKU) or a family

of related SKUs (e.g. different sizes or colors aggregated). Our shelf space constraint may reflect

the amount of space available for each section and category driven by the physical layout of actual

stores, but it may also result from deliberate operational or marketing decisions. The assumption

that all products require the same shelf space, which is somewhat analogous to the equal capacity

requirements assumed in the Sport Obermeyer study (Fisher and Raman 1996), could be relaxed at

the cost of increased model complexity. We note however that this assumption does seem realistic

in the case of a separate application of our model to each individual category as suggested above,

since products within the same category indeed have similar shapes.

Based on figures reported in Ghemawat and Nueno (2003), we estimate the total number S of

potential products in a category for the whole season to be of the order of T times N , or 720, for

Zara. While our formulation assumes that the corresponding set S is known at the beginning of

the season and does not change further on, in any practical implementation new products may be

added to S as they become available; at Zara, new products are indeed designed during the selling

season based on customer feedback reported by store managers.
3These observations are based on information provided on the company’s website as well as visits to various stores

by the first author.
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We now focus on what we think are the three most salient model assumptions:

Independent Products In contrast with most of the (static) assortment studies discussed in the

literature review §1.2, our basic model ignores all product substitution and complementarity

effects. In support of that assumption, the absence of dynamic substitutions due to stock-

outs is consistent with the perfect inventory replenishment process we assume (see below).

However, this also saliently implies that the underlying customer demand for all products

offered is completely independent from the other products constituting the assortment, a re-

quirement clearly damaging realism. In practice, there may be significant substitution effects

between products from the same category (e.g. two slightly different shirts may cannibalize

each other when both introduced in the assortment) and/or complementarity effects between

products from different categories (e.g. matching lower garments and upper garments). From

that standpoint, the demand learning model we use is relatively coarse; we observe however

that the current set of available tools for inferring demand dynamically in the presence of

substitution effects is very limited (see discussion in §5).

No Lost Sales For the sake of model simplicity and tractability, we assume that the inventory

replenishment process (which we do not describe) is perfect, in the sense that there are no lost

sales under any assortment; we may thus focus on assortment decisions as opposed to other

operational issues such as inventory ordering and service levels. In practice, Zara replenishes

its stores twice a week and seems to indeed experience fewer lost sales than other more

traditional retailers (Ghemawat and Nueno 2003). However, that assumption is clearly very

strong, and in fact Zara deliberately introduces some lost sales in order to generate a feeling

of “scarcity” among consumers (cf. Ferdows et al. 2003, p. 66), a phenomenon which is not

captured by our model where demand is exogenous (see below). In this setting, ignoring

holding costs seems consistent with the assumption that inventory levels are exogenous as

described just above. More generally, we observe that holding costs are often ignored in the

case of seasonal products (see, for instance, Aviv and Pazgal 2002).

Constant Demand Rates In practice, the demand rate for fashionable products usually follows

some asymmetric “bell shaped” curve over time. However, our model assumes that it is

constant, mostly for tractability reasons – this is key in particular to the fact that all relevant

state information is captured by the pair (m, α). While demand stationarity may be a

particularly strong assumption in some settings, we observe that it is consistent with some of

our other assumptions. Specifically, an important reason why demand nonstationarity may

arise in practice is the use of dynamic pricing, but we assume that prices remain constant

throughout the season (the margin rs of every product s is fixed); note that this is partly

justified by the figures reported in §1 showing that fast-fashion retailers rely less frequently

on markdown policies, and that when they do so their price markdowns are also lower.

Likewise, another important driver for demand nonstationarity may be stockouts, but these
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do not occur in our model since we assume a perfect replenishment process. Finally, our

model can be easily generalized to the case where all demand rates are multiplied by the

same deterministic time-varying factor, since this is equivalent to having periods of different

lengths.

While we consider the above three assumptions to be quite strong, our approach is partly

motivated by the belief that the closed-form policy they allow to derive (in §3) constitutes a useful

starting point for designing heuristics or developing extensions in more complex environments,

as discussed in Section §5. For example, we describe in §5.1 a heuristic procedure for capturing

substitution effects that is based on the analysis of our basic model.

3 Analysis

3.1 Properties of the Profit-to-go Function

In this subsection we state two simple and intuitive properties of the profit-to-go function of our

assortment problem. The first result confirms the intuition that the expected profit should increase

if the prior beliefs are higher (i.e. the expected sales rate for a product is larger), or more accurate

(i.e. the coefficient of variation is smaller); this follows mathematically from the fact that the

negative binomial (1) is stochastically increasing in ms and decreasing in αs, so that the random

vector n(m,α) inherits the same properties4 (see Ross 1996). This is formalized by the following

Lemma, which will be used later on to establish further results:

Lemma 1 If m′′ ≥ m′ and α′′ ≤ α′, then J∗t (m′′, α′′) ≥ J∗t (m′, α′), for all t. The last inequality

is strict if any of the former is strict.

The second result shows that dynamic assortment will do no worse on average than implementing

the optimal static assortment at the beginning of the season, and no better than the optimal

assortment under perfect information (see Aviv and Pazgal 2002 p. 25 for a comparable result):

Lemma 2 For every state (m, α) and period t:

max∑S
s=1 us≤N

S∑

s=1

rsE[γs]us ≤ J∗t (m, α)
t

≤ Eγ(m,α)

[
max∑S

s=1 us≤N

S∑

s=1

rsγsus

]
, (4)

where the s-th component of random vector γ(m,α) follows a Gamma distribution with param-

eters (ms, αs).

Incidentally, the difference between J∗t (m,α) and the upper bound of (4 ) times t is known as

the Bayes risk or regret (see Lai 1987, p. 1092). It can be further shown that J∗t (m, α)/t is mono-

tonically increasing in t, defining a bounded monotone sequence which therefore converges when
4For two vectors we write v1 ≥ v2 to denote that the given inequality holds componentwise.
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the planning horizon goes to infinity. Empirical evidence and intuition suggest that it converges to

the right hand side of (4); we have not attempted to prove that conjecture however, since we are

primarily motivated here by situations where the opportunity to learn about demand is severely

limited by a finite selling horizon.

3.2 The Dual Dynamic Program

The optimal dynamic assortment policy may conceptually be derived from the dynamic program-

ming equation (3). The associated computational requirements are overwhelming however, except

for very small problem instances; even with a truncated state space, only calculating the expectation

in the right hand side of equation (3) (which constitutes in fact the objective function of a discrete

nonconcave optimization problem for which there is currently no standard solution method) is an

intensive numerical task. Therefore, we do not aim to solve the dynamic assortment problem opti-

mally; our motivation is rather to find a simple near-optimal policy that can be easily implemented

in practice.

The approximate solution method described in this subsection is based on Lagrangian relax-

ation and the decomposition of weakly coupled dynamic programs. While the literature reporting

successful applications of this methodology is rather recent (see Castañon 1997, Hawkins 2003,

Bertsimas and Mersereau 2004, and references therein), the underlying concepts involved are sim-

ilar to those of the well-established theory of duality for general nonlinear optimization problems

(see for instance Bertsekas 1999).

Specifically, we relax the shelf space constraint, which leads to the definition of dual policies

that will later prove to be useful in finding near-optimal primal policies and upper bounds for the

optimal profit-to-go: Let λt(m, α) denote any function associated with period t that maps the state

space into the set of nonnegative real values; we define a dual policy to be any vector a functions

λt = (λt(·), λt−1(·), . . . , λ1(·)).
For any dual policy λt and any initial state (m,α), the corresponding profit-to-go is obtained

by solving the dual dynamic program given by:

Hλt
t (m, α) = Nλt(m, α)+ max

u∈{0,1}S

S∑

s=1

(
rs

ms

αs
−λt(m, α)

)
us +En

[
H

λt−1

t−1 (m+n ·u, α+u)
]
, (5)

with Hλ0
0 (m,α) = 0 ∀(m, α). In words, a dual policy gives the price of a unit of shelf space for

each period and each possible state.

A dual policy λt is optimal if it minimizes the right hand side of (5) for any initial state. In

line with standard dynamic programming theory, we recursively define λ∗t (m, α) to be the smallest

solution of the following dual problem:

H∗
t (m, α) = min

λt≥0
Nλt + max

u∈{0,1}S

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
H∗

t−1(m + n · u, α + u)
]
, (6)

and it can be verified through straightforward induction that the policy λ∗
t is indeed optimal.

11



The following proposition is the main result in this subsection; a similar result for open-loop

dual policies (to be defined shortly) can be found in Hawkins (2003).

Proposition 1 (Weak DP Duality) For any period t, any dual policy λt and any given initial

state (m, α): J∗t (m,α) ≤ H∗
t (m,α) ≤ Hλt

t (m, α).

As in classical duality theory, an interesting theoretical question is to determine if the first

inequality in Proposition 1 ever holds as an equality; this question is partly resolved by the following

proposition:

Proposition 2 (Strong DP Duality) Consider the following parametric function:

fτ (m′,α′; C) = max
u∈{0,1}S :∑S
s=1 us=C

S∑

s=1

rs
m′

s

α′s
us + En

[
J∗τ−1(m

′ + n · u, α′ + u)
]

(7)

If fτ (m′, α′; C) is concave in C for all τ = t, . . . , 1 and states (m′, α′) reachable from (m, α)

in period τ , then J∗t (m, α) = H∗
t (m, α).

In contrast with (3), the parametric function defined by (7) requires the shelf space constraint

of the current period to be satisfied as an equality; the shelf space constraints for the subsequent

periods remain unaltered however. It can be shown (see the Appendix) that ft(m, α;C) is strictly

increasing in C reflecting the fact that the retailer can only do better given additional shelf space,

and ft(m, α;N) = J∗t (m,α).

Except when t = 1, the condition required by Proposition 2 may seem restrictive and difficult

to verify. While finding weaker or simpler conditions is the matter of future research, we have still

found instances that provably satisfy the one stated in Proposition 2, and we have also found a

counter-example showing that strong duality does not hold in general absent such a condition: For

t = 2, S = 2, N = 1, m1 = 44, m2 = 4, α1 = 10, and α2 = 1, it is easy to verify that ft(m,α; C)

is not concave in C and J∗t (m, α) < H∗
t (m, α). As an interesting observation, Proposition 2 does

apply for any other value of m1, keeping the other parameters constant. Moreover for C = 1 and

m1 ≤ 44 the optimal action in the right hand side of equation (7) is to include product 2, but the

optimal choice switches to product 1 when m1 > 44. We have observed that the non-concavity of

(7) always comes in hand with a similar discrete change in the optimal action of the corresponding

parametric optimization problem. However, the reverse is not true: parameter values at which the

optimal action changes do not imply ft(m, α; C) being non-concave.

More generally, both our intuition and (limited) empirical observations suggest that the cases

where the parametric profit-to-go defined by (7) is non-concave are somewhat pathological, and

correspond to situations when both S and NT are small and some of the initial beliefs have a high

variance. In those cases, marginally increasing the value of the shelf-space parameter C from a

certain level may suddenly allow to access both exploration and exploitation modes and result in

a higher marginal gain than the same increase from a smaller value of C, when only exploitation
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makes sense. Because our subsequent analysis relies on an approximate solution to the dual DP

(6), our overall error will be the sum of the duality gap and an approximation error. Proposition 2

and this discussion thus suggest that the latter error term will dominate in most cases of practical

interest.

3.3 Open-loop Dual Policies

Solving the dual DP problem given by equation (6) seems just as hard as solving the original

primal problem (3), motivating further simplifications. Specifically, we now restrict our attention

to open-loop dual policies5, in which the shadow price on shelf space is constant across all states

for each period; formally an open-loop dual policy λ is a constant vector (λt, λt−1, . . . , λ1), rather

than a vector of functions. In the following, we will refer to the profit-to-go corresponding to an

open-loop dual policy λ as Hλ
t (·) instead of the previous notation Hλt

t (·). The next Lemma shows

that with open-loop policies the dual DP decomposes into S single-product subproblems:

Lemma 3 Consider an open-loop dual policy λ = (λt, λt−1, . . . , λ1), then the profit-to-go can be

written as:
Hλ

t (m, α) = N

t∑

τ=1

λτ +
S∑

s=1

Hλ
t,s(ms, αs) (8)

where:

Hλ
t,s(ms, αs) = max

{
rs

ms

αs
− λt + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]

︸ ︷︷ ︸
us=1

,Hλ
t−1,s(ms, αs)︸ ︷︷ ︸

us=0

}
(9)

The single-product subproblem defined by (9) is equivalent to a two-armed bandit in which one

arm provides a stochastic (unknown) reward, while the other is deterministic and provides in each

period t a reward equal to λt. It is clear from (9) that for any fixed state (ms, αs), Hλ
t,s(ms, αs)

in nondecreasing with t . Also, it can be shown that Hλ
t,s(ms, αs) is a convex and piecewise

linear function of (λt, . . . , λ1), and the proof of Lemma 1 can be repeated replacing J∗t (m, α) with

Hλ
t,s(ms, αs), establishing the same monotonicity property with respect to ms and αs.

We now focus on the single-product subproblem and characterize its solution; the following

properties are insightful and can be used to reduce numerical computations. For any open-loop

dual policy λ, let Aλ
t,s be the set of all states (ms, αs) such that it is optimal to include product

s in the assortment in period t (i.e. us = 1 is optimal in (9)), and define Bλ
t,s as its complement

(e.g., the stopping set in period t). The next Proposition shows that Aλ
t,s is a connected set which

is separated from Bλ
t,s by a strictly increasing threshold function of ms.

Proposition 3 Let λt > 0 ∀t. For each period t there exists a strictly increasing function βλ
t,s(·)

such that at state (ms, αs) the optimal policy for the single-product subproblem (9) is: us = 1 ⇐⇒
αs ≤ βλ

t,s(ms)

5Open-loop and close-loop are standard concepts in DP theory (see Bertsekas 2001). Castañon (1997) calls the

closed-loop policies stochastic multipliers and the open-loop policies deterministic multipliers.
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The next Proposition shows that the stopping sets decrease when the corresponding shadow

prices on shelf space increase:

Proposition 4 If λt ≤ λt−1, then Bλ
t,s ⊆ Bλ

t−1,s.

Note that the inclusion of the stopping sets are not reverted when λt > λt−1, since the threshold

functions βλ
t,s(ms) and βλ

t−1,s(ms) might cross then. When λt ≤ λt−1 however, Propositions 3

and 4 imply that the optimal policy for (9) is characterized by thresholds satisfying βλ
t,s(ms) ≥

βλ
t−1,s(ms) for all ms. As a result, when λt ≤ λt−1 for all t subproblem (9) then becomes an optimal

stopping problem (cf. Bertsekas 2001, Vol. I p. 168). That is, for every initial state there is a

stochastic time 0 ≤ t∗s ≤ t at which it is optimal to forever remove product s from the shelf. If we

further assume λt = λ for all t, this becomes equivalent to the two-armed bandit problem with one

known arm (cf. Berry and Fristedt 1985, p. 92).

3.4 A Suboptimality Bound

Since the exact calculation of J∗t (m, α) seems challenging except in trivial instances, we now develop

an upper bound using the duality results of subsections §3.2 and §3.3; we then use that bound in

subsequent sections to quantify the suboptimality of some heuristic policies.

Proposition 1 implies that an upper bound for the optimal expected profit is obtained by

considering the best open-loop dual policy:

J∗t (m, α) ≤ min
λ≥0

Hλ
t (m, α), (10)

where an explicit expression for the right-hand side is provided by (8) and (9). A better bound

follows from using the best open-loop dual policy to approximate (for each state) the profit-to-go

J∗t−1(m + n · u, α + u) in the Bellman equation (3), that is:6

J∗t (m,α) ≤ max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

rs
ms

αs
us + En

[
min
λ≥0

Hλ
t−1(m + n · u, α + u)

]
. (11)

However, the expectation in (11) is not separable and its calculation seems very computation-

ally intensive. By interchanging the order of the minimization and maximization operators in (11)

we still have an upper bound and the problem becomes separable, but becomes then equivalent

to solving (10). The minimization with respect to λ in (10) can be solved with any convex non-

differentiable optimization method, and yields the upper performance bound we will use in the

remainder of this paper.
6In what follows there is a slight abuse of notation: we write λ to denote a vector but the number of components

depends on the context, for example when writing Hλ
t−1(·), λ is a vector with (t− 1) components.

14



3.5 The Index Policy

In this subsection we derive a heuristic index policy for the dynamic assortment problem. This is

done in two steps:

First Step: a Closed Form Approximation for the Single-Product Profit-to-go

• First, we impose λt = λ for all t, i.e. the shelf space opportunity cost is assumed to be the

same in all periods. The known arm in (9) is called in that case by Gittins a standard arm,

and it follows from Proposition 4 that:

Hλ
t,s(ms, αs) = max

{
rs

ms

αs
− λ + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]
, 0

}
. (12)

• Second, we implement a lookahead horizon of length one (see Bertsekas 2001). That is, in

the recursive calculation of the expected profit at period t the profit-to-go of period t − 1 is

approximated by the profit-to-go of stage 1. Formally, the profit-to-go Hλ
t−1,s(ms, αs) is thus

approximated by:

H̃λ
t−1,s(ms, αs) = (t− 1) ·max

{
rs

ms

αs
− λ, 0

}
. (13)

Substituting (13) in (12) and using [x]+ to denote the positive side of x, we see that the

optimal strategy at period t in the approximate problem depends on the sign of:

d̃λ
t,s(ms, αs) = rs

ms

αs
− λ + (t− 1) · Ens

[[
rs

ms + ns

αs + 1
− λ

]+
]

=
rs
√

ms

αs
√

αs + 1

(
(t− 1) · Ens

[[
ns − E[ns]√

V[ns]
− bλ

s

]+
]
− bλ

s

)
,

where bλ
s =

(
λ

rs
− ms

αs

)
αs
√

αs + 1√
ms

, E[ns] =
ms

αs
, and V[ns] = E[ns]

(
αs + 1

αs

)
. (14)

The second equality above is obtained through direct algebraic manipulation (similar to the

example on p.12 in Berry and Fristedt 1985).

• Third, as a negative binomial with parameters ms and αs(αs + 1)−1, ns is the sum of ms

independent geometric random variables; we thus approximate ns by a normal distribution

with the same mean and variance, which is asymptotically exact as ms increases by the

Central Limit Theorem. This yields:

d̃λ
t,s(ms, αs) ≈

rs
√

ms

αs
√

αs + 1

(
(t− 1) ·Ψ(bλ

s )− bλ
s

)
, (15)

where Ψ(z) =
∫ ∞

z
(x− z)φ(x)dx is the loss function of a standard normal.
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Since Ψ(z) is continuous, positive and strictly decreasing (cf. DeGroot 1970, p. 247), the

equation

(t− 1) ·Ψ(zt) = zt (16)

has a unique solution for all t ≥ 2 (in the following, we let z1 ≡ 0 for completeness). Moreover,

the values zt, which are independent of the problem data, are increasing and concave in t –

see Table 1 for the first few numerical values of zt with four digits accuracy.

t 1 2 3 4 5 6 7 8

zt 0.0000 0.2760 0.4363 0.5492 0.6360 0.7065 0.7658 0.8168

Table 1: First values of zt.

The policy for problem (9) resulting from these approximations is simple: if bλ
s ≤ zt at period

t, then include product s in the assortment (i.e. “pull arm s” ), otherwise do not include it.

The corresponding profit-to-go is given by:

Hλ
t,s(ms, αs) ≈

rs
√

ms

αs
√

αs + 1

[
(t− 1) ·Ψ(bλ

s )− bλ
s

]+
. (17)

Second Step: Linear Search in λ

We now adapt to our problem a heuristic solution method initially developed by Castañon

(1997). Assume λt = λ for all t as before, and let uλ
t,s be the optimal decision in the single-product

subproblem Hλ
t,s(ms, αs) defined by (12). For any product s, we have that limλ→0 uλ

t,s = 1 and

limλ→∞ uλ
t,s = 0; moreover, it follows from (12) that Hλ

t,s(ms, αs) is nonnegative and nonincreasing

in λ. Consequently, there must exist ηt,s ≥ 0 such that uλ
t,s = 1 if and only if λ ≤ ηt,s. The

threshold ηt,s (multiplied by t) is exactly the equivalent of Gittins’ index for our version of the

multiarmed bandit problem (where Gittins’ index is defined as the lump sum described in §1.2).

Using the approximation derived in the first step above, we obtain:

uλ
t,s = 1

⇔ rs
√

ms

αs
√

αs+1

[
(t− 1) ·Ψ(bλ

s )− bλ
s

]
≥ 0 by definition of d̃λ

t,s(ms, αs) in (15);

⇔ bλ
s ≤ zt by definition of zt in (16);

⇔ λ ≤ rs
ms
αs

+ zt
rs
√

ms

αs
√

αs+1
by definition of bλ

s in (14).

(18)

Substituting the moments of γs given at the end of §2.1.2 in the last expression of (18), we finally

obtain the following approximation for index ηt,s:

ηt,s ≈ rsE[γs] + zt
rsV[γs]√

V[γs] + E[γs]
(19)

In order to find a feasible policy for the original problem, Castañon suggests a linear search on

the value of λ so that the coupling constraint (in our case,
∑S

s=1 uλ
t,s ≤ N) is satisfied as an equality

(ties can be solved with a lexicographic rule); in our problem the resulting approximate policy

therefore consists of selecting the N products with the largest indices ηt,s, calculated according to
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equation (19). In words, the index ηt,s represents the highest price at which one should be willing

to rent some shelf space in order to display (and sell) product s there; it is thus a measure of

the desirability of including each individual product in the assortment, and from that standpoint

the rationale behind Castañon’s heuristic is to fill all shelf space with the most desirable products.

Note that the first term in the index expression (19) favors exploitation, and the second term favors

exploration, since it is increasing in both the variance of γs and the number of remaining periods

(through zt). Intuitively, when uncertainty about demand for a product s (captured by V[γs])

is high, there is more benefit to learn from including s in the assortment because of the upside

potential from future sales. Because resolving this uncertainty does take some time however, one

may not be able to benefit from this learning with only few periods left before the end of the season,

since the associated upside potential then remains limited. That is, one should increasingly favor

exploitation over exploration as the remaining planning horizon (and opportunity for leveraging

exploration) shortens, which is captured by the decrease with t of the multiplicative factor zt in

(19).

Note that our index ηt,s takes the form of immediate expected profit plus some function of the

variance, and resembles in that way other indices defining policies suggested for different versions

of the multiarmed bandit problem by Ginebra and Clayton (1995) and Brezzi and Lai (2002)

for example. The fact that our policy thus depends on only the first two moments of expected

demand may be a desirable feature from an implementation standpoint; in particular, the estimation

procedure based on experts opinions developed by Fisher and Raman (1996) for Sport Obermeyer

could be used to estimate the initial priors. Our reader may however notice the apparent unit

inconsistency that in the exploration term of (19) an expectation is added to a variance (as opposed

to say, a standard deviation). This results in fact from our rescaling time units in order to work

with a period length equal to one, effectively hidding appropriate unit conversion factors; a more

detailed explanation can be found in the Appendix.

Finally, when assessing the performance of the index policy defined above, our primary bench-

mark will be the greedy policy, which consists of selecting in each period the N products with the

highest immediate expected profit rsE[γs] (thus greedily favoring exploitation over exploration).

The greedy policy is also known in the multiarmed bandit literature as play-the-leader rule; note

that it still involves learning despite its myopic nature, since priors are still updated in each period

with observed demand with that policy, only the impact of assortment decisions on future learning

is ignored. As a result, several authors (e.g. Aviv and Pazgal 2002) also refer to it as passive

learning.

3.6 Assortment Implementation Lead Time

In this subsection we remove the assumption that the assortment decisions can be implemented in

the same period when they are made. Instead, we assume that there is more generally a constant

lag of ` periods between the time when the assortment decision is made and the time when it
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becomes effective in the store. That is, an assortment decision made in period t will impact the

store in period t− `. In the case of Zara, the implementation lag ` would likely be an integer value

between 2 and 5, representing the same number of weeks since assortment decisions seem to be made

on a weekly basis. Although this implementation lag ` arises in practice from delays associated

with all process steps between design and storage on the shelf (e.g., drawing, procurement, sewing,

distribution, etc.), in the following we will only refer to ` as the “lead time”.

With a positive lead time, the state space in the DP model must be extended in order to

keep track of past decisions yet to be implemented. Specifically, the state is now given by the

vector (vt, . . . ,vt−`+1, m, α), where vt, . . . , vt−`+1 are the assortments that will be offered from

the current period t down to period t − ` + 1, and (m, α) are the distribution parameters of the

beliefs about demand at time t. The decision made at time t ∈ {T + `, . . . , ` + 1} is the assortment

that will be implemented at time t − `, and the first ` assortments vT , . . . ,vT−`+1 must all be

determined upfront (i.e. before the season starts at time T ) with the only knowledge of the initial

prior on demand. The optimal profit-to-go for a given initial state can be then obtained through

the following recursion:

J∗t (vt, . . . , vt−`+1,m, α) =
S∑

s=1

t∑

τ=t−`+1

rs
ms

αs
vτ
s + W ∗

t (vt, . . . ,vt−`+1, m,α) (20)

where W ∗
0 = . . . = W ∗

` = 0 for any state, and W ∗
t (.) satisfies for t > `:

W ∗
t (vt, . . . ,vt−`+1, m, α) = max∑S

s=1 us≤N

S∑

s=1

rs
ms

αs
us+En

[
W ∗

t−1(v
t−1, . . . , vt−`+1,u, m+n·vt, α+vt)

]

(21)

The summation in the right hand side of (20) shows explicitly that the expected profit of the

next ` periods cannot be affected. Intuitively, the existence of a positive lead time slows the learning

process down (since any learning about demand may only have an impact ` periods later), and the

number of remaining learning periods at t effectively reduces to t − ` − 1. Note that if ` = 0

then J∗t (m, α) = W ∗
t (m, α) and (21) reduces then to the recursion (3) studied in the previous

subsections.

As is clear from the expansion of the state space by a factor of 2S×`, the existence of a pos-

itive lead time increases the complexity of our dynamic program. However, the duality concepts

introduced earlier still apply and may be used to generate the following upper bound for equation

(21):

W ∗
t (vt, . . . ,vt−`+1, m, α) ≤ min

λ
N

t−∑̀

τ=1

λτ +
S∑

s=1

Hλ
t,s(v

t
s, . . . , v

t−`+1
s ,ms, αs),

where Hλ
0,s = . . . = Hλ

`,s = 0 and for t > `:
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Hλ
t,s(v

t
s, . . . , v

t−`+1
s ,ms, αs) = max

{
rs

ms
αs
− λt−` + Ens

[
Hλ

t−1,s(v
t−1
s, . . . , v

t−`+1
s , 1,ms + ns · vt

s, αs + vt
s)

]
,

Ens

[
Hλ

t−1,s(v
t−1
s, . . . , v

t−`+1
s , 0,ms + ns · vt

s, αs + vt
s)

]}
.

Moreover, we can invoke arguments similar to the ones used in §3.4 to obtain the following

upper bound for the maximization of J∗T (vT , . . . , vT−`+1, m, α) with respect to (vT , . . . ,vT−`+1)

subject to the corresponding binary and shelf space constraints:

min
λ

N
T∑

τ=1

λτ +
S∑

s=1

max
vT
s ,...,vT−`+1

s
∈{0,1}

( T∑

τ=T−`+1

(
rs

ms

αs
− λτ

)
vτ
s + Hλ

t,s(v
T
s , . . . , vT−`+1

s ,ms, αs)
)

, (22)

which provides the upper bound that we will report for the performance of various policies simulated

in Section §4 in environments with a positive lead time.

Finally, our proposed policy may be heuristically adapted by introducing the two following

modifications to the index definition given by equation (19):

1. First, we substitute the term zt in (19) with

zt −→ zL(t), (23)

where L(t) = max{t − 2`, 1}. The rationale is that in period t the retailer must decide the

assortment of period (t− `), and from then on he has ` fewer periods to learn about demand.

In particular, if ` ≥ t−1
2 then zL(t) = 0 so that the adapted index policy coincides then with

the greedy policy, which can be shown to generate optimal actions in that case. Note that

if ` ≥ T − 1 then no learning is possible and the best the retailer can do is to implement

the optimal static assortment for the next T periods; this would exactly corresponds to the

”traditional retailer” described earlier in §1.1.

2. The second modification in (19) concerns the variance V[γs]. Recall from section §2.1.2 that

the prior becomes more accurate as more sales are observed. Hence, the prediction made

at time t for the variance of γs at time t − ` must take into account whether product s is

committed as part of the assortment in any of the ` periods in between. Specifically, we

substitute the variance term in the index formula with:

V[γs] =
ms

α2
s

−→ V[γs] =
ms + ms

αs

t∑
τ=t−`+1

vτ
s

(αs +
t∑

τ=t−`+1

vτ
s )2

, (24)

where as before
∑t

τ=t−`+1 vτ
s is the number of times that product s is included in the assort-

ment during the interval of ` periods starting with period t. Note that ms and αs are thus
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replaced by a prediction of what their values will be at time t−`, considering how many times

product s will have been part of the assortment by then. Intuitively, substitution (24) cap-

tures the predicted gain in information quality (or equivalently reduction in prior variance)

resulting from the assortments already decided but not yet implemented. As a consequence of

(24), the second term in the index formula (19) now decreases with the sum
∑

τ vτ
s , expressing

that when designing the assortment for period t− ` the incentive to explore the demand for

product s reduces when it already has a large presence in the next ` assortments.

In the next section, we report the performance achieved by the heuristic policy just described

in various numerical experiments.

4 Numerical Experiments

The objective of the simulation study we report in this section is to assess the relative performance

in various environments of our proposed index policy against the greedy policy and the dual upper

bounds derived in §3.4 and §3.6. We describe our methodology in §4.1, then discuss our experimental

results in §4.2 and §4.3.

4.1 Methodology

There seems to be two accepted methodologies for evaluating policy performance in environments

involving learning, and in the two next subsections we adopt each one in turn. Subsection §4.2

follows what is known in the multiarmed bandit literature as the Bayesian approach, also adopted

for example in Aviv and Pazgal (2002). It relies on the assumption that the predictive Bayesian

distribution updated in each period (in our case, the negative binomial distribution characterized by

equation (1)) is essentially correct. In simulations, actual demand in each period is generated from

that negative binomial distribution (as opposed to a Poisson distribution), and those experiments

do not require the specification of any underlying demand rates. These experiments thus allow to

focus on the quality of the index policy as a solution to the self-contained dynamic programming

formulation (3), independently of the Bayesian framework under which it has been derived.

Subsection §4.3 follows the frequentist approach (see Lai 1987 and Brezzi and Lai 2002), also

adopted for example in Bertsimas and Mersereau (2004). In contrast, this method relies on the

specification of the real underlying distribution parameters (in our case, the demand rates γs), and

actual demand for each product in each period is generated in simulations from the corresponding

Poisson distribution. This approach therefore allows to characterize how the relative performance of

different policies may be affected by the quality of the information initially available (e.g. accuracy

and bias).

We used similar data sets for the experiments reported in §4.2 and §4.3. Specifically, we assumed

that the available shelf space N is equal to 30 and that the number of potential products S is equal to

720, roughly matching our estimates of these quantities for one category of products (e.g. Women’s
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upper garments) in a Zara store (see our discussion in §2.2). We ran most experiments for values

of the season length T equal to 10, 20 and 40, and values of the assortment implementation lead

time ` equal to 0 and 5. We generated upfront the net margin rs for each product s ∈ S through

independent draws from a Uniform distribution U [2, 8], and used these numbers throughout. We

also assumed that the retailer had the same initial prior for all products. In particular, we fixed the

initial expected demand rate E[γs] at 10 products per period, but we tested three different values

for the initial variance V[γs]: 5, 50, and 100, corresponding to values for the distribution parameters

(ms, αs) equal to (1, 1/10), (2, 1/5), and (20, 2) respectively. The lower and upper bounds given

by Lemma 2 for the expected total profits generated by the optimal policy for these data sets are

provided in Table 2.

V[γs] Static Assortment Bayesian Full Info.

5 2376.10 3042.16

50 2376.10 5424.06

100 2376.10 7176.11

Table 2: Bounds of Lemma 2.

Finally, all numerical experiments were performed on a personal computer with a 1.6 GHz

Pentium processor with 768 MB of RAM. The simulations and the upper bound optimization

problem were coded in the C programming language. We ran 11, 000 replications for each simulation

data point, which was sufficient to ensure that all reported results have an absolute relative error

smaller than 0.5% for a confidence level of 95%. The running time of one simulation point (i.e.

11, 000 replications) increased with the horizon length T , reaching about 5 minutes for T = 40.

When computing the upper bounds derived in §3.4 and §3.6, the support of the negative binomial

distribution was truncated at values with probability less than 10−6. Solutions to the corresponding

non differentiable optimization problem (cf. (10)) were computed using the Nelder-Mead simplex

method. While this algorithm is not generally guaranteed to converge to the minimum (see Lagarias

et al. 1998), it does maintain a best solution found to date, which in our case still yields a valid

bound (this follows from weak duality since solutions to (10) correspond to open-loop dual policies,

see §3.2 and §3.4). In some instances we tried different starting points for this algorithm, and report

then the best bounds we have found.

4.2 Bayesian Experiments

Table 3 summarizes our numerical results for this first set of experiments. The total expected

profit divided by the number of periods (hereafter referred to as ”expected profit per period”) is

shown for the greedy rule and our index policy in its fourth and fifth columns respectively. The

sixth column provides the upper bound for these quantities derived using DP duality. The seventh

column reports the relative improvement achieved by the index policy over the greedy policy, and

the eight column provides the associated suboptimality gap for the index policy.
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V[γs] T ` Grdy Indx UpBnd Indx−Grdy
Grdy

· 100 UpBnd−Indx
Indx

· 100

5 10 0 2598.35 2604.19 2608.05 0.22% 0.15%

20 0 2670.37 2686.78 2693.97 0.61% 0.27%

40 0 2726.53 2766.50 2819.91 1.47% 1.93%

5 10 5 2429.44 2441.42 2456.12 0.49% 0.60%

20 5 2522.01 2588.84 2608.58 2.65% 0.76%

40 5 2617.38 2709.41 2753.84 3.52% 1.64%

50 10 0 3498.76 3635.11 3656.37 3.90% 0.58%

20 0 3753.40 4082.60 4133.26 8.77% 1.24%

40 0 3910.34 4479.50 4714.70 14.56% 5.20%

50 10 5 2609.78 2861.14 2864.40 9.63% 0.11%

20 5 2961.80 3791.60 3945.55 28.02% 4.06%

40 5 3334.55 4396.98 4625.55 31.86% 5.20%

100 10 0 4031.50 4273.81 4311.70 6.01% 0.89%

20 0 4420.36 4985.29 5130.00 12.78% 2.90%

40 0 4646.64 5632.36 5883.58 21.21% 4.46%

100 10 5 2706.58 3095.76 3206.80 14.38% 3.59%

20 5 3198.91 4580.76 4787.70 43.20% 4.52%

40 5 3757.42 5530.75 5754.43 47.20% 4.04%

Table 3: Index policy vs. greedy rule (Bayesian approach).

Over the range of scenarios considered in Table 3, the relative gap between the performance of

the index policy and the dual upper bound is typically small, reaching a maximum value of 5.2%.

This not only suggests that the index policy is in fact near optimal, but also that the upper bound

is quite tight.

We also observe that the proposed index policy always outperforms the greedy policy, and that

its relative advantage increases with the number of periods and prior variances. Our interpretation is

that increases in the season length and initial prior variances respectively increase the opportunity to

learn about demand and the payoff from doing so, both favoring the index policy which implements

a more elaborate (active) learning strategy than the (passive) learning used by the greedy policy.

The impact of the season length shown in Table 3 appears more clearly in Figure 2, which specifically

plots the expected profit per period of the index and greedy policies as well as the corresponding

upper bound against the total number of periods T for an initial state equal to (1, 1/10) (i.e.

E[γs] = 10 and V[γs] = 100) and no implementation lead time (` = 0).

In line with previous results, the expected profit per period shown in Figure 2 increases with

the total number of periods faster overall for the index policy than it does for the greedy policy.

An important observation however is that the performance advantage of the index policy relative

to the greedy policy only becomes significant when the number of periods is large enough (in

this case T > 6): ripping the benefits of active learning seems to require a minimum number of

decision and observation periods, below which the greedy policy does just as well – other studies

involving Bayesian learning models (e.g. Aviv and Pazgal 2002, or Brezzi and Lai 2002) report
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Figure 2: Relative policy performance for various horizon lengths.

similar findings. In addition, while the performance of both policies appearing in Figure 2 for a

single decision period (T = 1) is by definition exactly identical to that of the static assortment

reported in Table 2, the greedy policy (and a fortiori the index policy) significantly outperforms

the static assortment with two or more periods to go. Specifically, the performance gain over the

static assortment from implementing passive learning with a single additional period of observation

(i.e. T = 2) is about 21%: passive learning is considerably better for this data set than no learning

at all. However, while that finding may apply to many situations of practical interest, it does not

have any obvious theoretical grounding: consider an environment with a first group of more than N

products having known average profit rates, and a second group with uncertain demand and lower

predicted profit rates but high prior variances, reflecting that some of the products in this second

group may in fact have higher underlying profit rates; the greedy policy would then never include

any of the products from the second group in the assortment, thus never learning anything about

their demand, and its performance would then remain identical to that of the static assortment

regardless of the season length.

Although very long season lengths appear unlikely in the retail setting that initially motivated

this study, one may legitimately wonder how the results of Table 3 and Figure 2 would change in the

limit where the number of periods T is very large, which is also the object of the brief discussion after

Lemma 2. Other experiments conducted for T = 500 (not reported here) support the conjecture

that the expected profit per period of the index policy converges to the full information upper

bound appearing in Table 2 as T goes to infinity. Note that the greedy policy does not have this

property in general, as illustrated by the environment described in the previous paragraph.

Table 3 also suggests that the relative advantage of the index policy over the greedy policy

becomes even more significant with an assortment implementation lead time (` > 0). To focus

on this issue we plot in Figure 3 the performance of the index and greedy policies as well as the

corresponding upper bound (derived in §3.4 and §3.6) against the lead time ` for an initial state
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equal to (E[γs],V[γs]) = (10, 100) as before, and a season length T equal to 24 periods. Note

that the range of lead times considered ({0, ..., 5}) as well as the season length assumed (about six

months) roughly correspond to our estimates for the corresponding quantities at Zara (see §2.2).

Figure 3: Relative policy performance for various lead times.

The performance of both policies as well as the upper bound values shown in Figure 3 all exhibit

a general decreasing trend. Increasing the lead time while holding the season length constant

effectively reduces the number of periods where demand can be observed and acted upon, and

therefore the potential to learn throughout the season; this decreasing trend and the overall increase

of performance with T appearing in Figure 2 thus indirectly follow from the same phenomenon.

Also, the results shown in Figure 3 confirm that the performance of the greedy policy relative

to both the index policy and the upper bound quickly deteriorates when the lead time increases.

We believe that the distinction between active and passive learning is key to this phenomenon.

Specifically, increasing the lead time augments the magnitude of future changes in information

quality (i.e. expected reduction of prior variances resulting from the next ` assortments) that the

greedy policy ignores but the index policy captures (through (24)), thus yielding a larger relative

advantage to active learning over passive learning.

4.3 Frequentist Experiments

The goal of our frequentist experiments was to assess how the relative performance of the index

and greedy policies is affected by the quality of the demand information initially available, both in

terms of accuracy and bias. We used the same data sets as in the Bayesian experiments, but used

instead real underlying demand rates and associated Poisson distributions when generating actual

demand in simulations.

The objective of our first set of experiments was to examine policy performance in environments

where the initial priors were unbiased and had various degree of accuracy, in the following sense:

we generated upfront three sets of underlying demand rates through independent draws from a
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Gamma distribution with the same parameters (ms, αs) as the three different initial Gamma priors

characterizing the retailer’s initial beliefs we assumed; furthermore, when performing a simulation

run with given initial priors we used the corresponding set of underlying demand rates.

Table 4 shows in its fourth and fifth columns the expected profit per period of the greedy and

index policies obtained in those experiments. The sixth column gives the full information upper

bound, i.e. the expected profit achievable by a decision-maker with knowledge of the underlying

demand rates that were generated as described above. The seventh column reports the improvement

of the index policy upon the greedy rule, and finally the eight column shows the performance gap

of the index policy relative to the full information upper bound, or relative regret.

V[γs] T ` Grdy Indx Full Indx−Grdy
Grdy

· 100 Full−Indx
Indx

· 100

5 10 0 2722.38 2732.87 3166.81 0.39% 15.88%

20 0 2802.85 2819.59 3166.81 0.60% 12.31%

40 0 2864.43 2892.12 3166.81 0.97% 9.50%

5 10 5 2533.15 2544.88 3166.81 0.46% 24.44%

20 5 2635.37 2716.01 3166.81 3.06% 16.60%

40 5 2731.94 2840.27 3166.81 3.97% 11.50%

50 10 0 3330.73 3577.49 5366.44 7.41% 50.01%

20 0 3602.94 4048.13 5366.44 12.36% 32.57%

40 0 3763.54 4450.54 5366.44 18.25% 20.58%

50 10 5 2414.05 2779.42 5366.44 15.14% 93.08%

20 5 2754.51 3755.01 5366.44 36.32% 42.91%

40 5 3142.28 4382.27 5366.44 39.46% 22.46%

100 10 0 3872.19 4112.01 7102.50 6.19% 72.73%

20 0 4121.11 4822.96 7102.50 17.03% 47.26%

40 0 4276.16 5422.32 7102.50 26.80% 30.99%

100 10 5 2825.25 3078.95 7102.50 8.98% 130.68%

20 5 3274.56 4450.35 7102.50 35.91% 59.59%

40 5 3694.57 5351.85 7102.50 44.86% 32.71%

Table 4: Index policy vs. greedy rule (frequentist approach).

The results shown in the seventh column of Table 4 confirm the earlier finding that the index

policy performs better than the greedy policy over a range of environments and that this superiority

is particularly significant for large initial prior variance, large number of periods and long lead times,

indicating that this finding is quite robust. This relative advantage seems to always increases with

the leadtime ` as before, and the results in Table 4 suggest that the same holds for the total number

of periods T . We interpret the relative regret of the index policy reported in the last column of Table

4 as follows: the benefit of having full information relative to using the index policy increases with

the initial prior variance (which measure the quality of the partial information initially available),

decreases with the number of periods (because longer horizons provide for more opportunity to

learn), and increases with the lead time (which effectively reduces the number of periods when

demand observations can be acted upon).
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The goal of our second set of frequentist experiments was to estimate the impact of improved

prior accuracy on policy performance. As in Bertsimas and Mersereau (2004), we assumed that the

retailer could perform some preliminary off-line experiments before the beginning of the season in

order to strengthen his initial priors. That is, we generated for each product M random observations

from a Poisson distribution with a mean equal to the real underlying demand rate, and performed

the corresponding Bayesian updates to obtain the priors from which we started our simulations.

Table 5, which has the same structure as Table 4, shows our results for M = 3.

V[γs] T ` Grdy Indx Full Indx−Grdy
Grdy

· 100 Full−Indx
Indx

· 100

5 10 0 3039.11 3041.21 3166.81 0.07% 4.13%

20 0 3060.50 3062.36 3166.81 0.06% 3.41%

40 0 3079.01 3080.09 3166.81 0.04% 2.82%

5 10 5 3007.48 3006.30 3166.81 -0.04% 5.34%

20 5 3023.18 3040.09 3166.81 0.56% 4.17%

40 5 3056.82 3069.62 3166.81 0.42% 3.17%

50 10 0 5278.74 5278.74 5366.44 0.00% 1.66%

20 0 5288.60 5289.18 5366.44 0.01% 1.46%

40 0 5299.09 5299.08 5366.44 0.00% 1.27%

50 10 5 5263.65 5267.45 5366.44 0.07% 1.88%

20 5 5272.17 5272.97 5366.44 0.02% 1.77%

40 5 5285.92 5291.31 5366.44 0.10% 1.42%

100 10 0 7019.44 7022.49 7102.50 0.04% 1.14%

20 0 7028.40 7035.03 7102.50 0.09% 0.96%

40 0 7035.50 7045.87 7102.50 0.15% 0.80%

100 10 5 6995.09 6995.83 7102.50 0.01% 1.52%

20 5 7012.79 7017.94 7102.50 0.07% 1.20%

40 5 7026.63 7038.89 7102.50 0.17% 0.90%

Table 5: Relative policy performance with improved accuracy of initial information.

As shown in Table 5, the performance of the greedy and index policies become statistically

indistinguishable when the quality of the information initially available is improved as described

above – in this environment where the payoff from learning is significantly reduced, sophisticated

learning strategies do not yield any advantage over simpler ones. In addition, the regret associated

with both policies (i.e. the performance gap relative to the full information upper bound) is

drastically reduced compared to the values in Table 4. The main insight we thus draw from Table

5 is the speed at which estimation accuracy and policy performance improve with the number

of preliminary offline observations. This experimental finding suggests that the potential benefits

associated with leveraging sales data across multiple stores confronted with similar demand patterns

may be very large in practice (see §5.1 for a related discussion).

Finally, in our third set of experiments we explored the impact of introducing some bias in the

initial demand information on policy performance. Specifically, we first generated another three

sets of biased demand rate estimations γ′s (one set for each possible type of initial prior information)
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using the exact same procedure followed to generate the real demand rates γs as described above.

Secondly, we assumed now that the M = 3 preliminary demand observations were generated from

Poisson distributions with mean equal to the biased demand estimates γ′s, instead of the true

demand rates γs used at this stage in the previous set of experiments, performed the corresponding

Bayesian updates, and started each simulation with the resulting priors. The results for T = 40

and ` = 0 are shown in Table 6.

V[γs] T ` Grdy Indx Full Indx−Grdy
Grdy

· 100 Full−Indx
Indx

· 100

5 40 0 2649.41 2672.12 3166.81 0.86% 18.51%

50 40 0 3414.14 3457.27 5366.44 1.26% 55.22%

100 40 0 3626.21 3666.61 7102.50 1.11% 93.71%

Table 6: Relative policy performance with biased initial information.

The performance of the greedy and index policies reported in Table 6 are almost identical. This

suggests that in the presence of bias, there is no advantage from performing active learning over

passive learning – these two strategies distinguish themselves from the relevance of what information

is acquired over time, not from their ability to detect erroneous prior information. This observation

may motivate the development of more robust learning models including the ability to challenge

existing priors, for example through dynamic goodness-of-fit tests.

Remarkably, for both policies the performance results in terms of regret shown in Table 6 are

substantially worse than their corresponding values in Table 4 (where the gaps of the index policy

relative to the full information bound are only 9.50%, 20.58% and 30.99% in the three corresponding

scenarios). That is, the retailer would have been better off without doing any experiments at all,

regardless of which policy is followed – while preliminary demand observations can be extremely

valuable as shown in Table 5, it is particularly important to ensure that they are not biased. If

such additional sales data is obtained by observing demand in another store for example, it is

paramount to establish that these stores indeed face similar customer populations, or at least that

any systematic bias is corrected.

5 Model Extensions

Completing the discussion initiated in §2.2, we now comment on possible ways to relax the three

assumptions made in our analysis that we consider to be most restrictive: independent product

demands (§5.1); no lost sales (§5.2); and constant demand rates (§5.3).

5.1 Substitution and Complementarity Effects

As argued in §2.2, our model would gain realism if demands for different products were no longer

assumed independent, capturing instead substitution effects between products from the same cat-

egory, and possibly complementarity effects between products from different categories. However,

designing and analyzing a dynamic assortment model where learning concerns not only the demand
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rates of individual products but also their correlation structure seems very challenging for at least

two reasons. First, even if a Bellman equation similar to (3) could be written for such a model, the

corresponding DP would predictably no longer be weakly coupled because of the many relation-

ships between different products introduced by the correlation structure, so that our decomposition

approach would likely break down. Second and perhaps more fundamentally, the number of pa-

rameters required to characterize such a correlation structure would be a priori in the order of S2;

a high value of S relative to N × T (the total number of demand observations available) may thus

create a discrepancy between the amount of data required for estimation and the speed at which

it can be acquired – this is related to the problem known as “overfitting” in the Machine Learning

literature (i.e. the model is too complex with respect to the available data). Indeed, our rough

estimates of these parameters in the case of Zara (see §2.2) indicate that this problem could be an

important one in practice. It is also revealing that (static) assortment studies proposing practical

methods for estimating demand correlation structures (e.g. Kök and Fisher 2004 , Anunpindi et

al. 1998) typically rely on sales history from multiple stores with different assortments assumed

to face the same demand characteristics, that is substantially more learning data than the single

store observations we consider. While coordinating dynamic assortment decisions across multiple

stores and leveraging the resulting data constitutes an important avenue for future research in our

view, we caution that studies such as Fisher and Rajaram (2000) have established that demand

characteristics faced by different stores of the same firm may in practice be quite different.

But we believe that the dynamic assortment policy presented in §3.5 and §3.6, even though its

derivation required the assumption of independence, may still provide a useful starting point when

designing heuristics capturing substitution effects. One such possible design path, which we now

develop, is to assume that the correlation structure across products is known (or can at least be

estimated upfront), while the individual demand rates of individual products must be estimated

dynamically as before. As in the substitution models of Smith and Agrawal (2000) and Kök and

Fisher (2004) we can use the concept of the original demand for each product, defined as the

demand that would be observed for that product if all the other products were also included in

the assortment. In addition, we also assume that the retailer knows the probability qis that a

customer switches to product s given that he originally wanted product i but it was not available

in the assortment – as in the last two papers cited, this model assumes that each customer only

makes one such substitution attempt, and
∑

s 6=i qis < 1 capturing the fact that customer might

leave without buying. Our dynamic index policy can then be adapted heuristically by performing

the following two modifications:

1. The retailer now maintains Gamma Bayesian priors with parameters (m, α) on the original

demand rates for each product, so the information updating rule must be modified to reflect

that observed sales for a given product may include some to customers who only bought

it because their favorite choice was not part of the assortment. Let u ∈ U represent the

assortment that was available in the store at period t, s be a product that was part of the
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assortment (i.e. us = 1), and ns be the sales observed for s. An estimate of the original sales

ñs of product s is then given by

ñs = ns ·
(

ms
αs

ms
αs

+
∑

i 6=s qis
mi
αi

(1− ui)

)
. (25)

In words, the fraction of original observed sales is estimated as the ratio between the expected

contribution of the original demand for product s and the total expected demand considering

substitution. The information state for each included product s is then updated from ms

to ms + ñs, and αs is updated to αs + 1 as before. The demand estimates for products

not included in the assortment remain unchanged in this proposal, although an alternative

approach could consist of also updating priors based on the fraction of sales that is discarded

through equation (25).

2. The index ηt,s derived in §3.5 (and extended to the case of positive lead time in §3.6) is a

measure of the desirability of independently including each product in the assortment, defined

as the opportunity cost of the corresponding shelf space. In the presence of substitutions, the

desirability of including a product must also take into account whether it is a good substitute

for other products not included in the assortment. The selection of the N most desirable

products becomes then a combinatorial problem, which we propose to address through the

following quadratic integer program:

max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

(
ηt,s + rs

∑

i6=s

qis
mi

αi
(1− ui)

)
us. (26)

In words, the objective in (26) evaluates the profitability of including each product s in the

assortment at t by adding to the initial desirability index ηt,s the expected profits following

from substitutions to product s from all products i not included in the assortment (rep-

resented by the inner summation term). This formulation thus still captures the essential

trade-off between exploration and exploitation, but corrects the exploitation term for the

expected sales resulting from substitutions. Note that when substitution effects are ignored

(i.e. qis = 0 ∀i, s), solving (26) results in our original index policy.

5.2 Models with Lost Sales

In a model with lost sales, the product inventory levels become important to capture, and in addi-

tion to assortment inclusion or exclusion decisions one should seemingly also consider order quantity

decisions. Furthermore, different assumptions about the type of demand information available to

the retailer can be made, and we have formulated accordingly the following models and associated

Bellman equations: (i) lost sales are observable for products included in the assortment; (ii) lost

sales are not observable, but the point in time when a stockout occurs (when applicable) is known
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for every product in the assortment; and (iii) the only information available about lost sales is

whether or not some of them did occur. In formulating problem (iii) with censored information

defined above, we used a significantly different demand model than the one assumed in the present

paper. Specifically, we have adapted to our problem the Bayesian learning model with censored

observations initially developed by Lariviere and Porteus (1999), where the existence of unobserved

lost sales is explicitly taken into account when updating information. Because the underlying de-

mand in that model is restricted to a rather narrow family of distributions however, we fear that the

resulting assortment model may only be useful to obtain insights rather than for a practical imple-

mentation. More generally, we are hoping to report analytical results for all three aforementioned

models in the future.

5.3 Variable Demand Rates

In our model, the unknown demand rates γs remain constant during the season, which results

in a partially observed Markov decision process (POMDP) in which the underlying state is fixed.

Situations where product life-cycles are really short compared to the season length (e.g. a couple

of weeks versus six months) may however be more faithfully described by time-varying demand

rates. This feature could be captured by a POMDP where the real underlying state would change

over time with some given transition probabilities; this would basically amount to extending our

model in the same way that Aviv and Pazgal (2004) extend their initial dynamic pricing problem

(Aviv and Pazgal 2002). While the theory of POMDPs allows for a transformation of the partially

observed state problem into one with perfect state information, this comes at the expense of increase

state space dimension, so that further approximations would likely have to be made.

6 Conclusions

We have developed in this paper a discrete-time DP model for the dynamic assortment problem

faced by a fast-fashion retailer refining his estimate of consumer demand for his products over time.

The main assumptions made were: (i) independent products; (ii) no lost sales; and (iii) constant

demand rates. Under these assumptions we have formulated this dynamic assortment problem

as a multiarmed bandit with finite horizon and multiple plays per stage. Using the Lagrangian

decomposition of weakly coupled DPs, we have derived a closed form index policy characterized by

equation (19) that depends on only the first two moments of the priors on demand rates. Despite

its simple form, our proposed index policy captures two key features of the dynamic assortment

problem, namely the trade-off between exploration and exploitation and the finite horizon effect,

and is amenable to an extension for the case with positive design-to-shelf lead times. Also based

on DP duality, we have derived an upper bound for the optimal profit-to-go, which allows to assess

the suboptimality gap of the suggested index policy.

Our simulation study indicates that the index policy always performs at least as well as the
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greedy policy (or passive learning), and significantly outperforms it in scenarios with diffuse or

biased prior demand information. Also, numerical computations of the bound mentioned above

suggest that the index policy is close to optimal. In general, the improvement of the suggested

index policy upon the greedy rule increases with the planning horizon length, the variance of the

initial priors, and the lead time.

Although the three major assumptions listed above may be particularly strong in some envi-

ronments, our approach was partly motivated by the belief that the closed-form policy they allow

to derive constitutes a useful starting point for designing heuristics or developing extensions in

more complex environments. In the present paper we have thus proposed a heuristic for capturing

substitution effects between products, and discussed possible ways for relaxing the last two major

assumptions as part of future work. Another interesting extension, motivated in part by our exper-

imental findings, would consider the coordination of dynamic assortment decisions across multiple

stores.

Finally, although the model presented here focuses essentially on operational issues, we point

out that it may also have some design implications. Specifically, the current financial success of

fast-fashion firms like Zara suggests that the relative benefits of increased supply flexibility, while

considerably harder to quantify at the design stage than the relative costs of local and overseas

production, may still be very large. Could it be that many traditional fashion retail firms have

been mistaken for years when assessing the trade-off between costs of production and benefits of

flexibility? A legitimate hypothesis is that the heavy historical reliance of the fashion industry on

overseas suppliers may have resulted in part from a lack of appropriate quantitative models enabling

to correctly predict the potential gains associated with local production and a responsive supply

network. In our model, the design-to-shelf leadtime ` may precisely reflect the procurement delays

resulting from a given supply-chain configuration, and studying the variation of retailer’s profits

with that parameter (as shown in Figure 3) may thus inform the assessment of such trade-off. We

thus hope that our model may also be useful to some practitioners when designing supply-chains.
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A Appendix

A.1 A Short Comment on the Index Formula

If δ denote the length of a time period, the expression for the index of product s in period t is then

more generally:

ηt,s = rsE[γs]δ + zt
rsV[γs]δ√
V[γs] + E[γs]

δ

(27)

Since γs represents an arrival rate it must have the same units as 1/δ; the right hand side of

(27) is therefore consistent (in terms of units) and does not depend on the choice of the period

length. Rescaling the time units so that δ = 1 yields (19). Alternatively, one may redefine γs as γsδ,

making this quantity a scalar with no physical dimension or units. Likewise, direct substitution in

(27) gives equation (19).

A.2 Proof of Lemma 1

We proceed by induction on t. The property is trivial for t = 0 so we assume it holds for t − 1,

with t ≥ 1. Consider any vector u ∈ {0, 1}S such that
∑S

s=1 us ≤ N . Let n′′ = n(m′′,α′′) and

n′ = n(m′, α′). From the induction hypothesis J∗t−1(m
′′+n ·u, α′′+u) ≥ J∗t−1(m

′+n ·u, α′+u)

for any n ∈ NS , which in turn implies that:

En′′
[
J∗t−1(m

′′ + n′′ · u, α′′ + u)
]
≥ En′′

[
J∗t−1(m

′ + n′′ · u,α′ + u)
]

≥ En′
[
J∗t−1(m

′ + n′ · u, α′u)
]
.

The first inequality is strict if for any product s, m′′
s > m′

s or α′′s < α′s. The last inequality

follows from the fact that J∗t−1(m+n ·u, α+u) is a (componentwise) increasing function of n (by

the induction hypothesis), and from the relative stochastic ordering of n(m, α). It follows that:

S∑

s=1

rs
m′′

s

α′′s
us + En′′

[
J∗t−1(m

′′ + n′′ · u, α′′u)
] ≥

S∑

s=1

rs
m′

s

α′s
us + En′

[
J∗t−1(m

′ + n′ · u, α′ + u)
]

Since the above inequality is valid for any feasible action u, invoking the definition of the

profit-to-go function (3) completes the proof. 2

A.3 Proof of Lemma 2

The lower bound follows from the fact that J∗t (m,α) is the expected profit-to-go of the optimal

dynamic assortment policy. In particular, the optimal policy performs at least as well as a static

policy implementing in each period the assortment given by argmaxu∈U
∑S

s=1 rsE[γs]us.

The upper bound follows from the fact that the frequentist regret is nonnegative for any non-

negative parameter vector γ (cf. Lai 1987, p.1092). The proof is complete. 2
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A.4 Proof of Proposition 1

From the definition, it is clear that H∗
t (m, α) ≤ Hλt

t (m,α) for any dual policy λt, therefore we

only need to prove the first inequality. We proceed by induction on t. Assume that J∗t−1(m, α) ≤
H∗

t−1(m, α) for all states (m, α), then for any λt ≥ 0:

J∗t (m, α) = max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

rs
ms

αs
us + En

[
J∗t−1(m + n · u, α + u)

]

≤ Nλt + max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
J∗t−1(m + n · u,α + u)

]

≤ Nλt + max
u∈{0,1}S

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
J∗t−1(m + n · u, α + u)

]

≤ Nλt + max
u∈{0,1}S

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
H∗

t−1(m + n · u, α + u)
]

(28)

The first inequality follows from the fact that λt ≥ 0, and the second holds because the feasible

set is larger. The third inequality relies on the induction hypothesis. Considering now the minimum

of the right hand side of (28) yields the desired result. 2

A.5 Proof of Proposition 2

We will need the following lemmas that are interesting per se:

Lemma 4 Let (m, α) be the system state at period t. For any i ∈ S the following holds:

Eni

[
J∗t (m + niei, α + ei)

] ≥ J∗t (m, α), (29)

where ni is a negative binomial with parameters (mi, αi).

Proof: We proceed by induction on t. Assume that (29) is true for some t − 1 ≥ 0. For any

(random) vector v, let v−i = v − viei. For any given decision vector u ∈ {0, 1}S we denote the

respective profit by:

gt(u, m, α) =
S∑

s=1

rs
ms

αs
us + En′

[
J∗t−1(m + n′ · u, α + u)

]
. (30)

We will show that Eni [gt(u,m + niei, α + ei)] ≥ gt(u,m, α) by considering two cases. First,

assume that ui = 0, then we have that:
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Eni [gt(u, m + niei,α + ei)] =
S∑

s=1

rs
ms

αs
us + Eni

[
En′

−i

[
J∗t−1(m + niei + n′

−i · u,α + ei + u)
]]

=
S∑

s=1

rs
ms

αs
us + En′

−i

[
Eni

[
J∗t−1(m + niei + n′

−i · u,α + ei + u)
]]

≥
S∑

s=1

rs
ms

αs
us + En′

−i

[
J∗t−1(m + n′

−i · u, α + u)
]

= gt(u, m,α)

The first equality follows from (30) and the fact that we are assuming ui = 0. The expectation

interchange in the second equality is a consequence of demands among products being indepen-

dent and Fubini’s Theorem (all terms are nonnegative). In the third step we used the induction

hypothesis, and then in the last step we used again (30) and ui = 0.

For the second case assume that ui = 1 and fix ni at a given (nonnegative) integer value. Then

we have the following inequality:

En′
[
J∗t−1(m + niei + n′ · u,α + ei + u)

]
= En′

−i

[
En′i

[
J∗t−1(m + niei + n′ · u,α + ei + u)

]]

≥ En′
−i

[
J∗t−1(m + niei + n′

−i · u−i,α + ei + u−i)
]

(31)

where n′i is a negative binomial random variable with parameters (mi + ni, αi + 1), and in the

second inequality we use the induction hypothesis. We now have that:

Eni [gt(u, m + niei, α + ei)] =
S∑

s=1

rs
ms

αs
us + Eni

[
En′

[
J∗t−1(m + niei + n′ · u, α + ei + u)

]]

≥
S∑

s=1

rs
ms

αs
us + Eni

[
En′

−i

[
J∗t−1(m + niei + n′

−i · u−i, α + ei + u−i)
]]

= gt(u, m, α)

The first equality follows from (30) and the fact that Eni

[
mi+ni
αi+1

]
= mi

αi
. In the second inequality

we used (31), and the last step is also given by (30) and the independence among product demands.

So we can conclude that:

Eni [gt(u,m + niei, α + ei)] ≥ gt(u, m, α) ∀u ∈ {0, 1}S (32)

We can now prove the inequality of the lemma. In fact, we have the following:
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Eni

[
J∗t (m + niei, α + ei)

]
= Eni

[
max

u∈{0,1}S :∑S
s=1 us≤C

gt(u,m + niei, α + ei)

]

≥ max
u∈{0,1}S :∑S
s=1 us≤C

Eni

[
gt(u, m + niei,α + ei)

]

≥ max
u∈{0,1}S :∑S
s=1 us≤C

gt(u, m,α)

= J∗t (m, α)

The first and last equality are given by the definition of J∗t (·) and (30). The second inequality

can be seen as a consequence of Jensen’s inequality and the fact that the maximum norm is convex,

and the third inequality follows from (32). Then the proof is complete. 2

Lemma 5 If rs > 0 ∀s, then ft(m,α; C) is a strictly increasing function of C, with C ≤ S, for

any state (m, α).

Proof: Consider C < S. Let u∗ be an optimal solution of the maximization problem in the

definition of ft(m, α; C) (cf. (7)), and let i be such that u∗i = 0. Then we have that:

ft(m, α;C) =
S∑

s=1

rs
ms

αs
u∗s + En

[
J∗t−1(m + n · u∗, α + u∗)

]
(33)

Let u = u∗ + ei, where ei is the i-th unit vector. By conditioning on all ns with s 6= i and

using Lemma 4 we have that:

En

[
J∗t−1(m + n · u,α + u)

] ≥ En

[
J∗t−1(m + n · u∗, α + u∗)

]
. (34)

Since ri > 0, from (34) we get a strict inequality relating the objective values of u and u∗:

S∑

s=1

rs
ms

αs
us + En

[
J∗t−1(m + n · u, α + u)

]
> ft(m, α;C). (35)

Since
∑S

s=1 us = C + 1, from (35) we have that ft(m, α;C + 1) > ft(m, α;C), i.e. ft(m,α; C)

is a strictly increasing function of C. 2

Lemma 6 For a given state (m, α) at period t, consider the following dual function:

ht(λt,m, α) = N · λt + max
u∈{0,1}S

( S∑

s=1

rs
ms

αs
− λt

)
us + En

[
J∗t−1(m + n · u, α + u)

]

Let h∗t (m, α) = minλt≥0 ht(λt,m, α). If ft(m,α; C) is concave in C, then J∗t (m,α) = h∗t (m, α).
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Proof: Since the state (m,α) is fixed throughout the proof it will be omitted in the notation.

Instead of following a standard duality proof (for example using a hyperplane separation theo-

rem, see Bertsekas (1999), we provide a short direct corroboration.

Let λ∗t be such that ft(N + 1) − ft(N) ≤ λ∗t ≤ ft(N) − ft(N − 1). The existence of λ∗t is

guaranteed from the concavity of ft(C) with respect to C, and also λ∗t is nonnegative from Lemma

5. We will show that λ∗t is a Lagrangian multiplier in the sense that J∗t = ht(λ∗t ) = h∗t .

First, note that the dual function can be written as:

ht(λt) = N · λt + max
C∈ N

ft(C)− C · λt. (36)

Suppose that for λ∗t the maximum on the right hand side of (36) is attained strictly at some

C > N . This means that ft(C)−C ·λ∗t > ft(N)−N ·λ∗t , or equivalently, ft(C)−ft(N) > (C−N)·λ∗t .
On the other hand, from the concavity of ft(C) we have that:

ft(C)− ft(N) = ft(C)− ft(C − 1)+ ft(C − 1)− ft(C − 2)+ . . .+ ft(N +1)− ft(N) ≤ (C −N) ·λ∗t ,

which is contradiction. If we now suppose that the maximum on the right hand side of (36) is

attained strictly at some C < N , then a similar contradiction is obtained, and therefore we must

have that ht(λ∗t ) = ft(N).

To conclude, we know that J∗t = ft(N) because ft(C) is nondecreasing (cf. Lemma 5), and also

J∗t ≤ ht(λt). Then J∗t = ht(λ∗t ) = minλt≥0 ht(λt) = h∗t , and the proof is complete. 2

Finally, to prove Proposition 2 we proceed by induction on t. The case t = 1 is trivial so

we assume that the property holds for t − 1 > 0 and that fτ (m′,α′; C) is concave in C for all

τ = t, . . . , 1 and states (m′, α′) reachable from (m,α) in period τ . For any u ∈ U and any vector

n ∈ NS we have that (m + n · u, α + u) is reachable from (m,α) in period t − 1. Then, by the

induction hypothesis we have that J∗t−1(m + n · u,α + u) = H∗
t−1(m + n · u, α + u). Using the

latter we see that the last inequality in the proof of Proposition 1 (cf. 28) is actually an equality.

If we now minimize with respect to λt, from Lemma 6 and the definition of the optimal dual policy

(cf. (6)) we have that J∗t (m, α) = H∗
t (m, α), and the proof is complete. 2

A.6 Proof of Lemma 3

We proceed by induction. Consider t ≥ 1 and assume that (8) holds for t− 1. Then, from equation

(5):

Hλ
t (m, α) = Nλt + max

u∈{0,1}S

S∑

s=1

(rs
ms

αs
− λt)us + En

[
Hλ

t−1(m + n ∗ u,α + u)
]

= Nλt + max
u∈{0,1}S

S∑

s=1

(rs
ms

αs
− λt)us + En

[
N

t−1∑

τ=1

λτ +
S∑

s=1

Hλ
t−1,s(ms + nsus, αs + us)

]
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= N
t∑

τ=1

λτ + max
u∈{0,1}S

S∑

s=1

(rs
ms

αs
− λt)us +

S∑

s=1

Ens

[
Hλ

t−1,s(ms + nsus, αs + us)
]

= N
t∑

τ=1

λτ +
S∑

s=1

(
max

us∈{0,1}
(rs

ms

αs
− λt)us + Ens

[
Hλ

t−1,s(ms + nsus, αs + us)
]
)

= N
t∑

τ=1

λτ +
S∑

s=1

Hλ
t,s(ms, αs)

The second equation uses the induction hypothesis. The third equation comes from the fact that

all products are independent so the expectation is simplified, and the final two equations rearrange

terms in order to obtain the desired result. 2

A.7 Proof of Proposition 3

We first need the following two additional lemmas:

Lemma 7 Hλ
t,s(ms, αs) ≤ ( rsms

αs
)t ∀(ms, αs).

Proof: Direct by induction since assuming that it holds for t− 1 we can bound both terms in the

right hand side of (9). In fact, we have that Hλ
t−1,s(ms, αs) ≤ (t− 1)rsms/αs and

rs
ms

αs
− λt + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]
≤ rs

ms

αs
+ Ens

[
rs

ms + ns

αs + 1
(t− 1)

]
=

(rsms

αs

)
t− λt.

2

Lemma 8 Hλ
t,s(ms, αs) = 0 ∀(ms, αs) such that

(
rsms
αs

)
τ < λτ ∀τ = t, . . . , 1.

Proof: Consider t ≥ 1 and assume that the claim holds for t − 1. Let (ms, αs) be a pair that

satisfies
(

rsms
αs

)
τ < λq ∀τ = t, . . . , 1. Then, from the induction hypothesis, Hλ

t−1,s(ms, αs) = 0, and

from Lemma 7 we have that:

rs
ms

αs
− λt + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]
≤ t

(
rs

ms

αs

)− λt < 0.

Then, from equation (9) we have that us = 0 is optimal at time t and Hλ
t,s(ms, αs) = 0, which

completes the induction step. 2

Now for the proof of Proposition 3, consider the following function:

dλ
t,s(ms, αs) = rs

ms

αs
− λt + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]
−Hλ

t−1,s(ms, αs).

In a similar way than in Lemma 4 it can be shown that Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
] ≥

Hλ
t−1,s(ms, αs). Then, for αs sufficiently small dλ

t,s(ms, αs) ≥ rs
ms
αs
− λt > 0 . On the other

hand, when αs →∞, from Lemma 8 we have that Hλ
t−1,s(ms, αs) → 0. From Lemmas 8 and 7 and

the Dominated Convergence Theorem it can be seen that Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
] → 0, so we
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have that dλ
t,s(ms, αs) → −λt < 0. If the function dλ

t,s(ms, αs) were strictly decreasing in αs, then

βλ
t,s(ms) could be defined as the unique solution of dλ

t,s(ms, αs) = 0, and if dλ
t,s(ms, αs) were strictly

increasing in ms, then βλ
t,s(ms) would inherit the same monotonicity property.

We now prove by induction on t that dλ
t,s(ms, αs) is indeed strictly decreasing in αs and strictly

increasing in ms. The claim is trivial for t = 1 when clearly βλ
1,s(ms) = rsms/λ1. Assume now that

the claim is valid for t − 1 with t > 1; because no ambiguity arises here in the following we omit

the subscript s for simplicity. Let α′ ≤ α′′, m′ ≤ m′′, n′ = n(m′, α′), and n′′ = n(m′′, α′′). Since

dλ
t (m,α) is continuous in α, we only need to consider three cases:

• α′ ≤ α′′ ≤ βλ
t−1(m

′) ≤ βλ
t−1(m

′)

In general, for any α ≤ βλ
t−1(m):

dλ
t (m,α) = λt−1 − λt + En

[
Hλ

t−1(m + n, α + 1)−Hλ
t−2(m + n, α + 1)

]

= λt−1 − λt + En

[
max

{
dλ

t−1(m + n, α + 1), 0
}]

(37)

From the induction hypothesis max
{
dλ

t−1(m
′′+n, α′′+1), 0

} ≥ max
{
dλ

t−1(m
′+n, α′+1), 0

}

for any integer n. Following now the same steps as in Lemma 1:

En′′
[
max

{
dλ

t−1(m
′′ + n′′, α′′ + 1), 0

} ≥ En′′
[
max

{
dλ

t−1(m
′ + n′′, α′ + 1), 0

}]

≥ En′
[
max

{
dλ

t−1(m
′ + n′, α′ + 1), 0

}]
(38)

Note that the first inequality is strict if either α′ < α′′ or m′ < m′′. The second inequal-

ity follows from the larger stochastic ordering of n(m,α). It follows then from (37) that

dλ
t (m′, α′) ≤ dλ

t (m′′, α′′).

• βλ
t−1(m

′) ≤ βλ
t−1(m

′) ≤ α′ ≤ α′′

In general, for any α ≥ βλ
t−1(m):

dλ
t (m,α) = r

m

α
− λt + En

[
Hλ

t−1(m + n, α + 1)
]
−Hλ

t−2(m,α)

= λt−1 − λt + En

[
Hλ

t−1(m + n, α + 1)
]
− En

[
Hλ

t−2(m + n, α + 1)
]

+ dλ
t−1(m,α)

= λt−1 − λt + En

[
max

{
dλ

t−1(m + n, α + 1), 0
}]

+ dλ
t−1(m,α)

Then dλ
t (m′, α′) ≤ dλ

t (m′′, α′′) follows from (38) and the induction hypothesis. Again, the

inequality is strict if either α′ < α′′ or m′ < m′′.

38



• βλ
t−1(m

′) ≤ α′ ≤ α′′ ≤ βλ
t−1(m

′)

In this case we have:

dλ
t (m′, α′) = λt−1 − λt + En′

[
max

{
dλ

t−1(m
′ + n′, α′ + 1), 0

}]
+ dλ

t−1(m
′, α′)

≤ λt−1 − λt + En′
[
max

{
dλ

t−1(m
′ + n′, α′ + 1), 0

}]

≤ λt−1 − λt + En′′
[
max

{
dλ

t−1(m
′′ + n′′, α′′ + 1), 0

}]

= dλ
t (m′′, α′′)

The first inequality holds because βλ
t−1(m

′) ≤ α′ ⇒ dλ
t−1(m

′, α′) ≤ 0. The second inequality

follows from (38) and is strict if either α′ < α′′ or m′ < m′′. The proof is now complete. 2

A.8 Proof of Proposition 4

In order to solve ties, we assume with no loss of generality that when the retailer is indifferent he

will include the product in the assortment.

Consider a state (ms, αs) ∈ Bλ
t,s, necessarily:

rs
ms

αs
− λt + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]

< Hλ
t−1,s(ms, αs). (39)

Suppose that in period t− 1 it is optimal to have us = 1, i.e. (ms, αs) /∈ Bλ
t−1,s . Substituting

the appropriate expression for Hλ
t−1,s(ms, αs) in (39) and rearranging terms yields:

Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]
− Ens

[
Hλ

t−2,s(ms + ns, αs + 1)
]

< (λt − λt+1) ≤ 0,

contradicting the fact that Hλ
t,s(ms, αs) is nondecreasing with the horizon length. Therefore us = 0

must be optimal in period t− 1, which completes the proof. 2
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