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Abstract

Companies such as Zara and World Co. have recently implemented novel product development processes

and supply chain architectures enabling them to make more product design and assortment decisions during

the selling season, when actual demand information becomes available. How should such retail firms modify

their product assortment over time in order to maximize overall profits for a given selling season? Focusing

on a stylized version of this problem, we study a finite horizon multiarmed bandit model with several plays

per stage and Bayesian learning. Our analysis involves the Lagrangian relaxation of weakly coupled dynamic

programs, results contributing to the emerging theory of DP duality, and various approximations. It yields

a closed-form dynamic index policy capturing the key exploration vs. exploitation trade-off, and associated

suboptimality bounds. While in numerical experiments its performance proves comparable to that of other

closed-form heuristics described in the literature, our policy is particularly easy to implement and interpret.

This last feature enables extensions to more realistic versions of our motivating dynamic assortment problem

that include implementation delays, switching costs and demand substitution effects.

1. Introduction

1.1 Motivation. Long development, procurement, and production lead times resulting in part

from a widespread reliance on overseas suppliers have traditionally constrained fashion retailers to

make supply and assortment decisions well in advance of the selling season, when only limited and

uncertain demand information is available. With only little ability to modify product assortments

and order quantities after the season starts and demand forecasts can be refined, many retailers

are seemingly cursed with simultaneously missing sales for want of popular products, while having

to use markdowns in order to sell the many unpopular products still accumulating in their stores

(see Fisher et al. 2000).

Recently, a few innovative firms including Spain-based Zara, Mango and Japan-based World

Co. (sometimes referred to as ”Fast Fashion” companies) have implemented product development

processes and supply chain architectures allowing them to make most product design and assort-

ment decisions during the selling season. Remarkably, their higher flexibility and responsiveness is
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partly achieved through an increased reliance on more costly local production relative to the supply

networks of traditional retailers. The contrast between these two supply-chain design alternatives

seems particularly drastic, as shown in Table 1.

Table 1: Retail industry benchmark (source: Ghemawat and Nueno 2003)

At the operational level, leveraging the ability to introduce and test new products once the

season has started motivates a new and important decision problem: Given the constantly evolving

demand information available, which products should be included in the assortment at each point

in time? Figure 1 provides a conceptual representation of this operational challenge. In each

period over a finite season T , the retailer must decide the subset N of products that will be offered

from a larger set S of all candidates. As sales occur, the retailer gathers new demand information

about each particular product included in the latest assortment, which may be combined with prior

historical demand information to select a future assortment.

Figure 1: The dynamic assortment problem.

The problem just described seems challenging because it relates to the classical trade-off known

as exploration versus exploitation. In each period the retailer must choose between including in

the assortment products for which he has a “good sense” that they are profitable (exploitation),

or products for which he would like to gather more demand information (exploration) and may be

more profitable in the long run. In other words, how to balance learning with immediate profit.
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Our main objective in the present paper is to develop and analyze a stylized optimization model

capturing the main features of this dynamic assortment problem. Our results and contributions

include (i) a closed-form solution for this model with learning that only requires knowledge of the

two first moments of demand; (ii) an extension of that solution accounting for lead times, switching

costs and substitution effects; and (iii) a better understanding of when the ability to learn has more

impact in this setting.

Our approach consists of two steps. After an overview of the relevant literature in §1.2, we

consider in §2 a first version of our motivating dynamic assortment problem, which as described

in §2.1 amounts to a finite-horizon multiarmed bandit model with several plays per stage and

Bayesian learning. The associated analysis shown in §2.3 results in a closed-form policy. While we

later report (in §4) that its performance is near-optimal and on par with that of other comparable

heuristics available in the literature, our policy is particularly easy to implement and interpret. This

last feature enables, as a second step presented in §3, the extension of our policy to more realistic

versions of our motivating dynamic assortment problem that include implementation delays (§3.1),

switching costs (§3.2) and demand substitution effects (§3.3). In §4 we describe the numerical

experiments we executed in order to assess the performance of the suggested policies, and provide

indications on the primary drivers of this performance. Finally, section §5 contains our concluding

remarks, and the proofs are available at the end.

1.2 Literature Review. We first discuss contextually related papers focusing on assortment

problems. A first subset is found in the Marketing literature where several studies, typically moti-

vated by supermarkets, consider static assortment problems formulated as deterministic nonlinear

optimization models. See Bultez and Naert (1988) for a classical example in which the demand of a

product depends on the allocated shelf space, and the overall space available is a limited resource.

In the Operations Management literature, van Ryzin and Mahajan (1999) and Smith and Agrawal

(2000) also consider static assortment problems, but with a stochastic demand model and static

product substitution. That is, customer demand reflects aggregated substitution effects depending

on the initial assortment decision, but not on the actual inventory levels observed by individual

customers once arrived at the store. In contrast, Mahajan and van Ryzin (2001) describe a more

detailed assortment model capturing dynamic substitutions, that is substitutions due to stockouts

experienced by individual customers, and analyze it using sample path methods. For additional

references on assortment problems, we refer the reader to Kök and Fisher (2004).

None of the papers just cited considers demand learning, and accordingly the assortment prob-

lems they investigate are static, not dynamic. Presumably because of the relative novelty of fast

fashion companies, we have in fact not found in the literature any dynamic assortment model
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explicitly described as such. While papers associated with the quick response initiative, such as

the seminal work by Fisher and Raman (1996), do emphasize learning and exploiting early sales

data, the demand information acquired over time is primarily used by the manufacturer to improve

ordering and production, as opposed to product design or assortment decisions.

From a methodological standpoint, the stylized model we analyze in the first part of our paper is

based on the following version of the much studied multiarmed bandit problem (Berry and Fristedt

1985): A player chooses N arms to pull out of a total of S available in each one of T periods.

Whenever pulled, each arm generates a stochastic reward following an arm-dependent distribution,

which is initially unknown but can be inferred with experience as successive rewards are observed.

The player’s objective is to maximize total reward over the game horizon.

A remarkable result for the multiarmed bandit problem with infinite horizon (T = ∞), one

arm pulled per stage (N = 1) and a discount factor strictly smaller than one, is due to Gittins

(see Gittins 1979). The so-called Gittins index of an arm s is defined as the lump reward expected

by a player indifferent between retiring or playing arm s individually. The optimal policy is then

to play in each stage the arm with the highest Gittins index. In the finite horizon case (T < ∞)

however, it is known that Gittins’ index policy is generally not optimal (Berry and Fristedt 1985),

and much research has focused on developing near-optimal heuristics. In particular, the policies

developed by Ginebra and Clayton (1995) and Brezzi and Lai (2002) constitute natural benchmarks

to our policy. In contrast, while the allocation rule proposed by Anantharam et al. (1987) for a

frequentist version of that problem is asymptotically efficient, it does not seem directly applicable to

our specific environment. Our analysis, based on Lagrangian decomposition, is also closely related

to the work in Bertsimas and Mersereau (2004) for an adaptive sampling problem. However, they

assume a Beta-Bernoulli learning model whereas we use the Gamma-Poisson model, and they do not

provide a suboptimality bound for their derived policy. Finally, although Whittle (1988) focuses

on restless bandits, we owe much to his work in that he also uses a Lagrangian relaxation and

considers multiple plays per stage.

The more realistic models that we consider in the second part of our paper are extensions of

the basic multiarmed bandit just described. Bandit models with response delays seem to have

received only moderate attention in the past (see Hardwick et al. 2005 and references therein), and

we are in particular not aware of any other closed-form policy (let alone suboptimality bounds)

described in the literature for this problem. There are likewise several papers considering infinite

horizon bandit problems with switching costs (e.g. Agrawal et al. 1988, Brezzi and Lai 2002).

While Gittins’ index policy is no longer optimal for such model, other policies are known to be
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asymptotically optimal.1 However, we have not found studies considering a multiarmed bandit

problem with switching costs over a finite horizon. Finally, a limited amount of research has been

done for bandit problems with dependent arms (see, for instance, Presman and Sonin 1990), but

we do not know of any heuristic described elsewhere for the case where, as in the present paper,

rewards follow a correlation structure given by a demand substitution model similar to that of

Smith and Agrawal (2000) and Kök and Fisher (2004).

2. A Stylized Multiarmed Bandit Model

The material presented in this section constitutes an intermediary step towards the construction

in §3 of more realistic policies for our motivating dynamic assortment problem. In §2.1 we first

introduce a stylized multiarmed bandit model. Then in §2.2 we discuss modeling assumptions and

motivate subsequent extensions. The model analysis and the derivation of our closed-form index

policy is presented in §2.3.

In this paper periods are counted backwards, boldface symbols represent vectors, subscripts

represent the components of a vector, superscripts represent elements in a sequence, and r.h.s.

means “right-hand side”.

2.1 Problem Definition. We consider a finite horizon multiarmed bandit model where a

player gets to pull N arms out of S in each one of T periods.2 The reward per period for each

pulled arm s is equal to rsns, where rs is a known positive constant and ns is an independent

Poisson random variable with constant but unknown mean γs. The objective is to maximize the

total expected reward from all arms pulled over all periods.

Our basic dynamic assortment model is equivalent to the multiarmed bandit just described by

means of the following analogy: Each arm corresponds to a product. Pulling an arm is the same as

including that product in the assortment. The random variable ns is the number of sales of product

s (if it is included in the assortment), and rs is the unit gross margin. The length of the selling

season is given by T , and the assortment decisions are made by a retailer who wants to maximize

total season profits. We continue to use this language in the remainder of the paper.

We adopt a standard Gamma-Poisson Bayesian learning mechanism (also used for instance in

Aviv and Pazgal 2002). The retailer starts each period with a prior belief on the value of the

unknown demand rate γs represented by a Gamma distribution with (positive) shape parameter

ms, and (positive) scale parameter αs, so that E[γs] = ms/αs and V[γs] = ms/α2
s . The predictive

distribution for ns is then a negative binomial with parameters ms and αs(αs + 1)−1 given by

Pr(ns) =
(

ns + ms − 1
ms − 1

)( 1
αs + 1

)ns
( αs

αs + 1

)ms

. (1)

1For the limiting regime where the discount factor tends to one.
2With no loss of generality, we assume the lengths of these periods to be identical.
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When necessary, we will write ns(ms, αs) to make the parameter dependence explicit. Accord-

ing to Bayes’ rule, the posterior distribution on γs after observing ns sales still has a Gamma

distribution. For each arm s the parameters (ms, αs) of the belief distribution on γs are updated

between consecutive periods as:

(ms, αs) −→




(ms + ns, αs + 1) If product s is in the assortment and ns sales
are observed;

(ms, αs) If product s is not in the assortment.
(2)

The parameter vector It = (m, α) provides a natural dynamic programming state representation

for each decision period t, following the dynamics described by (2).3 The decision to include product

s in the assortment can be represented by a binary variable us ∈ {0, 1}, where us = 1 means that

product s is included. The set U representing all feasible actions (i.e. the control space) can then

be defined as U =
{
u ∈ {0, 1}S :

∑S
s=1 us ≤ N

}
, and the optimal profit-to-go function J∗t (m, α)

given state (m, α) and t remaining periods satisfies the following Bellman equation:

J∗t (m, α) = max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

rs
ms

αs
us + En

[
J∗t−1(m + n · u, α + u)

]
, (3)

where v · u represents the componentwise product of two vectors, and the terminal condition is

J∗0 (m, α) = 0 for all states. The expectation En[·] is with respect to the demand vector n with

distribution
∏S

s=1 Pr(ns), where Pr(ns) is given by equation (1).

Note that the only link between consecutive periods in this model is the information acquired

about the observed sales ns, and that different products are only coupled through the constraint
∑S

s=1 us ≤ N . This type of problem is known as a weakly coupled DP. Clearly we must have

S > N otherwise the retailer would always include all available products. Observe also that the

summation on the r.h.s. of (3) includes the immediate expected reward associated with each product

and represents the exploitation component, while the expectation term that follows captures the

future benefits from exploration.

2.2 Model Discussion. The analogy between the stylized multiarmed bandit model and the

dynamic assortment problem introduced at the beginning of §2.1 implies a number of assumptions

about the retailer’s environment. We now comment on the most salient ones.

Firstly, we note that in the basic multiarmed bandit model model decisions become effective

immediately. This assumption seems particularly strong since design, production and transporta-

tion delays may in reality induce an implementation lag of several weeks. For this reason, in §3.1

we present an extension of our proposed policy accounting for positive lead times.

Another strong underlying assumption is that assortments may be changed at no cost. In reality,

introducing new products may entail some additional design, production and store setup costs, while
3For ease of notation, we omit the dependence of m and α on t.
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de-stocking existing products may entail additional transportation and inventory salvage costs. We

thus consider in §3.2 an extension of our basic model capturing such switching costs.

Third, customer demands for similar but distinct products in the same period are typically

not independent as assumed earlier. For example, most customers set on a specific style would

choose only one color among several available, introducing negative demand correlations across

products. In §3.3 we show how our assortment policy may be modified in order to account for such

substitution effects.

In addition, our model assumes that the underlying demand rate of each product is constant

and exogenous throughout the season, mostly for tractability reasons. While demand stationarity

may be a strong assumption in some settings, we observe that an important reason why demand

non-stationarity may arise in practice is the use of dynamic pricing. However, we assume that prices

remain constant throughout the season (the margin rs of every product s is fixed), which seems

partly justified by the figures reported in §1 showing that fast fashion retailers rely less frequently

on markdown policies, and that when they do so their price markdowns are also lower.

The store’s limited shelf space (or desire to limit in-store product variety as a result of deliberate

operational or marketing decisions) is captured by the constraint that the assortment in each period

may include at most a fixed number (N) of different products. We are thus implicitly assuming

that all products require the same shelf space. Also, while the set of all (S) candidate products

would include in practice both the products already available when the season starts and all the

variants and new products that may be designed during the season, our analysis does not recognize

that this set may change over time. The policy we develop may however still be implemented by

ignoring the impact on present decisions of future changes in the set of candidate products.

We also assume a perfect inventory replenishment process during each assortment period, so

that there are no stockouts or lost sales. Consequently, in our model realized sales equal total de-

mand, we focus for each product on assortment inclusion or exclusion as opposed to order quantity,

and inventory holding costs are ignored. We observe that assortment design seems a higher level

consideration than inventory management, partly justifying this modeling choice.4 It may still be a

strong assumptions in many settings however, and we refer the reader to Caro (2005) for a modified

problem formulation including order quantity decisions and censorship of demand information from

stockouts.

Finally, our model only considers the assortment problem faced by a single store. Considering

several stores would require a richer demand structure, specifying in particular how sales observed

in one store should impact the demand forecasts of other stores. From a mathematical perspective,
4We thank Steve Graves and an anonymous referee for useful remarks on this issue.
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the resulting DP would no longer be weakly coupled unless demands for different stores are assumed

independent, so the analysis would likely follow a very different path. Our policy might still serve

as a good starting point for that case, but this development is not addressed here.

We turn now to the analysis of the stylized bandit model described in §2.1.

2.3 Analysis.

2.3.1 Dynamic Programming Duality. In light of the computational complexity associated

with solving equation (3) exactly, our objective is not to characterize the optimal solution, but rather

find one that is near-optimal, simple and easily interpretable, so it can be later extended to capture

the additional complexities of the dynamic assortment problem. We thus use an approximate

solution method, based on Lagrangian relaxation and the decomposition of weakly coupled dynamic

programs. The underlying concepts involved are similar to those of the well-established theory of

duality for general nonlinear optimization problems (see Bertsekas 1999). The approach dates back

to at least the late 80’s with the independent work done by Karmarkar (1987) on a finite-horizon

multilocation inventory problem, and the seminal paper of Whittle (1988) on restless bandits. For

more accounts of successful applications of this methodology, see Castañon (1997), Bertsimas and

Mersereau (2004), and references therein.

Specifically, let λt(m, α) denote any function associated with period t that maps the state space

into the set of nonnegative real values. We define a dual policy to be any vector of functions λt =

(λt(·), λt−1(·), . . . , λ1(·)). For any dual policy λt and any initial state (m, α), the corresponding

profit-to-go is obtained by solving the dual dynamic program given by:

Hλt
t (m, α) = Nλt(m, α)+ max

u∈{0,1}S

S∑

s=1

(
rs

ms

αs
−λt(m, α)

)
us +En

[
H

λt−1

t−1 (m+n ·u, α+u)
]
, (4)

with Hλ0
0 (m, α) = 0 ∀(m,α). In words, a dual policy gives the price of pulling one arm for each

period and each possible state. A dual policy λt is optimal if it minimizes the r.h.s of (4) for any

initial state. Let H∗
t (m, α) be the profit-to-go of the optimal dual policy for a given state (m, α),

which can be obtained recursively using standard dynamic programming theory. Our first result is

the following proposition, which will be used later in particular when establishing an upper bound

on the optimal profit-to-go:5

Proposition 1 (Weak DP Duality) For any period t, any dual policy λt and any given initial
state (m, α): J∗t (m,α) ≤ H∗

t (m,α) ≤ Hλt
t (m, α).

As in classical duality theory, an interesting theoretical question is to determine if the first

inequality in Proposition 1 ever holds as an equality. This question is studied in Caro (2005),

where conditions are given for strong DP duality to hold.
5Results similar to Proposition 1 and Lemma 1 (to be introduced shortly) can be found in Hawkins (2003).

8



2.3.2 Problem Decomposition and Upper Bound. Solving the dual DP problem (4) seems

about as hard as solving the original primal problem (3), motivating further simplifications. Specif-

ically, we now restrict our attention to open-loop dual policies, in which the shadow price of the

coupling constraint is constant across all states for each period. Formally, an open-loop dual pol-

icy λ is a constant vector (λt, λt−1, . . . , λ1), rather than a vector of functions.6 In the following,

we will refer to the profit-to-go corresponding to an open-loop dual policy λ as Hλ
t (·) instead of

the previous notation Hλt
t (·). The next Lemma shows that with open-loop policies the dual DP

decomposes into S single-product subproblems:

Lemma 1 The profit-to-go associated with an open-loop dual policy λ = (λt, λt−1, . . . , λ1) can be
written as:

Hλ
t (m, α) = N

∑t
τ=1 λτ +

∑S
s=1 Hλ

t,s(ms, αs) (5)

where : Hλ
t,s(ms, αs) = max

{
rs

ms
αs
− λt + Ens

[
Hλ

t−1,s(ms + ns, αs + 1)
]
, Hλ

t−1,s(ms, αs)

}
(6)

and the first term in the r.h.s. corresponds to us = 1, the second one to us = 0.

It is clear from (6) that for any fixed state (ms, αs), Hλ
t,s(ms, αs) in nondecreasing with t. Also,

it can be shown that Hλ
t,s(ms, αs) is a convex and piecewise linear function of (λt, . . . , λ1) that is

strictly increasing in ms and strictly decreasing in αs. The optimal policy for this single-product

subproblem can be characterized by a collection of T threshold functions (one per period). Besides,

when the shadow prices are non-decreasing (i.e. λt ≤ λt−1), then the stopping set at period t is a

subset of the stopping set at period t− 1. Formal statements and proofs of these properties can be

found in Caro (2005).

The weak duality result (Proposition 1) implies that an upper bound for the optimal expected

profit is obtained by considering the best open-loop dual policy:

J∗t (m, α) ≤ min
λ≥0

Hλ
t (m, α), (7)

where (5) and (6) can be substituted in the r.h.s., and the associated minimization problem can

be solved with a convex nondifferentiable optimization algorithm. This method yields the upper

performance bound we will use later to assess the suboptimality of our index policy.

Note that finding the best open-loop dual policy, i.e. solving (7), is equivalent to solving

the original (primal) problem when the coupling constraint is no longer required to be satisfied

for each possible sample-path, but only on average in each period. That is, in each period the

constraint
∑S

s=1 us ≤ N is replaced by E[
∑S

s=1 us ≤ N ], where the expectation is with respect to

all possible states weighted by the probability of reaching each one of them under a given (primal)
6Open-loop policies are called deterministic multipliers and restricted Lagrangian by Castañon (1997) and Kar-

markar (1987) respectively.
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policy. This fact has been observed by several authors in various other settings (e.g. Whittle

1988, Castañon 1997), and a proof of this equivalence for the finite horizon multiarmed bandit

is available in Caro (2005). We also point out that Adelman and Mersereau (2004) provide an

alternative LP-based bound that is shown to be tighter (or not worse) than (7), but requires more

extensive computations. Finally, bounds similarly based on optimal open-loop dual policies have

been proven to be asymptotically tight in other settings (Weber and Weiss 1990).

2.3.3 A Closed-Form Dynamic Index Policy. The decomposition into single-product sub-

problems defined by (6) enables us to derive a closed-from index policy for our multiarmed bandit

problem. We proceed in two steps.

First Step: A General Framework for Index Policies (Whittle’s Heuristic)

We impose λt = λ for all t, i.e. the opportunity cost of pulling an arm is assumed to be the

same in all periods (and all states). In that case, it is easy to show that:

Hλ
t,s(ms, αs) = max

{
dλ

t,s(ms, αs), 0
}

with dλ
t,s(ms, αs) = rs

ms

αs
−λ+Ens

[
Hλ

t−1,s(ms +ns, αs +1)
]
.

(8)

Let uλ
t,s be the optimal decision in the single-product subproblem defined by (8). For any

product s, we have that limλ→0 uλ
t,s = 1 and limλ→∞ uλ

t,s = 0. Moreover, it follows from (8) that

Hλ
t,s(ms, αs) is nonnegative and nonincreasing in λ. Consequently, there must exist ηt,s ≥ 0 such

that uλ
t,s = 1 if and only if λ ≤ ηt,s. The shelf space opportunity cost threshold ηt,s is thus well-

defined and its value can be obtained by solving the nonlinear equation dλ
t,s(ms, αs) = 0 for λ.

Moreover, following the definition given in §1.2, the threshold ηt,s multiplied by t is in fact the

“Gittins index” for our version of the bandit problem.

We interpret the threshold ηt,s as the degree to which it is desirable to include product s in the

assortment when the information state is (m, α) at time t. Hence, from now on we refer to ηt,s as

the exact desirability index, where the adjective “exact” distinguishes it from the approximation

to be described shortly.

Given the previous interpretation, a natural policy for the dynamic assortment problem is to put

in the store the N most desirable products. That is, at any time t, include in the assortment the N

products with the largest desirability indices ηt,s. Such type of heuristic policy was first introduced

by Whittle (1988) for an infinite horizon model with restless bandits. The specific index he proposes

is also derived as a break-even Lagrange multiplier, and its exact computation is a complicated task

that can only be done numerically, as is the case in our model. The policy we suggest also consists

of selecting the N most desirable products, but based instead on an approximation for ηt,s that we

derive next.
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Second Step: Derivation of a Closed Form Index Formula

The derivation of our closed-form approximation for ηt,s is based on two simple ideas:

• First, we implement a 1-step lookahead (1-sla) approximation. That is, the profit-to-go Hλ
t−1,s(ms, αs)

is approximated using the single-period profit by

H̃λ
t−1,s(ms, αs) , (t− 1) ·max

{
rs

ms

αs
− λ, 0

}
. (9)

Substituting Hλ
t−1,s(ms, αs) with (9) in (8), we can then approximate dλ

t,s(ms, αs) by:

d̃λ
t,s(ms, αs) , rs

ms

αs
− λ + (t− 1) · Ens

[[
rs

ms + ns

αs + 1
− λ

]+
]

= rs
V[γs]√
V[ns]

(
(t− 1) · Ens

[[
ns − E[ns]√

V[ns]
− bλ

s

]+
]
− bλ

s

)
,

where bλ
s =

(
λ

rs
− E[γs]

)√
V[ns]
V[γs]

, E[ns] =
ms

αs
, and V[ns] = E[ns]

(
αs + 1

αs

)
. (10)

The second equality above is obtained through direct algebraic manipulation (similar to the

example on p.12 in Berry and Fristedt 1985). The moments of γs are given in §2.1.

• Second, as a negative binomial with parameters ms and αs(αs + 1)−1, ns is the sum of ms

independent geometric random variables, so we approximate it by a normal distribution with the

same mean and variance. By the Central Limit Theorem, the approximation is asymptotically

exact as ms increases. This yields:

d̃λ
t,s(ms, αs) ≈ rs

V[γs]√
V[ns]

(
(t− 1) ·Ψ(bλ

s )− bλ
s

)
, (11)

where Ψ(z) =
∫∞
z (x− z)φ(x)dx is the loss function of a standard normal.

Since Ψ(z) is continuous, positive and strictly decreasing (cf. DeGroot 1970, p. 247), the equation

(t − 1) · Ψ(zt) = zt has a unique solution for all t ≥ 1. Moreover, the values zt, which are

independent of the problem data, are increasing and concave in t – see Table 2 for the first

few numerical values of zt with four digits accuracy. It is easy to verify that the previous 1-

sla approximation (9) underestimates the profit-to-go. Therefore, the values of zt are rather

conservative when t is large. In the numerical section §4.2 we show a possible amendment.

t 1 2 3 4 5 6 7 8

zt 0.0000 0.2760 0.4363 0.5492 0.6360 0.7065 0.7658 0.8168

Table 2: First values of zt.

Recall that the exact desirability index ηt,s comes from solving the equation dλ
t,s(ms, αs) = 0

for λ. If instead we use the approximation d̃λ
t,s(ms, αs) given by (11), then we obtain the following

approximate expression for ηt,s:
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ηCG
t,s , rs

(
E[γs] + zt

V[γs]√
V[ns]

)
(12)

Even though it is an approximation, we still refer to equation (12) as the desirability index. To

avoid any confusion with the true value ηt,s, we will refer to the latter in the following as the exact

desirability index.

Note that the first term in the r.h.s of (12) favors exploitation of the current demand forecast

E[γs], while the second term favors exploration, since it is increasing in both the variance of γs (i.e.

the uncertainty of that forecast) and the number of remaining periods (through zt). Intuitively,

when uncertainty about demand for product s (captured by V[γs]) is high, there is more benefit

to learn from including s because of the upside potential from future gains. Furthermore, the last

term in equation (12) shows that our policy only favors such learning strategy to the extent that the

uncertainty associated with the demand rate estimate (V[γs]) is high relative to the total uncertainty

on demand (V[ns]), which also includes the structural uncertainty associated with the underlying

stochastic (Poisson) demand process. Because only the first type of uncertainty can be resolved,

this feature effectively amounts to separating out the stochastic noise introduced by the intrinsic

demand randomness when assessing the desirability of learning. Because resolving the estimation

uncertainty does take some time however, one may not be able to benefit from this learning with

only few periods left before the end of the season. That is, one should increasingly favor exploitation

over exploration as the remaining planning horizon (and opportunity for leveraging exploration)

shortens, which is captured by the decrease with t of the multiplicative factor zt in (12). Finally, the

fact that our policy depends on only the first two moments of the demand rates γs is a desirable

feature from an implementation standpoint. In particular, the estimation procedure based on

experts opinions described by Fisher and Raman (1996) could be used to estimate the initial

priors.

Alternative approaches that also provide closed-form approximations similar to equation (12)

have been described in the literature. The development is typically for infinite horizon bandits but

can be adapted to our case. In particular, Ginebra and Clayton (1995) develop a formula assuming

a priori that the exact desirability index ηt,s is normally distributed, and Brezzi and Lai (2002)

obtain another closed-form expression using a diffusion approximation. The policies resulting from

the last two papers are compared to ours in the numerical experiments (see §4.2).

3. Extensions for a Dynamic Assortment Problem

We now present in §3.1, §3.2 and §3.3 some extensions of our proposed policy for the stylized

multiarmed bandit model to more realistic environments. As will soon be clear all three extensions
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may easily be performed simultaneously, although for clarity of exposition we only describe here

marginal modifications relative to our proposed policy defined in (12).

3.1 Assortment Implementation Lead Time. We now assume a lag ` between the period

t when an assortment decision is made and the period t − ` at which this assortment is actually

implemented in the store. Although this implementation lag ` arises in practice from delays asso-

ciated with all process steps between design and storage on the shelf, in the following we will only

refer to ` as the “lead time”.

The state space in the DP model must now be extended in order to keep track of past decisions

yet to be implemented. Specifically, the state is now given by the vector (vt, . . . ,vt−`+1, m, α),

where vt, . . . , vt−`+1 are the assortments that will be offered from the current period t down to

period t − ` + 1, and (m, α) are the distribution parameters of the beliefs about demand at time

t. The decision made at time t ∈ {T + `, . . . , ` + 1} is the assortment that will be implemented at

time t − `, and the first ` assortments vT , . . . ,vT−`+1 must all be determined upfront (i.e. before

the season starts at time T ) with the only knowledge of the initial prior on demand. The optimal

profit-to-go for a given initial state can be then obtained through the following recursion:

J∗t (vt, . . . , vt−`+1,m, α) =
S∑

s=1

t∑

τ=t−`+1

rs
ms

αs
vτ
s + W ∗

t (vt, . . . ,vt−`+1, m,α) (13)

where W ∗
0 = . . . = W ∗

` = 0 for any state, and W ∗
t (.) satisfies for t > `:

W ∗
t (vt, . . . ,vt−`+1, m, α) = max∑S

s=1 us≤N

S∑

s=1

rs
ms

αs
us+En

[
W ∗

t−1(v
t−1, . . . , vt−`+1,u, m+n·vt, α+vt)

]

(14)

The summation in the r.h.s. of (13) shows explicitly that the expected profit of the next `

periods cannot be affected. Intuitively, the existence of a positive lead time slows the learning

process down (since any learning about demand may only have an impact ` periods later), and

the number of remaining learning periods at t effectively reduces to t − ` − 1. Note that if ` = 0

then J∗t (m, α) = W ∗
t (m, α) and (14) reduces then to the recursion (3) studied in the previous

subsections. As is clear from the expansion of the state space by a factor of 2S×`, the existence of a

positive lead time increases the complexity of our dynamic program. However, the duality concepts

introduced earlier still apply and may be used to generate the following upper bound for equation

(14):
W ∗

t (vt, . . . ,vt−`+1, m, α) ≤ min
λ

N
t−∑̀

τ=1

λτ +
S∑

s=1

Hλ
t,s(v

t
s, . . . , v

t−`+1
s ,ms, αs),

where Hλ
0,s = . . . = Hλ

`,s = 0 and for t > `:
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Hλ
t,s(v

t
s, . . . , v

t−`+1
s ,ms, αs) = max

{
rs

ms
αs
− λt−` + Ens

[
Hλ

t−1,s(v
t−1
s, . . . , v

t−`+1
s , 1,ms + ns · vt

s, αs + vt
s)

]
,

Ens

[
Hλ

t−1,s(v
t−1
s, . . . , v

t−`+1
s , 0,ms + ns · vt

s, αs + vt
s)

]}
.

Moreover, we can invoke arguments similar to the ones used in §2.3.2 to obtain the following

upper bound for the maximization of J∗T (vT , . . . , vT−`+1, m, α) with respect to (vT , . . . ,vT−`+1)

subject to the corresponding binary and shelf space constraints:

min
λ

N
T∑

τ=1

λτ +
S∑

s=1

max
vT
s ,...,vT−`+1

s
∈{0,1}

( T∑

τ=T−`+1

(
rs

ms

αs
− λτ

)
vτ
s + Hλ

t,s(v
T
s , . . . , vT−`+1

s ,ms, αs)
)

, (15)

which provides the upper bound that we will report in our numerical experiments for the perfor-

mance of various policies simulated in environments with a positive lead time.

Finally, our proposed policy may be heuristically adapted by introducing the two following

modifications to the desirability index ηCG
t,s given by equation (12):

1. First, we substitute the term zt in (12) with zL(t), where L(t) = max{t − 2`, 1}. The rationale

is that in period t the retailer must decide the assortment of period (t− `), and from then on he

has ` fewer periods to learn about demand. In particular, if ` ≥ t−1
2 then zL(t) = 0 so that the

adapted index policy coincides then with the greedy policy (see §4.2.1), which can be shown to

generate optimal actions in that case. Note that if ` ≥ T − 1 then no learning is possible and

the best the retailer can do is to implement the optimal static assortment for the next T periods.

This case would correspond to the ”traditional retailer” described earlier in §1.1.

2. The second modification in (12) concerns the variance V[γs]. Recall from section §2.1 that the

priors become more accurate as more sales are observed. Hence, the prediction made at time

t for the variance of γs at time t − ` must take into account whether product s is committed

as part of the assortment in any of the ` periods in between. Specifically, we use the following

expression for the variance of γs:

V[γs] =
ms + ms

αs

t∑
τ=t−`+1

vτ
s

(αs +
t∑

τ=t−`+1

vτ
s )2

, (16)

where as before
∑t

τ=t−`+1 vτ
s is the number of times that product s is included in the assortment

during the interval of ` periods starting with period t. Note that ms and αs are thus replaced

by a prediction of what their values will be at time t − `, considering how many times product

s will have been part of the assortment by then. Intuitively, substitution (16) captures the
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predicted gain in information quality (or equivalently reduction in prior variance) resulting from

the assortments already decided but not yet implemented. As a consequence of (16), the second

term in the desirability index formula (12) now decreases with the sum
∑

τ vτ
s , reflecting that

when designing the assortment for period t− `, the incentive to explore the demand for product

s reduces when it already has a large presence in the next ` assortments.

3.2 Switching Costs. We now consider the case where an additional cost ωt,s is incurred

whenever a product s not included in the assortment in period t + 1 becomes part of it in period

t (i.e. the following period). Assuming with seemingly little loss of generality that the profit and

cost parameters are such that the retailer will always use all available shelf space, the parameter

ωt,s may also include the cost associated with removing the product replaced by product s in the

assortment (the portion of ωt,s accounting for such removal cost would be product-independent

however).

In the presence of such switching costs, the state space of the DP must be extended so as to keep

track of the assortment vt+1 implemented in the previous period (with vT+1 = 0). The Bellman

equation thus becomes:

J∗t (vt+1, m,α) = max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

(
rs

ms

αs
− ωt,s(1− vt+1

s )
)
us +En

[
J∗t−1(u, m + n ·u, α + u)

]
. (17)

As in the previous subsection, the duality concepts developed in §2.3.1 and §2.3.2 still apply, and

in particular an upper bound on the optimal profit-to-go can be computed from the following

single-product subproblem:

Hλ
t,s(v

t+1
s ,ms, αs) = max

{
rs

ms

αs
−ωt,s(1−vt+1

s )−λt+Ens

[
Hλ

t−1,s(1,ms+ns, αs+1)
]
,Hλ

t−1,s(0,ms, αs)

}

(18)

Finally, we can heuristically adapt our proposed policy so it accounts for switching costs through

the following modification of the desirability index formula (12):

ηCG
t,s = rs

(
E[γs] + zt

V[γs]√
V[ns]

)
− ωt,s(1− vt+1

s )
t

, (19)

where the switching cost ωt,s, amortized over t periods, is subtracted if product s was not part

of the previous assortment (vt+1
s = 0). In that situation, it is intuitively clear that the presence

of a switching cost makes it less attractive to include product s, and that the desirability index

ηCG
t,s should then be reduced somehow. However, attributing the switching cost in its entirety

to the period in which it is incurred would ignore the fact that the product might stay in the

assortment for more than one period and so the cost should be shared. Equation (19) specifically

amortizes the additional cost over t periods, an accounting rule that would be correct if the product
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remained in the assortment until the end of the season. Since this is not always the case, that rule

underestimates the cost of introducing products in the assortment. However, we have found that

such cost underestimation is balanced by the underestimation of the future benefits from learning

due to the limited lookahead approximation (see §2.3.3), so that in the end policy (19) performs

relatively well (see §4.4).

3.3 Substitution Effects. Designing and analyzing a dynamic assortment model where learn-

ing concerns not only the demand rates of individual products but also their correlation structure is

a challenging task. Even if a Bellman equation similar to (3) could be written for such a model, the

corresponding DP would no longer be weakly coupled because of the many relationships between

different products introduced by the correlation structure, so that our duality-based decomposition

approach would likely break down.

An alternative (admittedly simpler) design path, which we now develop, is to assume that

the correlation structure across products is known (or can at least be estimated upfront then

passively updated), while the individual demand rates of individual products must be estimated

dynamically as before. In the Marketing literature substitution effects are often captured through

parametric models like the multinomial logit (see Ben-Akiva and Lerman 1985). However, we adopt

a substitution model similar to Smith and Agrawal (2000) and Kök and Fisher (2004). That is,

we use the concept of the original demand for each product, defined as the demand that would be

observed for that product if all the other products were also included in the assortment. In addition,

we also assume that the retailer knows the probability qis that a customer switches to product s

given that he originally wanted product i but it was not available in the assortment – as in the

last two papers cited, we assume that each customer only makes one such substitution attempt.

Defining the (total) substitution probability as Li ,
∑

s6=i qis, note that the case Li < 1 would

capture customers leaving without buying any substitute to product i. Our dynamic index policy

defined by (12) can then be adapted heuristically by performing the two following modifications:

1. The information updating rule must be modified to reflect that observed sales for a given product

may include some to customers who only bought it because their favorite choice was not part of

the assortment. Let u ∈ U represent the assortment that was available in the store at period t,

s be a product that was part of the assortment (i.e. us = 1), and ns be the sales observed for s.

An estimate of the original sales ñs of product s is then given by:

ñs = ns ·
(

E[γs]
E[γs] +

∑
i6=s qisE[γi](1− ui)

)
. (20)

In words, the fraction of original observed sales is estimated as the ratio between the expected

contribution of the original demand for product s and the total expected demand considering

16



substitution. The information state for each included product s is then updated from ms to

ms + ñs, and αs is updated to αs +1 as before. The demand estimates for products not included

in the assortment remain unchanged in this proposal, although an alternative approach could

consist of also updating priors based on the fraction of sales that is discarded through equation

(20).

2. The index ηCG
t,s derived in §2.3.3 is a measure of the desirability of including each product in the

assortment, defined as the opportunity cost of the corresponding shelf space. In the presence of

substitutions, the desirability of including a product must also take into account whether it is a

good substitute for other products not included in the assortment. The selection of the N most

desirable products becomes then a combinatorial problem, which we propose to address through

the following quadratic integer program (QIP):

max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

(
ηCG

t,s + rs

∑

i6=s

qisE[γi](1− ui)
)
us. (21)

In words, the objective in (21) evaluates the profitability of including each product s in the

assortment at t by adding to the initial desirability index ηCG
t,s the expected profits following from

substitutions to product s from all products i not included in the assortment (represented by

the inner summation term). This formulation thus still captures the essential trade-off between

exploration and exploitation, but corrects the exploitation term for the expected sales resulting

from substitutions. Note that when substitution effects are ignored (i.e. qis = 0 ∀i, s), solving

(21) results in our original index policy.

4. Numerical Experiments

We pursue two goals with our numerical experiments: (i) evaluate the policies proposed in this paper

for the basic multiarmed bandit model considered (cf. §4.2) and its extensions to environments

with an assortment implementation lead time (cf. §4.3), switching costs (cf. §4.4) and substitution

effects (cf. §4.5); and (ii) understand the factors that most sensitively affect performance.

4.1 Methodology. There seems to be two accepted methodologies for evaluating policy per-

formance in environments involving learning. The first one, known as the Bayesian approach

and adopted for example in Aviv and Pazgal (2002), relies on the assumption that the predictive

Bayesian distribution updated in each period (in our case, the negative binomial distribution (1))

is correct. In simulations, actual demand in each period is generated from that negative binomial

distribution (as opposed to a Poisson distribution), and those experiments do not require the spec-

ification of any underlying demand rates. These experiments thus allow to specifically focus on

the quality of the index policy as a solution to the self-contained dynamic program given by the

Bellman equation (3). This is the approach we follow in §4.2, §4.3 and §4.4.

17



The second methodology, known as the frequentist approach and adopted for example in Bertsi-

mas and Mersereau (2004), relies on the specification of real underlying distribution parameters (in

our case, the demand rates γs). In simulations, actual demand for each product in each period is

generated from the corresponding (Poisson) distributions. These experiments thus allow to specif-

ically characterize how the relative performance of different policies may be affected by the quality

of the information initially available (e.g. accuracy and bias). This is the method we follow in §4.5,

since we have not rigorously formulated a Bayesian learning model or DP for the environment with

substitution effects. See Caro (2005) for the frequentist version of §4.2 and §4.3.

The simulation and upper bound optimization code we used was written in C, and is available

from the first author upon request. In all simulation experiments, we ran a number of replications

sufficient to obtain a relative estimation error smaller than 0.5% for a confidence level of 95%.

When computing the duality-based upper bounds mentioned in §2 and §3, the support of the

negative binomial distribution was truncated to exclude values with probability lower than 10−6.

Solutions to the corresponding non-differentiable minimization problem were computed using the

Nelder-Mead simplex method. While this algorithm is not generally guaranteed to converge to an

optimal solution (Lagarias et al. 1998), it does maintain a best solution found to date, which in our

case still yields a valid bound (this follows from weak DP duality). One iteration of this method

could take up to several minutes for the most complicated instance described below (T = 40 and

V[γs] = 100). In some cases we tried different starting points, and report then the best bound we

have found.

4.2 Basic Multiarmed Bandit Model.

4.2.1 Experiments Description. For this first set of experiments, we used a data set with

N = 30, S = 720 and T ∈ {10, 20, 40}. The unit profits rs used throughout were obtained through

one set of S independent draws from a uniform distribution U [2, 8]. We considered identical initial

priors across all products to represent the case when the retailer has poor initial information. The

results with different priors are qualitatively the same but more difficult to interpret. We set

the initial expected demand rate E[γs] equal to 10 units per period, but tested three scenarios

corresponding to an initial prior variance V[γs] ∈ {5, 50, 100}.7

We were interested in comparing the performance of our proposed policy with that of others

described in the literature for this problem, and also assess the impact of the various approximations

made when deriving (12). We thus considered the following policies:

CG1−sla
norm (1-sla and normal approximations): This is the basic policy derived in §2.3.3 that relies

on the desirability index formula (12).
7These scenarios are equivalent to (ms, αs) equal to (20, 2), (2, 1/5) and (1, 1/10) respectively.
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CGregr
norm (normal approximation and linear regression): This modified version of the previous policy

was designed to assess the impact of the underestimation of future profits associated with the

1-sla approximation. The amendment we have explored consists of replacing the factor (t − 1)

appearing in both equation (9) and the equation zt = (t− 1) ·Ψ(zt) defining zt by a function of

t − 1 increasing faster than linearly, specifically ν(t) , a(t − 1)b. In order to find good values

for parameters a and b, we have first computed numerically the exact desirability index ηs,t for

a small sample of instances that we can then extrapolate. In particular, we chose t = 3, . . . , 40

and (ms, αs) = (1, 1/10), (2, 1/5), (10, 1), and (20, 2). Secondly, we have fitted these exact values

to the regression model:

rs
ms

αs
− ηs,t(ms, αs) + a(t− 1)b

(ms

α2
s

)c
· Ens

[[
rs

ms + ns

αs + 1
− ηs,t(ms, αs)

]+
]

= 0, (22)

where ηs,t(ms, αs) are the independent variables and (a, b, c) the parameters to be determined.

Note that (22) can be converted to a linear regression model through a simple logarithmic transfor-

mation. The fit was very good (R2 = 0.976) and all parameters were significant, with a = 1.868,

b = 1.212, and c = −0.262. The factors zt used in the desirability index formula (12) were finally

replaced with the (larger) solutions z̃t of the modified equation z̃t = ν(t) ·Ψ(z̃t).

CG1−sla
neg.bin (1-sla approximation only): This modified version of our earlier policy CG1−sla

norm consists

of computing numerically the indices by solving in each period and for each product s the relevant

nonlinear equation obtained from (10) when ns is no longer assumed to be normally distributed,

but rather follows the original negative binomial distribution defined in (1).

GC (Ginebra-Clayton policy): This policy selects in each period the N products with the highest

values of the indices ηGC
t,s calculated dynamically with the formula:

ηGC
t,s , rs

(
E[γs] + k

√
V[γs]

)
, (23)

where k is a constant parameter. Equation (23) is the natural adaptation to our setting of

the heuristic index formula developed by Ginebra and Clayton (1995) for the response surface

bandit. Note that its performance is sensitive to the value chosen for parameter k, which must be

calibrated somehow. To enable a meaningful comparison, we have performed a simulation-based

linear search in k for each data set considered, and report the results corresponding to the optimal

choice of k thus identified.

BL (Brezzi-Lai policy): This dynamic index policy relies on the closed-form approximation of

Gittins index described in Brezzi and Lai (2002). Because it is derived for a discounted infinite

horizon model, we adapt it to our finite horizon setting by using the natural correspondence

β = 1 − 1/t, where β is the discount factor appearing in their original formula. The resulting

index formula is:
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ηBL
t,s , rs

(
E[γs] + ψ

( V[γs]
log( t

t−1)E[γs]

))
, (24)

where ψ(·) is the increasing function with ψ(0) = 0 defined in p. 93 in Brezzi and Lai (2002).

GDY (Greedy policy): This policy consists of selecting in each period the N products with the

highest immediate expected profit rsE[γs] (thus greedily favoring exploitation over exploration).

Note that it does involve learning despite its myopic nature, since priors are still updated in each

period with observed demand, only the impact of assortment decisions on learning is ignored. As

a result, several authors (e.g. Aviv and Pazgal 2002) also refer to this policy as passive learning.

Note that we are only including in this benchmark study policies from the literature that can

be implemented using closed form expressions. The main reason for this is that it is not clear

at all how other policies can be adapted to our specific environment and furthermore extended

to include lead times, switching costs and/or substitution effects. These considerations led us to

exclude in particular the policies described in Anantharam et al. (1987) and Whittle (1988). One

could also think of policies based on the dual upper bound (7). However, the long running time

currently required to calculate this upper bound would jeopardize any practical implementation

of such policy, and assessing its performance through simulation would be even more prohibitive.

Despite our focus on the narrow set of policies just defined, we observe that the small suboptimality

bounds reported in the next section suggest that the performance superiority of any excluded policy

should be small in most instances, and in practice well within the range of data estimation errors.

4.2.2 Results. Table 3 reports under the heading DualBnd the upper bound for total expected

profit derived using DP duality (see §2.3.1) divided by the number of periods, and the simulated

performance gap of each policy relative to that bound. For each data set, we highlight in bold the

suboptimality bound of the best policy.

V[γs] T GDY BL CG1−sla
norm GC CG1−sla

neg.bin CGregr
norm DualBnd

5 10 0.40% 0.07% 0.15% 0.13% 0.08% 0.06% 2608.05

20 0.86% 0.31% 0.25% 0.23% 0.29% 0.14% 2693.97

40 3.28% 2.06% 1.90% 1.78% 1.83% 1.68% 2819.91

50 10 4.27% 0.37% 0.59% 1.20% 0.42% 0.06% 3656.37

20 9.20% 1.35% 1.33% 1.13% 0.64% 0.46% 4133.26

40 16.15% 3.75% 4.00% 3.61% 3.14% 2.87% 4664.85

100 10 6.58% 2.79% 0.91% 1.71% 0.42% 0.24% 4311.70

20 13.83% 4.57% 2.75% 2.82% 1.80% 1.46% 5130.00

40 21.14% 3.91% 4.33% 3.20% 2.52% 2.41% 5883.58

Average 8.41% 2.13% 1.80% 1.76% 1.24% 1.04%

Max. 21.14% 4.57% 4.33% 3.61% 3.14% 2.87%

Table 3: Performance benchmark for the stylized multiarmed bandit problem.
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Our main observations about these results are the following:

• A first legitimate comparison involves policies GDY , BL and CG1−sla
norm , the only ones that are

readily implementable across all data sets using only closed-form expressions. GDY performed

worst, and CG1−sla
norm slightly outperformed BL, although this is not statistically significant.

• A second natural comparison involves policies GC and CGregr
norm, which are still closed-form but

both require some computation at the outset before implementation. Calibrating factor k of GC

required a simulation-based search for each data set. On the contrary, computing the finite time

horizon factors z̃t of CGregr
norm involved calculating a sample of 152 exact desirability indices and

then performing a linear regression. Note however that this last procedure was only done once

for all data sets shown in Table 3. Moreover, policy CGregr
norm outperformed GC in all 9 data

set tested. This seems to indicate that policy CGregr
norm dominates policy GC not only in ease of

computation, but also in terms of performance.

• Policy CG1−sla
neg.bin also performed consistently better than CG1−sla

norm . These results suggest that

both the normal and the 1-sla approximations mentioned in §2.3.3 result in a small but clearly

measurable loss of performance. In addition, the performance loss associated with the 1-sla

approximation seems slightly larger than that resulting from the normal approximation.

• The fact that the average relative suboptimality bound of the best policy is 1% (with a maximum

of 2.87%) over all scenarios considered not only shows the good performance of that policy, but

it also suggests that the duality-based upper bound (7) used to compute it is quite tight.

• Finally, we also observe that all active learning policies outperform the greedy policy GDY , and

that their relative superiorities increase with the number of periods and initial prior variances.

Our interpretation is that larger initial prior variances and larger numbers of periods increase

the opportunities to leverage demand learning. On the contrary, for data sets with particularly

short horizons (T < 6), we have observed that the greedy policy performs nearly identically to

all other policies. Other studies involving Bayesian learning models (e.g. Aviv and Pazgal 2002,

Brezzi and Lai 2002) report similar findings.

4.3 Assortment Implementation Leadtime.

4.3.1 Experiments Description. For this second series of experiments we used the same data

sets as described in §4.2.1, but considered an assortment implementation lead time ` equal to 5

periods. In addition to CG1−sla
norm and GDY (see §4.2.1), we also simulated the following policies:

CG-LT : Our proposed policy in environments with an assortment implementation lead time, ob-

tained by applying to ηCG
s,t the two modifications described at the end of §3.1;
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CG-LTzt (resp. CG-LTV ar): The policy obtained by only applying to our basic dynamic index

policy CG1−sla
norm the first (resp. second) modification described in §3.1, that is a correction of the

weighting factor zt for the remaining horizon (resp. a correction of the predicted prior variance

after ` periods).

4.3.2 Results. Table 4 reports the duality-based upper bound (still noted DualBnd) on the

expected profit per period provided by (15), and the simulated performance gap of all policies just

mentioned relative to that bound.

V[γs] T GDY CG1−sla
norm CG-LTzt CG-LTV ar CG-LT DualBnd

5 10 1.09% 1.15% 1.09% 1.47% 0.60% 2456.12

20 3.32% 3.46% 3.25% 1.88% 0.76% 2608.58

40 4.96% 4.36% 4.25% 2.08% 1.61% 2753.84

50 10 8.89% 9.69% 8.89% 11.54% 0.11% 2864.40

20 24.93% 26.31% 24.37% 14.82% 3.90% 3945.55

40 27.35% 26.37% 24.88% 9.27% 4.20% 4589.80

100 10 15.60% 16.90% 15.60% 18.57% 3.46% 3206.80

20 33.18% 34.76% 32.40% 19.10% 4.32% 4787.70

40 34.70% 33.76% 31.97% 10.52% 3.89% 5754.43

Average 17.11% 17.42% 16.30% 9.92% 2.54%

Max. 34.70% 34.76% 32.40% 19.10% 4.32%

Table 4: Performance benchmark in environments with a positive lead time (` = 5).

The observations we draw from Table 4 are the following:

• Our proposed policy CG-LT still performs close to optimal in these new (admittedly more

complex) environments. Its average suboptimality bound averages 2.54% with a maximum of

4.32% over the range of scenarios considered. As before, these numbers also indicate that the

duality-based bound (15) is relatively tight.

• Both modifications made to policy CG1−sla
norm when constructing policy CG-LT result in clearly

measurable and, particularly when combined, very significant performance improvements, as

evidenced by the relative standings of the policies CG1−sla
norm , CG-LTzt , CG-LTV ar and CG-LT .

With positive implementation leadtimes it thus seems important to take into account the resulting

reduced potential for leveraging information (modification of zt), and even more important to

appropriately change predictions of future information quality (modification of V[γs]).

• The relative performance of the greedy policy deteriorates with the lead time, as seen by comparing

the suboptimality of GDY in Table 4 (where ` = 5) with that shown in Table 3 (where ` = 0).

This is because the greedy policy in this setting not only ignores the future benefits from learning,

but also disregards the ` assortments that are on their way to the store.
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4.4 Switching Costs.

4.4.1 Experiments Description. For these experiments we considered a high switching cost

scenario with ωt,s = ω = 50, a low switching cost scenario with ωt,s = ω = 20, and data sets

otherwise identical to those described in §4.2.1. In addition to CG1−sla
norm and GDY (see §4.2.1), we

simulated the following policies:

CG-SC: Our proposed dynamic index policy for this environment, characterized by equation (19);

CG-SCω: Same as the previous policy, except that the total switching cost ω(1−vt+1) is subtracted

in the desirability index formula (19) instead of the amortized one.

GDY -SC: The adaptation of the greedy policy to this environment including in the assortment

the N products with the highest value of the greedy index rsE[γs] − ω(1−vt+1
s )

t , which predicts

immediate profits corrected for amortized switching costs as in equation (19), but omits the

learning term.

4.4.2 Results. Table 5 reports the duality-based upper bound on expected profit per period,

now computed from (18) but still noted DualBnd, and the simulated performance gap of the policies

just described relative to that bound.

V[γs] T ω GDY GDY -SC CG-SCω CG1−sla
norm CG-SC DualBnd

5 20 20 0.60% 0.31% 4.00% 1.24% 0.60% 2590.55

40 20 2.81% 2.83% 6.37% 2.66% 2.33% 2752.98

5 20 50 1.79% 0.10% 7.22% 4.57% 1.32% 2478.31

40 50 2.84% 2.43% 12.47% 4.66% 3.18% 2674.06

50 20 20 7.11% 7.24% 1.56% 0.74% 0.40% 3946.96

40 20 14.44% 14.49% 4.71% 3.30% 3.35% 4519.96

50 20 50 4.85% 5.43% 6.58% 1.06% 0.17% 3716.61

40 50 11.99% 12.19% 9.96% 2.53% 2.47% 4319.20

100 20 20 12.10% 12.15% 2.75% 2.18% 2.05% 4926.07

40 20 19.41% 19.27% 4.06% 3.23% 3.27% 5699.98

100 20 50 11.04% 11.64% 7.05% 3.19% 2.81% 4714.05

40 50 18.49% 18.66% 8.48% 3.69% 3.44% 5550.45

Average 8.96% 8.89% 6.27% 2.75% 2.12%

Max. 19.41% 19.27% 12.47% 4.66% 3.44%

Table 5: Performance benchmark in environments with a switching cost.

We make the following observations about the results shown in Table 5:

• Policy CG-SC is near-optimal, and both its average and worst-case performance are superior to

that of all other policies considered.

• The fact that the policy CG-SCω is dominated by our proposed policy CG-SC confirms that

switching costs should not be attributed exclusively to the period in which the product is intro-

duced, as discussed in §3.2.
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• When the initial variance is small (V[γs] = 5), the greedy policy with amortized switching costs

(GDY -SC) performs slightly better than CG-SC, particularly when switching costs are high

(ω = 50). Our interpretation is that in these scenarios the underestimation of the switching costs

associated with the amortized term ω(1−vt+1)
t in (19) comes into play (see the discussed at the end

of §3.2). In this situation, ignoring the (relatively small) future benefits from learning (second

term of (19)), as in the greedy index formula characterizing GDY -SC, provides an appropriate

compensation for that bias.

• When the initial variance is high (V[γs] ∈ {50, 100}), the horizon length is large (T = 40) and

the switching costs are low (ω = 20), the original index policy CG1−sla
norm , which ignores switching

costs, performs slightly better than the modified one CG-SC. The significant relative superiority

of CGregr
norm over CG1−sla

norm seen in Table 3 for the corresponding environments (V[γs] ∈ {50, 100},
T = 40) show that the underestimation of the learning benefits associated with the term zt used

by both CG1−sla
norm and CG-SC, is particularly significant then. An even more drastic compensation

is then needed to correct that bias, which ignoring the switching costs altogether, as CG1−sla
norm

does, provides. Note however that even in those cases the incremental improvement of the original

index policy CG1−sla
norm upon the modified one CG-SC is rather small.

4.5 Substitution Effects.

4.5.1 Experiments Description. For these experiments we considered a data set with T = 24,

S = 144, N = 6, unit profits rs were generated upfront through S independent draws from distribu-

tion U [2, 6] as before, and products were indexed from 1 to S by decreasing unit profit values. We

used the frequentist approach as described in §4.1, and used a single set of real underlying rates γs

for the original demand that were independently drawn upfront from a Gamma distribution with

parameters (1, 1/10). The actual sales resulting from this original demand and the assortments im-

plemented were simulated according to the substitution structure defined in §3.3. More specifically,

following Smith and Agrawal (2000) we assumed that Li = L for all i and considered the following

three scenarios:

One-Item Substitution: A particular product (s = 80 in our experiments) is the substitute by

default for all other products, assuming substitution does occur;

Random Substitution: When a first original product choice is not available, all other products

may serve as substitutes with equal probability;

Adjacent Substitution: Customers consider as possible substitutes, with equal probability, the

two products that have the closest unit prices relative to their original choice. The two products

with the lowest and highest unit prices only have one possible substitute.8

8We assume here for ease of interpretation that all products have the same cost, so that unit profits correspond
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Figure 2: Substitution structures considered.

Figure 2 shows the corresponding substitution matrices (qis)(i,s)∈S2 , which are completely char-

acterized by the value of the total substitution probability L. Finally, we considered identical initial

priors characterized by (E[γs],V[γs]) = (10, 100) or equivalently (ms, αs) = (1, 1/10).

In addition to a basic performance evaluation, we were interested in assessing the relative impact

of the new prior update rule (20) and the quadratic IP (21) described in §3.3. In addition to policy

CG1−sla
norm (which essentially ignores substitution effects), we thus simulated the following policies:

CG-SUB: Our proposed policy here, obtained by modifying CG1−sla
norm as described in §3.3;

CG-SUBNU (resp. CG-SUBQIP ): The policy obtained by only applying to CG1−sla
norm the first (resp.

second) modification described in §3.3. That is, CG-SUBNU uses the new update rule (20) but

does not otherwise account for substitutions when comparing products, while CG-SUBQIP uses

the original update rule (2), but accounts for substitutions by solving the quadratic IP (21);

GDY -SUB: Same policy as CG-SUB, except that the linear term in the objective function of the

QIP (21) is given by the immediate expected return rsE[γs] instead of the desirability index ηCG
t,s .

4.5.2 Results. Figures 3 (a)-(c) show the profit per period of the policies just mentioned relative

to the full information upper bound obtained by substituting ηCG
t,s with rsγs and mi

αi
with γi in (21).

• In the one-item substitution case (Figure 3 (a)), the performances of CG-SUB and CG-SUBQIP

are identical and very close to optimal (within 5.2% of the full information bound on average

for L > 0.1). Policy GDY -SUB also performs well when the substitution probability is not too

low. In contrast, CG-SUBNU and CG1−sla
norm perform identically and very poorly. These results

show that the key performance driver of policies in the one-item substitution case is whether

they include in all assortments the product serving as a universal substitute (the QIP supporting

CG-SUB, CG-SUBQIP and GDY -SUB ensures this). Policies CG-SUBNU and CG1−sla
norm are

unlikely to include the universal product because it has the 80-th unit price and the assortment

size is N = 6 by design. The low benefit associated with learning, either active (CG-SUB)

to unit prices. More generally, this substitution structure may be considered for any other attribute defining some

”proximity” among products.
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Figure 3: Performance benchmark with (a) one-item; (b) random; and (c) adjacent substitution.

or passive (GDY -SUB), is also evidenced here by the proximity of both policies to the full

information upper bound.

• In the random substitution case (Figure 3 (b)), policy CG-SUB now performs identically to CG-

SUBNU and policy CG-SUBQIP performs identically to CG1−sla
norm , with the former pair of policies

clearly outperforming the latter for L > 0.2. Contrary to the previous case, the most significant

performance driver in this environment is the ability to accurately estimate the original demand

rates. This is done effectively by polices CG-SUB and CG-SUBNU since they update the state

information using the sales estimate ñs given by equation (20). Note also that in this case active

learning is relevant since policy CG-SUB outperforms its greedy counterpart GDY -SUB.

• The one-item and random substitution cases represent two extremes among all substitution mod-

els. They each necessitate only one of the two policy modifications described in §3.3. In contrast,

the adjacent substitution case (Figure 3 (c)) seems a more complex and realistic structure. Specif-

ically, both the combinatorial complexity (addressed by solving the QIP (21)) and the learning

implications of the substitution model (captured by the new updating rule (20)) are significant,

as evidenced by the superiority of CG-SUBQIP and CG-SUBNU over CG1−sla
norm , and that of CG-

SUB over all other policies for L ≥ 0.3. The poor performance of GDY -SUB indicates that it

is also important to consider the implications of assortment decisions on the learning process.
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5. Conclusion

Our main goal in this paper was to shed some light on the dynamic assortment problem faced by

fast fashion retailers. As a first step we have considered a very stylized version of this problem,

amounting to a finite horizon multiarmed bandit model with Bayesian learning. Using DP duality,

we were able to develop both the profit upper bound (7) and the approximate policy (12) for this

first version of the problem. While the basic form CG1−sla
norm of that policy seems to perform close to

other comparable heuristics described in the literature and within 4% of optimality for all the data

instances we considered, its improved form CGregr
norm does exhibit superior performance. Perhaps

more importantly, both versions are closed-form and particularly easy to implement and interpret.

This last feature enabled us, as a second step, to extend this policy to more realistic versions

of our motivating dynamic assortment problem accounting for implementation delays, switching

costs and demand substitution effects. Our numerical experiments showed that the performance of

these policy extensions was particularly encouraging, and helped uncover some important drivers

of that performance. An overarching theme was the high benefit of accounting for the impact

of assortment decisions on future learning, i.e. the advantage of active over passive learning.

In environments with long assortment implementation lead times, we observed the importance of

recognizing the resulting reduced potential for leveraging information, and appropriately predicting

the quality of future information. We also observed the importance of appropriately recognizing

the benefits in future periods of incurring switching costs in the current one. Finally, we found that

the probabilistic structure of demand substitutions impacted the relative importance of addressing

the resulting combinatorial complexity and the implications of substitutions on learning.

We believe that while this work clearly demonstrates the potential of using bandit models to

address dynamic assortment problems, it only constitutes a building block towards truly operational

systems. In particular, the possibility of coordinating assortment decisions across multiple stores

facing similar demand patterns appears to be an exciting opportunity, both in practice and as a

topic for future research.
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Proof of Proposition 1

From the definition, it is clear that H∗
t (m, α) ≤ Hλt

t (m,α) for any dual policy λt, therefore we

only need to prove the first inequality. We proceed by induction on t. Assume that J∗t−1(m, α) ≤
H∗

t−1(m, α) for all states (m, α), then for any λt ≥ 0:

J∗t (m, α) = max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

rs
ms

αs
us + En

[
J∗t−1(m + n · u, α + u)

]

≤ Nλt + max
u∈{0,1}S :∑S
s=1 us≤N

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
J∗t−1(m + n · u,α + u)

]

≤ Nλt + max
u∈{0,1}S

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
J∗t−1(m + n · u, α + u)

]

≤ Nλt + max
u∈{0,1}S

S∑

s=1

(
rs

ms

αs
− λt

)
us + En

[
H∗

t−1(m + n · u, α + u)
]

(25)

The first inequality follows from the fact that λt ≥ 0, and the second holds because the feasible

set is larger. The third inequality relies on the induction hypothesis. Considering now the minimum

of the right hand side of (25) yields the desired result. 2

Proof of Lemma 1

We proceed by induction. Consider t ≥ 1 and assume that the property holds for t − 1. Then we

have that:

Hλ
t (m, α) = Nλt + max

u∈{0,1}S

S∑

s=1

(rs
ms

αs
− λt)us + En

[
Hλ

t−1(m + n ∗ u,α + u)
]

= Nλt + max
u∈{0,1}S

S∑

s=1

(rs
ms

αs
− λt)us + En

[
N

t−1∑

τ=1

λτ +
S∑

s=1

Hλ
t−1,s(ms + nsus, αs + us)

]

= N
t∑

τ=1

λτ + max
u∈{0,1}S

S∑

s=1

(rs
ms

αs
− λt)us +

S∑

s=1

Ens

[
Hλ

t−1,s(ms + nsus, αs + us)
]

= N

t∑

τ=1

λτ +
S∑

s=1

Hλ
t,s(ms, αs)

The second equation uses the induction hypothesis. The third equation comes from the fact

that all products are independent so the expectation is simplified, and the final equation rearranges

terms in order to obtain the desired result. 2
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