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Buyout options allow bidders to instantly purchase at a specified price an item listed for sale through an

online auction. A temporary buyout option disappears once a regular bid is submitted, while a permanent

option remains available until it is exercised or the auction ends; such buyout price may be static and remain

constant throughout the auction, or dynamic and vary as the auction progresses. We formulate a game-

theoretic model featuring time-sensitive bidders with independent private values and Poisson arrivals but

endogenous bidding times to answer the following questions: How should a seller set the buyout price (if at

all)? What are the implications of using a temporary buyout option relative to a permanent one? What is the

potential benefit associated with using a dynamic buyout price? For all buyout option types we exhibit a Nash

equilibrium in bidder strategies, argue that this equilibrium constitutes a plausible outcome prediction, and

study the problem of maximizing the corresponding seller revenue. Our numerical experiments suggest that

when any of the participants are time-sensitive, the seller may significantly increase his utility by introducing

a buyout option, but that dynamic buyout prices may not provide a substantial advantage over static ones.

Furthermore, while permanent buyout options yield higher predicted revenue than temporary options, they

also provide additional incentives for late bidding and may therefore not be always more desirable.
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1. Introduction

As they were initially conceived during the last decade of the previous century, online auctions were

arguably suffering from two perceived drawbacks relative to posted price mechanisms: waiting time

and price uncertainty. Many auction sites have since introduced a new feature known as a buyout

option, which offers potential buyers the opportunity to instantaneously purchase at a specified

price an item put for sale through an online auction. Augmented with this option, an online auction

becomes a hybrid between a fixed-price catalogue and a traditional auction.

Buyout options are now widespread and have significant economic importance: in the fourth

quarter of 2003 alone, fixed income trading (primarily from the buyout option “Buy It Now”)

contributed $2 billion or 28% of eBay ’s gross annual merchandise sale1; other examples of buyout

options include Yahoo’s “Buy Price”, Amazon’s “Take-It” and uBid ’s “uBuy it!”. Remarkably,

buyout options in these large auction sites currently differ in one important aspect: eBay ’s “Buy

1 Source: http://investor.ebay.com/, see also Reynolds and Wooders (2003).
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It Now” option disappears as soon as a regular bid above the reserve price is submitted, so it is

called temporary ; in contrast Yahoo, Amazon and uBid ’s options remain until they are exercised

or the auction in which they are featured ends, so they are called permanent (Hidvégi et al. 2003).

However, all auction sites just mentioned (and for that matter all auction sites we are aware of)

use static buyout options, meaning that the buyout price is fixed at the outset and may not be

modified during the auction.

These observations motivate in our view the following questions:

1. How should a seller using an online auction set the buyout price (if at all)?

2. What are the implications of using a temporary buyout option relative to a permanent one?

3. What is the potential benefit associated with using a dynamic buyout price that may vary as

the auction progresses?

This paper contains the description and analysis of a game-theoretic model designed to answer

these questions in a stylized setting. It is organized as follows: after a discussion of our contribution

relative to the existing literature in §2, we present and discuss our model in §3. Section §4 contains

an equilibrium analysis for the temporary buyout option (in §4.1), the permanent buyout option (in

§4.2), and a study of the associated seller’s optimization problem (in §4.3). A comparative discussion

of the insights obtained for both types of buyout options, relying on numerical experiments and our

theoretical results of the previous subsections, is then provided in §4.4. We next discuss dynamic

buyout prices in §5, where §5.1 focuses on outcome prediction, §5.2 on the resulting optimization

problem, and §5.3 on numerical experiments. Section §6 contains our concluding remarks, and all

proofs can be found in a technical supplement available online at http://web.mit.edu/jgallien/www/.

2. Literature Review and Paper Contributions

While the literature on auction theory is large, existing research work on buyout prices is recent and

relatively limited. Indeed, the comprehensive 1999 survey of the auction literature by Klemperer

(1999) makes no mention of buyout prices, and while Lucking-Reiley (2000) observes the use of

buyout prices in his 2000 survey of internet auction practices, he points out that he is “[...] not

aware of any theoretical literature which examines the effect of such a buyout price in an auction.”

The theoretical papers written since on buyout prices are listed in Table 1, which shows some of

their model features and which one(s) of the three motivational questions listed in the previous

section they address.

A first set of papers relies on simple models to shed light on why the addition of a buyout

option may increase the seller’s revenue under various circumstances. Kirkegaard and Overgaard

(2003) show that when two bidders with multi-unit demand face two sequential auctions of one
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risk- time-

2 arbitrary unknown averse sensitive not captured exogenous endogenous temporary permanent 1 2 3

Kirkegaard and Overgaard (2003) • • • •
Budish and Takeyama (2001) • • • • •
Hidvégi et al. (2003) • • • • •
Reynolds and Wooders (2003) • • • • • •
Caldentey and Vulcano (2006) • • • • •
Mathews (2003a, 2003b, 2004) • • • • • •
this paper • • • • • • • •

number of bidders participants

auction motivational

question(s)

addressed

buyout optionbidding times

Table 1 Existing Theoretical Models of Buyout Options

item each, the seller may benefit from using a buyout option in the second auction because of the

information revelation occurring in the first. Budish and Takeyama (2001) show that a seller facing

two risk averse bidders may improve expected profit by using an optimal permanent buyout price,

and Hidvégi et al. (2003) show that this last observation still holds in an extended model with an

arbitrary number of bidders and continuous valuation distributions.

Among the papers focusing on the impact of risk aversion, Reynolds and Wooders (2003) deserves

special mention, as it appears to be the only theoretical paper besides ours comparing tempo-

rary and permanent buyout options in the same unified framework, which seems an indispensable

methodological requirement when addressing the second motivational question listed in §1. How-

ever, their analysis ignores the issues of time sensitivity and bid arrival times altogether. As a

first consequence, it fails to identify the different implications of temporary and permanent buyout

options on bidding concentration near the end of the auction (see also discussion of Caldentey and

Vulcano 2004 below). Secondly, in the model of Reynolds and Wooders (2003) all participating

bidders (who are not differentiated by their arrival time) may exercise both types of options at the

outset, with success determined by tie probabilities. The first bidder’s strategic option in practice

to remove a temporary buyout option is thus not captured, and neither is the near certainty that

a bidder will get the item when exercising either type of buyout option. This casts some doubts on

the validity or at least generality of their analysis, since the key difference between temporary and

permanent options is the set of bidders to whom the option is available. Finally, we point out that

Reynolds and Wooders (2003) do not address question one and, like all other papers cited here,

question three from §1.

More generally, the discussion forums of experienced online auction users suggest that time

sensitivity of both sellers and buyers is an important reason for using a buyout option in practice

(Gupta 2006). The importance of time sensitivity on buyout exercise is also confirmed by the

survey of auction users reported in Wan et al. (2003), and eBay itself, in its user guidelines, states

the reduction in waiting time as the very first reason why both sellers (“Sell your items fast.”)
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and buyers (“Buy items instantly!”) would want to use their buy it now feature (eBay 2006).

Recognizing this, a second and more recent subset of papers that includes ours investigates models

of buyout options that capture explicitly the time-sensitivity of participants and the dynamic

arrivals of bidders.

In particular, Caldentey and Vulcano (2004) use a model similar to ours in several respects

(Poisson arrival of bidders, utility functions with exponential time-discounting) in order to study

equilibrium behavior and optimal price for a “dual auction and list price channel” resembling

an auction with a permanent buyout option. In Caldentey and Vulcano (2004) however, when

making decisions during the bidding period buyers are assumed to ignore past bid values and

current auction asking price, and even whether the item listed is still available or not. In our model

(as is currently the case on all major auction sites), bidders are provided with that information,

and their decisions may change accordingly. The information structure assumed in Caldentey and

Vulcano (2004) is thus less realistic, but more importantly it could not support the comparative

study between permanent and temporary buyout options that we undertake here. Indeed, the key

differences between bidder strategies in the temporary and permanent cases stems from bidders’

different strategic options and different assessment of the competition they face when confronted

with given past bidding activity (see §4.4), the very information assumed away in that paper.

As a result, the information model of Caldentey and Vulcano (2004) is too coarse to predict any

difference in bidder behavior between temporary and permanent buyout option cases. Secondly,

bidders in Caldentey and Vulcano (2004) are assumed to bid or exercise the buyout option instantly

upon their arrival, whereas in practice bidding activity concentrates near the end of the auction

(Roth and Ockenfels 2002). Because bidding times are endogenous and an integral part of the

bidders’ strategy in our model, we are able to show that using a permanent option likely increases

last-minute bidding relative to a temporary one. The issue of last-minute bidding seems important

to major auctioneers (Amazon.com offers a 10% discount to the first bidder in order to induce

early bidding), so that these model differences are material. We point out however that Caldentey

and Vulcano (2004) investigate the multi-unit case, whereas we only consider the case of a single

item.

Finally, Mathews (2003b), Mathews (2004) and Mathews (2003a) investigate variations of a

model of a temporary buyout option featuring time-sensitive participants, dynamic bidder arrivals

and endogenous bidding times. This model also assumes uniform valuations, and that the total

number of bidders is fixed at the outset and known to all. As a result, these papers fail to capture

that the availability of the temporary buyout option conveys some important information to an
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incoming bidder about the amount of competition he is likely to face in the auction, which obvi-

ously affects the attractiveness of exercising the buyout option relative to placing a normal bid: in

Mathews’ model, the first bidder does not modify his assessment of the likely number of competing

bidders, regardless of whether he arrives at the very beginning or at the very end of the bidding

period. This results in bidder equilibrium strategies that are qualitatively different from those we

derive: when bidders’ time sensitivity becomes very small in Mathews (2003a), the valuation thresh-

old triggering the buyout option exercise becomes independent of the bidder’s arrival time (this is

easily seen in Mathews (2003b) and Mathews (2004), which consider time-insensitive bidders). In

contrast, the buyout threshold function in our model does depend on (specifically, increases with)

the first bidder’s arrival time, even in the limit where bidders are time-insensitive. Furthermore,

Mathews’ model of bidder arrivals is not specific enough to support a comparative study between

temporary and permanent buyout options: a bidder finding the buyout option still available likely

infers that he is the first to arrive in the temporary case, but only that previously arrived bidders

did not decide to exercise the buyout option in the permanent case. As a result, a bidder arriving

to an auction with a given buyout price and no past bidding activity is more likely to exercise a

permanent option than a temporary one. Because bidders’ belief about their competitors’ arrival

process is not specified in Mathews (2003a, 2003b, 2004), this important issue (see our Figure 1

and following comments) could not be captured without a more complete information structure of

the type we propose. Finally, although Matthews (2004) exhibits as we do an equilibrium whereby

the first bidder bids or exercises the temporary buyout option immediately, his paper does not

provide any argument why this specific equilibrium constitutes a better outcome prediction than

any of the many other ones. It should be noted however that Mathews (2003b) explores the issue

of bidder welfare, which we do not address here.

We highlight in closing that this paper is to the best of our knowledge the first to:

• present an optimization study generating qualitative insights on whether sellers should use

a posted-price, a pure auction or an auction with a buyout price when confronted with various

time-sensitivities and bidder arrival rates;

• compare temporary and permanent buyout options using a unified modeling framework cap-

turing the impact of participants’ time-sensitivity;

• analyze dynamic buyout prices. Note that our model feature of endogenous bidding times is

also key for that purpose, as for example bidders knowing of a future decrease of the buyout price

could not realistically be assumed to bid or buyout upon their arrival regardless.
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3. Model

In this section, we first describe our game-theoretic model, focusing on the market environment in

§3.1 and the auction mechanism in §3.2. We then discuss its realism in §3.3.

3.1. Market Environment. We consider a monopolistic seller opening at time 0 a market for

one item. From that point on, he faces an arrival stream of potential buyers (or bidders) which

is non-observable per se, but is correctly believed by all participants to follow a Poisson process

with a known, exogenous and constant rate λ. Bidders valuations (or the prices at which they

are indifferent between purchasing the item and not participating in the market) are assumed to

follow an independent private values model – see Klemperer (1999) for background. Specifically,

each bidder has a privately known valuation, and all other participants initially share the correct

belief that this valuation has been drawn independently from a distribution with cdf F (which is

assumed to be Lipschitz continuous) and compact support [v, v̄] (define m = v̄− v).

All participants are risk-neutral and time-sensitive. In particular, the utility of the seller when

earning revenue R at time τ is assumed to be US(R,τ) , e−ατR, where α > 0 denotes his time

discounting factor. Likewise, a bidder arriving at time t > 0 with valuation v ∈ [v, v̄] who purchases

the item at time τ ≥ t for a payment of x gets utility U(v, t, τ) , e−β(τ−t)(v − x), where β > 0

denotes his time discounting factor, assumed to be the same for all bidders. A losing bidder is

assumed to derive zero utility from the market.

3.2. Auction Mechanism. The basic market mechanism we consider is a second-price auction

with a time-limited bidding period [0, T ]. That is, any bidder arriving at time t∈ [0, T ] may submit

a bid at any time in [t, T ], provided it is larger than any other he may already have submitted

(i.e. bidders are not allowed to renege on their purchasing offers). At time T , the item is sold to

the highest bidder who pays then a price equal to the second highest bid; if only one bidder has

submitted a bid by T the item is sold to him for a price of v, and if there are no bids the item is

not sold. Note that the lower bound of the distribution support v thus effectively corresponds to a

publicly advertised minimum required bid (any bids lower than v are ignored).

In addition to all the other information described previously, every bidder is assumed to know

at every time τ subsequent to his arrival the value of Iτ , defined as the payment that would be

made by the winning bidder if the auction were instead terminated at τ . That is, Iτ is equal to

(i) the second highest bid submitted over [0, τ ] if there are at least two such bids; (ii) v if there

is only one; and (iii) 0 if there is none. As is the case on all auction websites we are aware of, we

assume that It is truthfully revealed to any arriving bidder.
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The basic auction mechanism just defined is investigated for example in Gallien (2006). The

critical extension that we study in the present paper is the addition by the seller at the outset of a

buyout price p, either temporary or permanent. Any bidder may exercise that buyout option at any

time between his arrival and the end of the auction T , provided the option is still open then; this

amounts to purchasing the item instantaneously at a price of p, effectively terminating the auction.

A temporary buyout option remains open from the beginning until its exercise or the first time that

a regular bid is submitted by any bidder, while a permanent buyout option remains open until its

exercise or the end of the auction. That is, submissions of regular bids do not prevent bidders from

subsequently exercising a permanent buyout option, but they do terminate a temporary buyout

option. In line with observed practice, we assume that all participants know at any point in time

whether the buyout option is still open.

While we assume in §4 that the buyout price p remains constant throughout the auction, we study

dynamic buyout prices in §5. In the dynamic extension we consider then, the seller commits upfront

to a function of time [p(t)]t∈[0,T ] describing the evolution of the buyout price (either temporary or

permanent) over time, and that function is known to all bidders.

3.3. Model Discussion. We first comment on our allocation mechanism. Online auction sites

now typically feature “proxy bidding” systems, allowing bidders to enter the maximum amount

they are willing to pay for the item. The system then submits bids on behalf of the bidder, increasing

his outstanding bid whenever necessary and by as little as possible to maintain his position as

the highest bidder, up until the maximum amount stated is reached2. As observed by Lucking-

Reiley (2000), an online auction with a proxy bidding system effectively amounts to a second-price

auction, the payment mechanism we assume.

For the closing rule, we assume a hard bidding expiration deadline similar to the one used on

eBay, whereas some other sites such as Amazon use instead a floating deadline that automatically

extends (within some limits) whenever a new bid close to the current deadline is submitted. As

pointed out in Roth and Ockenfels (2002), this difference is material and eBay-like hard bidding

deadlines account for a demonstrably higher concentration of bids near the end of the auction. In

principle, our model allows to predict such surge of bids shortly before the end, because while we

assume exogenous bidder arrival times, their bidding times are endogenous. In fact, our analysis in

§4 confirms the intuition that last-minute bids seem more likely with a permanent buyout option

than with a temporary one. However, our model does not capture some of the other important rea-

sons why last-minute bidding does occur: presence of inexperienced bidders engaging in irrational

2 See http://pages.ebay.com/help/buy/proxy-bidding.html for a detailed description.
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bidding wars; informational value of bids when the item being sold has a common value compo-

nent; reluctance to bring an auction to the attention of competing bidders performing searches on

individual users’s bidding activity; possibility that late bids may not reach the auction site due

to network transmission delays... while we refer the reader to Roth and Ockenfels (2002) for an

excellent discussion and empirical study of this phenomenon, we argue that factors such as the loss

of last minute bids due to network transmission capacity and the presence of inexperienced bidders

may not remain as prevalent in the long run, partly justifying these modeling choices (otherwise

primarily motivated by tractability considerations). Consequently, in the model we assume for an

online auction without a buyout option (or after a temporary buyout option has been removed),

any sequence of bids culminating in the submission of one’s true valuation before the bidding

deadline T forms a weakly dominant strategy.

Another feature of the market mechanism we consider is the possible presence of a publicly

announced minimum required bid, effectively captured in our model by the lower bound v of the

valuation distribution support. Note that this is distinct from what some auction sites (such as

eBay) call a “reserve price”, which is likewise set by the seller as a minimum selling price for the

item but, in contrast with the minimum required bid we use, is not publicly announced – when used

by the seller, bidders are typically only informed that a reserve price has been set for the auction,

and whether or not it has already been met by any of the existing bids. We assume that the seller

does not use such concealed reserve price, in part because this would entail some inference of its

value by the bidders, and may lead to further strategic interactions in the form of post auction

negotiations between the winning bidder and the seller.

Several limitations of our analysis also stem from the market environment we consider. Our

assumption that bidder arrivals follow a Poisson process seems more realistic than assuming that

the number of bidders is known to all with certainty (as in nearly all other papers discussed in §2),

and is partly justified by the classical Palm limit theorem on the superposition of counting processes.

Nevertheless, the assumption that its arrival rate is constant and known to all participants (common

to all other auction models assuming Poisson bidder arrivals that we are aware of) is still a strong

one. In practice, the arrival rate of potential bidders to an auction could not only be variable

but also endogenous, and depend for example on the bidding activity it has generated to date.

In practice, the arrival rate of bidders to a specific auction is also influenced by factors such as

advertising, the presence of a reserve price, the seller’s feedback ratings, the presence and quality

of photographs describing the item, etc. Our assumption of a constant known arrival rate saliently

implies that bidders, including those arriving early in the auction when only little bidding history
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is available, correctly synthesize the impact of these factors when estimating how many competing

bidders they are likely to face.

The structure assumed here for the utility functions of the seller and the bidders (time-discounted

quasi-linear incentives) is also used for example in Caldentey and Vulcano (2004) and Gallien

(2006), and reflects the proposed time sensitivity of participants. It saliently implies that bidders

in our model do not have any fixed bidding or waiting costs. This is an important limitation, since

bidders arriving to an auction may in practice decide to balk if their estimated transactional utility

does not make up for these fixed costs. Our model, which only reflects that this utility is discounted

by the transaction time, may thus significantly underestimate this balking behavior and its impact.

Also, while all the results in the paper have been derived for auctions with risk neutral participants,

some of them generalize to the case of risk averse bidders – see §6 for a detailed discussion.

In summary, while our model does capture some of the key features of an online auction, there are

some others that it does not reproduce as faithfully. We point out that an actual online auction is a

complex and random process involving multiple heterogeneous participants with various incentives

and rationality levels interacting in a dynamic manner. As such, any tractable analytical model

designed to predict its outcome (including ours and every other one described in the literature)

must necessarily rely on fairly restrictive assumptions. Given one of our main research objective

is to understand the differential impact of temporary and permanent buyout prices, we observe

that several of these assumptions (e.g. common beliefs, bidder arrival process) may not specifically

impact our model predictions when one type of buyout option is used as opposed to the other. From

that perspective, we find it reassuring that our results rationalize some of the actual practices of

auction sites using buyout options (see §6), and that some of our model predictions can be verified

through a statistical analysis of real auction data (see §A.7 in the online supplement).

4. Static Buyout Prices
This section includes an equilibrium analysis for our model of an auction with a static buyout price,

both temporary (in §4.1) and permanent (in §4.2), followed by a study of the seller’s optimization

problem (in §4.3). Numerical experiments are then described in §4.4.

4.1. Equilibrium Analysis of the Temporary Buyout Option. We now assume that the

seller uses a fixed temporary buyout price p which disappears if a bid above the reserve price is

placed in the auction. For any bidder arriving at time t with valuation v, consider the following

family T [·] of threshold strategies:

T [ν](v, t) :





Buyout at p immediately if buyout option available and v > ν(t, It)
Bid v immediately if buyout option available and v≤ ν(t, It)
Bid v at any time in [t, T ] otherwise

, (1)
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where ν : [0, T ]× [0, v̄]→ [v, v̄] is a threshold valuation function depending a priori on both the

arrival time t and the second highest bid It defined in §3.2. Note however that a temporary option

is only available when no bid has yet been placed or It = 0, so that ignoring the dependence of

ν on It as we will do in the following entails no loss of generality for the temporary option case.

Observe also that the only components of an increasing sequence of bids submitted by a participant

that have strategic implications in our model of a temporary option are the time at which the

first bid is submitted (because this may remove the buyout option), and the value of the highest

bid submitted (because it may affect the auction outcome). Consequently, we will not distinguish

between two bidding strategies that are equivalent modulo those two components. For example,

even though the second possible action stated in the definition of T [ν] in (1) is “Bid v immediately”,

a strategy whereby a bidder in the same case would place any bid v′ in [v, v] immediately, then

submit any sequence of bids with highest value v before the end of the auction would result in the

exact same payoff and action space for himself, the other bidders and the seller. All the results to

be stated about T [ν] will thus also hold for any strategy or profile of strategies equivalent to it in

the sense just defined. The concept of equilibrium uniqueness (see statement of Theorem 2) is also

to be understood in this context, meaning that there does not exist any other equilibrium which

is not equivalent to the one exhibited. Likewise, by a symmetric strategy profile we mean a set of

strategies played by all players that are all equivalent. Finally, we will use the same notation for a

strategy and the symmetric strategy profile obtained when every bidder plays that strategy, since

no ambiguity arises from the present context.

The following theorem establishes the existence of a threshold function νtmp such that T [νtmp]

forms a Bayesian Nash equilibrium, and also provides a characterization of that function.

Theorem 1. Define function νtmp as νtmp(t) = min
(
v̂(t), v̄

)
where v̂(t) is the unique solution

on [v,+∞) of the equation

v̂(t)− p = e−(λ+β)(T−t)

∫ v̂(t)

v

eλ(T−t)F (x)dx. (2)

Then the symmetric strategy profile T [νtmp] is a Bayesian Nash equilibrium for the online auction

game with a temporary buyout price p.

The proof of Theorem 1 consists of deriving, for an arbitrary threshold function ν, a best response

strategy to profile T [ν], that is a strategy maximizing the utility of a bidder entering an auction

where every other bidder uses strategy T [ν]. Specifically, denoting R (T [ν]) the set of these best

response strategies, we characterize a threshold function νtmp such that T [νtmp] ∈ R (T [ν]). We
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further show that T [νtmp] ∈R (T [νtmp]), establishing that the profile T [νtmp] constitutes indeed a

Nash equilibrium; as in all our other proofs most of the difficulty stems from the bi-dimensional

action space allowing for bidders to wait. Before discussing the intuition behind Theorem 1 and

some qualitative implications, we state a proposition providing a closed-form expression for νtmp

in the special (but widely assumed) case of uniformly distributed valuations:

Proposition 1. When bidder valuations are uniformly distributed on [v, v̄], the threshold func-

tion νtmp characterizing the Bayesian Nash equilibrium described in Theorem 1 is

νtmp(t) = min
(

p− m

λ(T − t)

(
W

(
− e−e−(λ+β)(T−t)+

(p−v)λ(T−t)
m −(λ+β)(T−t)

)
+ e−(λ+β)(T−t)

)
, v̄

)
, (3)

where W is Lambert’s W or omega function, i.e. the inverse of W 7→WeW .

In the equilibrium characterized by Theorem 1, the first incoming bidder compares upon his

arrival the relative attractiveness of the buyout option and that of a regular bid, accounting for the

likely competition resulting from the specific auction time remaining then; the dynamic threshold

νtmp valuation characterized in (2) corresponds to the valuation of a bidder who at that time would

be indifferent between the two options. Accordingly the threshold function νtmp is non-decreasing

over time (this is easily established formally by inspection of (2)): the continuous buyout option

availability over time indicates a reduced likely level of competition for the auction if it should take

place, and therefore progressively makes the buyout option less attractive relative to submitting a

regular bid.

Note also that strategy T [νtmp] and the associated equilibrium result just stated do not provide

a prediction of when the second and subsequent bidders will submit their bid. That is, the timing

of bid submissions for these bidders does not have any strategic implication within the strict

boundaries of our model definition. In practice however, it could be affected in various ways by

features not captured by our model; for example a high cost of monitoring the auction could hasten

bid submissions, while common value signaling could delay them – see §3.3 for a more complete

discussion and related references.

An important observation is that the equilibrium T [ν] specified in Theorem 1 is not unique.

Indeed, for any w > 0 one may choose a threshold function ν : [0, T ]→ [v, v̄] such that the strategy

T (w)[ν] generalizing T [ν] and defined by replacing the action associated with the second case

in (1) with “Bid v after min(w,T − t) time units” also constitutes an equilibrium. That is, in the

equilibria T (w)[ν] with w > 0, a bidder finding the buyout option still available when he arrives may

wait for some time before submitting a bid. This is because, provided the threshold function is non-

decreasing, this first bidder would lose in the auction anyway to any second bidder exercising the
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buyout option while the first bidder is still waiting. In the remainder of this subsection, we argue

that, in contrast to T [ν], such equilibrium does not survive some perturbations of our hypotheses,

and therefore does not provide a robust outcome prediction.

Let G denote the online auction game with a temporary buyout option described in §3.2 and

§3.1. We use the classical methodology of payoff perturbations (see van Damme (1987)) in order to

refine our equilibrium analysis, and define G(ε) as a game identical to G except that with a small

probability ε > 0 an arriving bidder is desperate, meaning that his utility from the auction with a

type (v, t) is described instead by

UD(v, t) =





+M if he obtains the item at t;
−M if he bids in the auction;
0 otherwise,

where M À 0. (4)

In words, desperate bidders greatly value the item auctioned, have an outside alternative with

negligible value, and cannot wait under any circumstances; the dominant strategy for a desperate

bidder is obviously to exercise the buyout option if it is available and to not participate at all

otherwise. This specific perturbation seems appealing, because it may reveal the limiting impact

of irrational bidders or bidders with different time sensitivities that our model otherwise assumes

away (see §3.3). We prove the following result:

Theorem 2. For any ε > 0, the game G(ε) does not have any Bayesian Nash equilibrium where

a non-desperate bidder, who arrives when the buyout option is present, waits before bidding (e.g.

plays T (w)[·] with w > 0). In addition, there exists a threshold function ν
(ε)
tmp : [0, T ]→ [v, v̄] such

that for non-desperate bidders the strategy profile T [ν(ε)
tmp] is a unique Bayesian Nash equilibrium

of the game G(ε), and limε→0 ν
(ε)
tmp = νtmp where νtmp is defined in Theorem 1.

The intuitive explanation for the first statement in Theorem 2 is that when the first bidder

decides to bid in the auction he is strictly better off bidding immediately and remove the buyout

option then, because this prevents any subsequent desperate bidders from participating. It is clear

however that the utility function of desperate bidders has been precisely defined to achieve that

effect, and may thus appear ad-hoc or arbitrary. But from the perspective of refining our outcome

prediction, what is striking about Theorem 2 is not that the introduction of desperate bidders per

se preserves the equilibrium T [ν] we propose and eliminates all other equilibria. The meaningful

part is that this selection of equilibria occurs regardless of how small the introduction probability

ε of these desperate bidders is. Indeed, an equilibrium which would not survive an arbitrarily small

perturbation of the model payoff structure (whatever that perturbation) could hardly be considered
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robust. Theorem 2 actually establishes that the equilibrium T [νtmp] characterized in Theorem 1 is

the only one to survive the specific perturbation defined above, however small its probability.

Another standard robustness test (or equilibrium refinement technique) for outcome prediction is

to use the solution concept of trembling-hand perfect equilibrium instead of the less discriminating

Bayesian Nash equilibrium (Fudenberg and Tirole 1991). While we omit that analysis here due

to length restrictions, it can also be shown that T [νtmp] is the unique trembling-hand perfect

equilibrium of G (Gupta 2006).

Finally, we describe in Section A.7 of our online supplement a simple empirical study that we

have conducted in order to validate our model predictions. That is, we collected bidding data from

a number of actual auctions of similar items (iPod music players and accessories) on the site eBay

(which features a temporary buyout option), and focused on testing an implication of our analysis

on the bidding times of auction participants. Specifically, the equilibrium analysis in our model

does not generate any prediction for the first bidding time (or any other bidding time for that

matter) in an online auction without a buyout option, while Theorems 1 and 2 do imply that

the first bidder will act (bid or buyout) immediately upon his arrival. Consequently, in auctions

featuring a buyout option, the first activity (bid or buyout) should occur earlier than in an auction

without a buyout option. The data set we constructed was clearly imperfect, because it did not

capture many factors besides the buyout option which could also conceivably explain differences

in bidder behavior: quality of items auctioned, presence and size of accompanying photographs,

how prominently the auction is listed by eBay’s search engine, etc. Another issue is that a buyout

price set excessively high is very unlikely to generate any modification of bidding behavior, as it

will effectively be discarded by the buyers. We attempted to control for these factors and others

by proxy using the value of the buyout price, the final selling price and the ratio of the buyout

price to the final selling price, and our statistical analysis relying on a two sample t-test lead to

accepting the hypothesis of earlier first activity with a p-value of 2× 10−27.

Taken together, these observations support in our view the use of equilibrium T [νtmp] in the

remainder of this paper as a predictor for the outcome of an online auction with a temporary

buyout price.

4.2. Equilibrium Analysis of the Permanent Buyout Option. We assume now that the

seller uses a fixed permanent buyout price p that remains available until it is exercised or the

auction ends. For any bidder with valuation v arriving at time t and observing then a current

second-highest bid It (see §3.2), consider the following family P[.] of threshold strategies:

P[ν](v, t, It) :

{
Buyout at p immediately if v > ν(t, It)
Bid v at time T if v≤ ν(t, It)

, (5)
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where ν : [0, T ]× [v, v̄] ∪ {0} → [v, v̄] is a continuous function. Note that the action of bidding at

time T in the definition of P[.] is clearly a theoretical limit, and would correspond in practice to

submitting a first bid as close as possible to the end of the auction, with the goal of denying other

bidders the opportunity to respond. Observe also that the definition of P[.] in (5) corresponds to

a single strategy, whereas in the temporary option case (1) defines a class of equivalent strategies,

as discussed in §4.1. That is, with a permanent buyout option it is no longer only the timing of

the first bid and the highest bid submitted which hold strategic implications for a bidder. The

time and value of every bid from a sequence submitted by a participant is now material, because

that information affects how It evolves over time, which in turn is relevant to whether competitors

decide to exercise the buyout option.

The following theorem establishes the existence of a threshold function νprm such that the sym-

metric strategy profile P[νprm] constitutes indeed a Bayesian Nash equilibrium, and also provides

a characterization.

Theorem 3. Consider a maximal solution ṽ(.) of the following functional equation on [0, T ]→
[v,+∞):

ṽ(t)− p = Et

[
e−β(T−t)

(∫ ṽ(t)

v

∏N(t)

i=1 F
(
min(ṽ(ti), x)

)
∏N(t)

i=1 F
(
ṽ(ti)

) F (x)N(t,T )dx

)]
, (6)

where the expectation Et is with respect to the number N(t) and epochs t1, ..., tN(t) of arrivals in

[0, t) of a non-homogeneous Poisson process with rate λF
(
ṽ(τ)

)
for τ ∈ [0, t), and number N(t, T )

of arrivals in (t, T ] of a Poisson process with rate λ. Let ṽ(t, I) be a continuous extension of ṽ(.) to

[0, T ]× [v, v̄]∪{0} such that ṽ(t,0) = ṽ(t) and ṽ(t, I) is non-increasing in I for all t, non-decreasing

in t for all I, and define νprm(t, I) = min
(
ṽ(t, I), v̄

)
. The symmetric strategy profile P[νprm] is a

Bayesian Nash equilibrium for the online auction game with a permanent buyout price p.

Denoting by R (P[ν]) the set of best response strategies to the profile where every other player

follows strategy P[ν], the proof of Theorem 3 first establishes that P[νprm] ∈ R (P[νprm]) if and

only if νprm(t,0) satisfies (6). The most challenging part of the proof then consists of proving the

existence of a solution to (6); to do so we establish that a generalization of Schauder’s fixed point

theorem applies to an appropriately defined functional space and continuous mapping on that

space. Before discussing the intuition behind Theorem 3 and its qualitative implications, we show

how the threshold function characterization (6) specializes to a first-order nonlinear differential

equation in the case where valuations follow a uniform distribution:

Proposition 2. When bidder valuations follow a uniform distribution with cdf F on [v, v̄],

the threshold function νprm characterizing the Bayesian Nash equilibrium described in Theorem
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3 satisfies νprm(t,0) = min
(
ṽ(t), v̄

)
where ṽ(t) is the unique solution on [0, T ] of the differential

equation

dṽ(t)
dt

=

(
β +λ

(
1−F

(
ṽ(t)

)))(
ṽ(t)− p

)

1− e
−
(

β+λ

(
1−F

(
ṽ(t)

)))(
T−t

) (7)

with initial value νtmp(0) as defined in (3).

In the statement of Theorem 3, the requirement that νprm(t, I) be non-decreasing for I fixed

is intuitive: from the auction still running at time t it can be inferred that vi ≤ ν(ti, Iti) for all

bidders i with type (vi, ti) observing a current second-highest bid Iti ≤ I upon their arrival in

(0, t). Consequently as t increases with I fixed, the expected final second highest valuation among

all bidders decreases, thus increasing the expected utility from bidding in the auction relative to

exercising the buyout option; this effect is compounded with the reduced relative discounting of

the utility from bidding as t increases. The requirement that ν(t, I) be non-increasing in I for

every t is likewise easily interpreted: holding t fixed, a higher value of I implies that the expected

second highest bid in the auction is higher, which lowers the expected utility from bidding relative

to exercising the buyout option. Note that Theorem 3 only provides a stringent characterization

of the equilibrium threshold function value νprm(t, I) for I = 0. This is because when all bidders

follow strategy P[ν] then on the equilibrium path It = 0 for all t in [0, T ), since all bidders not

exercising the buyout option only bid then at time T . Indeed, equation (6) specifies quantitatively

the valuation for which an incoming bidder should be indifferent between exercising the option

and submitting a regular bid, accounting for the information about the valuations of potential

competing bidders provided by the presence of an open buyout option. Other values of νprm(t, I)

correspond to off-equilibrium path behavior, and are only required to satisfy the monotonicity

properties discussed above. While in a strict game-theoretic sense Theorem 3 thus defines multiple

equilibria, all of them result in the same equilibrium path and therefore yield the same utility for

the bidders and the seller.

As in the temporary case however, there also exists equilibria for the permanent buyout option

game other than the one(s) characterized above. Indeed for a threshold function ν satisfying the

conditions of Theorem 3 and such that ν(t, I)≥ p for all (t, I), consider the strategy

P ′[ν](v, t, It)





Buyout at time τ ≥ t if v > ν(τ, Iτ )
Bid v at time T if p < v≤ ν(τ, Iτ ) for all t≤ τ ≤ T
Bid v at any time in [t, T ] if v≤ p

.

Note that when following P ′[ν] a bidder with valuation v≤ p bids at any time, whereas such bidder

only bids at T when following P[ν]. It can be shown however that P ′[ν] also induces an equilibrium



Gallien and Gupta: Buyout Prices in Online Auctions
16 Article submitted to Management Science; manuscript no. MS-00425-2005.R1

for some function ν. This is because any bidder with a valuation v≤ p has no incentive in our model

for delaying his bid in order to prevent the published second highest bid It from increasing, even

if this would potentially trigger the exercise of the buyout option by another bidder: the valuation

v′ of any bidder exercising the buyout option would be larger than his since buyout exercise at τ

implies v′ > ν(τ, Iτ )≥ p ≥ v, therefore that other bidder would win in the auction anyway.

As in the temporary case, we now introduce a game perturbation to argue that P[·] is a more

robust outcome prediction than other equilibria such as P ′[·]. Suppose that with probability ε each

arriving bidder is a common value bidder, having type (v, t) and following strategy P[νc] where

νc(t,0) = νprm(t,0) and νc(t, I) = v, ∀I > 0, t. That is, a common value bidder exercises the buyout

option irrespective of its price as soon as any regular bid is placed in the auction, and if none is

placed submits at the end a bid equal to his private valuation. Such a bidder can be rationalized

as one whose valuation includes not only an independent private value component as assumed

so far, but also a large common value component. That is, any bid placed before the auction

end is perceived by that bidder as a signal drastically increasing the estimated value of the item

being sold, thus triggering the exercise of the buyout option (see McAfee and McMillan 1987 for

background). Again, we point out that while the perturbation just described is completely ad-hoc,

we are only interested here in its impact when the perturbation probability ε is arbitrarily small.

Denoting by G(ε) the corresponding perturbed game, we specifically show the following result:

Theorem 4. For any ε > 0, the game G(ε) does not have any Bayesian Nash equilibrium where

bidders bid at any time τ < T (e.g. play P ′[·]). In addition, the only Bayesian Nash equilibria of the

game G(ε) are such that normal (non common value) bidders play strategy profile P[νprm] defined

in Theorem 3.

The underlying intuition is that a normal bidder is strictly better off placing a bid near time

T because bidding earlier may cause a common value bidder, who could have otherwise lost in

the auction, to exercise the buyout option. Any equilibrium strategy where a normal bid is placed

before time T is thus eliminated, however strategy profile P[νprm] still constitutes an equilibrium of

the perturbed game for normal bidders. Consequently, only the strategies characterized in Theorem

3 survive the above game perturbation, no matter how small.

Finally, we have conducted a simple empirical study in order to validate some of our model

predictions in the permanent case as well, which is described more extensively in Section A.7 of

our online supplement. In summary, we collected bidding data from actual auctions of the same

category of items considered in the temporary case (iPod music players and accessories), this time
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from the site Yahoo! (which features a permanent buyout option), and likewise identified a testable

implication of our analysis. Specifically, we observed that the equilibrium analysis in our model does

not generate any prediction of bidding times in an online auction without a buyout option, while

Theorems 3 and 4 do imply that with a permanent buyout option bidders not exercising the option

will submit theirs bids as late as possible. Consequently, in auctions featuring a permanent buyout

option that is not exercised, bids should be submitted later on average than in an auction without

a buyout option. We applied the same proxy controls as described in §4.1 in order to mitigate

the impact of our dataset flaws. While our statistical analysis lead to accepting the hypothesis of

later average bidding times, the associated p-value was higher at 0.0963, so that our associated

confidence level was much lower than for the test we conducted in the temporary case. This was

hardly surprising however, as the dataset we were able to construct in the permanent case was

significantly smaller (to date the site Yahoo! Auctions receives significantly less traffic than eBay),

and also because auctions on Yahoo! feature an automatic bidding deadline extension mechanism

(see §3.3), a deviation from our model known to impact the concentration of bids near the end of

the auction (Roth and Ockenfels 2002).

Taken together, these observations support in our view the use of equilibrium P[νprm] in the

remainder of this paper as a predictor for the outcome of an online auction with a permanent

buyout price.

4.3. Seller’s Revenue Optimization Problem. We now consider the problem of finding

the buyout price p maximizing the seller’s expected discounted revenue from a temporary (resp.

permanent) buyout price auction when all bidders follow the equilibrium strategy T [νtmp] (resp.

P[νprm] ). Note that p is the only decision variable we consider here (see Vakrat and Seidmann

2001 and Gallien 2005 for optimization studies focusing on the variables T and v̄).

4.3.1. Formulation and Numerical Solution. We first consider the temporary case. Mak-

ing the dependence of the threshold function on p explicit from now on and conditioning on both

the arrival time and the action of the first bidder, the problem can be stated mathematically as

max
p∈[v,v̄]

E[US
tmp(p)] =

∫ T

0

e−αTEt[max(v, v
(2)
N(t,T )+1)|v1 ≤ νtmp(p, t)]F (νtmp(p, t))λe−λtdt (8)

+
∫ T

0

e−αtp
(
1−F (νtmp(p, t))

)
λe−λtdt,

where the expectation Et in the first integrand is with respect to the number N(t, T ) of arrivals

in interval (t, T ] of a Poisson process with rate λ and the second highest value v
(2)
N(t,T )+1 among

N(t, T ) + 1 independent draws v1, ..., vN(t,T )+1 from the valuation distribution with cdf F , where
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by convention v
(2)
1 = 0 – note that the first and second integrals in (8) correspond respectively to

the seller’s expected revenue when the first bidder submits a regular bid upon his arrival and when

he exercises the buyout option.

Turning next to the permanent buyout option, let νprm(p, t) denote the value of the threshold

function on the equilibrium path (i.e. the variable It = 0 is omitted). In equilibrium, the arrivals

of bidders who will exercise the buyout option follow a non-homogeneous Poisson process with

instantaneous rate λ
(
1− F

(
νprm(p, t)

))
, and we denote its counting measure by Nbuy. Likewise,

the arrivals of bidders who will wait until the end of the auction to submit a bid follow a non-

homogeneous Poisson process with instantaneous rate λF
(
νprm(p, t)

)
, and we denote its counting

measure by Nbid. As a result, the probability that the buyout option will not be exercised is

P (Nbuy(T ) = 0) = exp(−λ
∫ T

0

(
1−F

(
νprm(p, t)

))
dt), and the problem can be stated as

max
p∈[v,v̄]

E[US
prm(p)] =

∫ T

0

e−αtpλ
(
1−F (νprm(p, t))

)
e−λ

∫ t
0

(
1−F

(
νprm(p,τ)

))
dτdt (9)

+ e−λ
∫ T
0

(
1−F

(
νprm(p,t)

))
dte−αTE[1{Nbid(T )>0}max(v, v

(2)

Nbid(T ))|vi ≤ νprm(p, ti) ∀i],

where the expectation E is with respect to the number Nbid(T ) and epochs t1, ..., tNbid(T ) of arrivals

in [0, T ] of the second Poisson process defined above, and second highest value v
(2)
Nbid(T ) among

v1, ..., vNbid(T ) (by convention v
(2)
0 = v

(2)
1 = 0), where the i-th valuation vi follows a distribution with

cdf Fi(v) = F (v)/F (νprm(p, ti)). The first term in (9) is equal to the seller’s expected discounted

revenue from the option, while the second term is the expected discounted revenue from regular

bidding, which only occurs if the buyout option is not exercised.

While solving analytically these optimization problems in the general case seems particularly

challenging, computing through a line search over p a numerical solution to (8) and, in the special

case of uniformly distributed valuations, to (9) is relatively straightforward: for each value of p , one

may numerically solve (2) for νtmp(p, t) and (7) for νprm(p, t); the seller’s expected utility can then be

estimated through Monte-Carlo simulation by generating repeated random bidder arrival streams

{(v1, t1), (v2, t2), ...}. This is the method we implement to obtain the numerical results reported

later in §4.4. The other method we have followed to study the difficult stochastic optimization

problems (8) and (9) is an asymptotic analysis, which is discussed next.

4.3.2. Asymptotic Analysis. We were able to characterize analytically the limits of the solu-

tions p∗tmp and p∗prm to (8) and (9) respectively for various asymptotic regimes of the bidders’ arrival

rate λ, seller’s time sensitivity α, and bidders’ time sensitivity β. While their somewhat lengthy
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and technical derivations are relegated to the online supplement, we provide here a summary of

these results in Table 2, which uses the notations




p1 , arg max
p∈[v,v̄]

p(1−F (p))

p2 , arg max
p∈[v,v̄]

(
p(1−F (p))+ vF (p)

)

p3(µ) , arg max
p∈[v,v̄]

p(1−F (p))

µ+1−F (p)
for µ∈ [0,+∞]

. (10)

Before interpreting p1, p2 and p3(µ), we first observe that for these quantities to be uniquely

defined we need to impose in the following some additional mild assumptions on the distribution

function F (·) – a possible sufficient condition is for F (·) to be strictly increasing on [v, v̄], convex

and continuously differentiable. It is then easy to prove (see Lemma 13 in online supplement) that

p1 ≤ p2, p1 ≤ p3(µ) for any µ, p3(µ) is decreasing in µ, and lim
µ→+∞

p3(µ) = p1, with the last statement

justifying the notational extension p3(+∞).

Seller time sensitivity Seller time sensitivity

Low (α→ 0) High (α→∞) Low (α→ 0) High (α→∞)

Bidder
time
sensitivity

Low (β→ 0) any p in [v, v̄] p∗tmp, p
∗
prm → v

p∗tmp, p
∗
prm → v̄

p∗tmp → p1,

p∗prm → p3(µ)
where µ = lim

λ→∞
α
λ

High (β→∞) p∗tmp, p
∗
prm → p2 p∗tmp, p

∗
prm → p1

(a) Low demand rate limit (λ→ 0) (b) High demand rate limit (λ→∞)

Table 2 Optimal buyout prices in asymptotic regimes

In Table 2 (a), each entry (λ→ 0, α→A,β →B) with (A,B) ∈ {0,∞}2 corresponds more pre-

cisely to the regime λ→ 0, α = f1(λ) and β = f2(λ) where fi : [0,∞)→ [0,∞), i ∈ {1,2} are any

functions such that limx→0 f1(x) = A and limx→0 f2(x) = B. A first interesting observation is that,

in contrast with Table 2 (a), the limit statements in Table 2 (b) are independent of the bidders’

time sensitivity parameter β. More precisely, each entry (λ→∞,α→A) with A∈ {0,∞} in Table

2 (b) corresponds to the asymptotic regime λ→∞, α = f1(λ) and β = h(λ), where f1 is any func-

tion [0,∞)→ [0,∞) such that limx→+∞ f1(x) = A and h is any non-negative function of λ. Our

interpretation is that the seller’s utility only depends on bidders’ time sensitivity via the buyout

threshold functions, where β discounts the utility from bidding relative to exercising the buyout

option. However, the utility from bidding in an auction with a high bidder arrival rate is already

made negligible by the very high associated level of competition, consequently the effect of β on

the optimal buyout price vanishes then. That is, in this dynamic setting bidders’ time sensitivity

effectively acts as a negative adjustment to their market power, and thus looses leverage in the

asymptotic regimes of Table 2 (b) where that market power is low.
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Tables 2 (a) and (b) can be further interpreted as follows. The case p∗tmp, p
∗
prm → v effectively

amounts to using a fixed price mechanism, since no bidding activity will ever occur then; this is

optimal for a very impatient seller facing very few time-insensitive bidders (i.e. λ→ 0, α→∞, β→
0). Indeed, a seemingly large number of auction listings on eBay now feature only a “Buy It Now”

option and no “Place Bid” option, providing anecdotal evidence for the relevance of this case in

practice. At the other extreme, the case p∗tmp, p
∗
prm → v̄ is equivalent to an auction without a buyout

option since the buyout price is never exercised then. That is, a patient seller (α→ 0) with high

market power (λ→∞) finds it beneficial to not use any buyout option at all and only rely on a

traditional bidding mechanism – there are clearly many examples of such sellers on auction sites as

well. These results are thus reminiscent of those obtained by Harris and Raviv (1981), who study

a mechanism design model in which the seller should use an auction when demand exceeds supply

but a posted price otherwise (see also Gallien 2006). In our model, the relative values of the seller’s

and bidders’ time sensitivity (α and β) and the expected number of bidders λ effectively capture

the ratio between supply and demand and the seller’s market power, and the hybrid mechanism

relying on both bidding and posted price enabled by the buyout option makes for a continuous,

smoother transition between those two mechanisms.

More specifically, consider first market environments where demand for the auctioned item is

low but bidders are highly time-sensitive (λ→ 0, β→∞). Such bidders gain negligible utility from

submitting a regular bid (which entails winning almost surely but waiting up to time T ), and

thus always exercise the buyout option provided the buyout price is no larger than their valuation

(formally νtmp(p, t), νprm(p, t)→ p for all t). A highly time-sensitive seller (α→∞) also gets zero

utility from selling the product at time T , and thus offers then the buyout price p1 defined in (10),

which maximizes his expected revenue from the event that the first (and most likely only) bidder

exercises the buyout option. In the same environment however, a seller with low time-sensitivity

(α→ 0) can potentially wait up to the auction end to sell the product, and hence finds it optimal

to offer a higher buyout price p2 ≥ p1 maximizing his utility from the event that the first/only

bidder either exercises the buyout option or bids, in which case the product sells for v at the end

of the auction (see (10)).

Next, the regime (λ,α,β→ 0) corresponds to the case when both the seller and the bidders have

low time-sensitivity and the bidder arrival rate is small. Any incoming bidder is unlikely to face any

competition then (as λ→ 0), and consequently a buyout option with price p > v is never exercised.

Therefore in the limit any incoming bidder either exercises the option if the buyout price p is set

to v, or bids in the auction if p > v and gets the item at time T , still for v (since the probability
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of two or more bidder arrivals becomes negligible). In either case, the seller gains the same utility

since he is not affected by the time of sale (α→ 0), and is thus indifferent between any buyout

price p∈ [v, v̄]. More formally we show that for any p′ ∈ [v, v̄]

lim
λ→0

α=f1(λ)
β=f2(λ)

max
p∈[v,v̄]

E[US
tmp(p)]

E[US
tmp(p′)]

= 1 and lim
λ→0

α=f1(λ)
β=f2(λ)

max
p∈[v,v̄]

E[US
prm(p)]

E[US
prm(p′)]

= 1,

where fi : [0,∞)→ [0,∞), i ∈ {1,2} are any functions such that limx→0 fi(x) = 0. In words, the

additional utility obtained by choosing the optimal buyout price relative to using any buyout price

becomes asymptotically negligible in that regime.

Finally, the only regime where p∗tmp and p∗prm converge to different limits is the one in which a

very impatient seller faces a high demand (λ,α→∞). While such a seller could sell the product for

v̄ via an auction, that outcome would only occur at time T and would therefore give him negligible

utility relative to a buyout option exercise. Hence, in the temporary case where the buyout option

is only available to the first bidder, the seller offers the buyout price p1 maximizing his expected

utility from the event that the buyout option is exercised by that bidder. A key observation is that

in the temporary case the buyout price affects only the probability, but not the time, of buyout

exercise. In contrast, a permanent buyout option is available to all arriving bidders until exercised,

and is therefore exercised with probability 1 in this limiting regime, provided p < v̄. However, the

buyout price in the permanent case does affect the time at which the option is exercised, confronting

the seller with the tradeoff of selling time vs. selling price. The optimal balance in this tradeoff is

dictated by the relative values of α and λ, explaining the impact of the ratio µ = lim
λ→+∞

α
λ

on the

optimal permanent buyout price p3(µ) shown in (10): as noted earlier p3(µ) is decreasing with µ,

which reflects that a seller more time sensitive or facing fewer bidders should reduce the permanent

buyout price. The fact that lim
µ→+∞

p3(µ) = p1 reflects that in the extreme case where the seller’s time

sensitivity is very high relative to the bidders’ arrival rate, the seller obtains negligible utility from

waiting for a subsequent bidder beyond the first one and should then, as in the temporary case,

maximize the revenue obtained from the first bidder alone. Finally, we point out that the argmax

operand defining p3(µ) in (10) is equal to the seller’s expected discounted revenue J(p) obtained

by offering the item for a fixed posted price of p to an infinite Poisson arrival stream of bidders

with valuation distributions given by F – this is easily seen by substituting terms and solving for

J(p) in

J(p) = E[e−αX ] ((1−F (p))p+F (p)J(p)) ,
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where X denotes an exponential random variable with mean 1/λ. That is, in this limiting regime the

impact of the finite time horizon T and regular bidding on the optimal buyout price are effectively

obliviated by the high seller time sensitivity and bidders’ arrival rate.

4.4. Numerical Experiments. In this section we compare the equilibrium behavior, optimal

buyout price and seller’s revenue associated with the temporary and permanent buyout options,

drawing on both numerical experiments and our theoretical results from the previous subsections.

While we only report here the results from a small number of experiments due to length restrictions,

we found those to be representative of a larger set of scenarios.

A first insightful exercise is to compare the bidders’ equilibrium buyout threshold functions νtmp

and νprm (see statements of Theorems 1 and 3) corresponding to the same buyout price and market

environment. For illustration purposes, Figure 1 shows a plot of these two functions for the specific

case ptmp = pprm = 350, λ = 0.25, T = 16, β = 0.03; as in all other experiments to be discussed in

this section we assume that valuations are uniformly distributed on [50,500].
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Figure 1 Equilibrium threshold valuation in temporary and permanent buyout price auction

A first observation is that both curves shown in Figure 1 are non-decreasing, which can be easily

established for the general case from (2) and (6). That is, either type of buyout option remaining

open as time goes by indicates reduced competition among bidders participating in the auction

and therefore progressively makes the buyout option less attractive relative to submitting a regular

bid, so that fewer bidders will decide to exercise it. The temporary threshold function νtmp does lie

above the permanent threshold function νprm however, suggesting that the effect just described is

less pronounced with a permanent option than with a temporary option. Indeed, when participants

follow the equilibrium strategy T [νtmp] described by (1) and Theorem 1, the fact that a temporary
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option is still open when a bidder arrives indicates to him that he is the first bidder and that the

only competition he is likely to face should he submit a regular bid will come from bidders who are

yet to arrive. On the other hand, under the strategy profile P[νprm] described by (5) and Theorem

3, if a permanent option is still open when a bidder arrives he can only infer that all the bidders

who have already arrived have valuations lower than the value of the threshold valuation at the

time of their respective arrivals. Consequently, for such a bidder the decision to submit a regular

bid appears less attractive relative to exercising the buyout option than it is for a bidder facing an

open temporary option in circumstances that are otherwise the same. As a result, with identical

buyout prices more bidders will tend to exercise a permanent option than a temporary one. Finally,

note that the initial values νtmp(0) and νprm(0) shown in Figure 1 are identical, which is intuitive

but can also be established analytically by calculating the right-hand sides of (2) and (6) for t = 0.

Next we compare the optimal permanent and temporary buyout prices for the special case when

participating bidders are very impatient, i.e. β →∞. The optimal temporary (resp. permanent)

buyout price is obtained by solving numerically the optimization problem obtained when substitut-

ing the very impatient bidder condition in (8) (resp. (9)). These optimal buyout prices are plotted

in Figure 2 for various values of the bidder arrival rate λ and seller time-sensitivity α.
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Figure 2 Optimal temporary and permanent buyout prices with impatient bidders

The graph in Figure 2 confirms the intuition that both optimal buyout prices should increase

with the bidder arrival rate and decrease with seller time-sensitivity. Although not reported here,

other experiments show that these prices also decrease with the bidders’ time-sensitivity. Another
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observation is that the optimal buyout price is higher with a permanent option than with a tem-

porary one; our explanation follows from examining the individual terms of the equation for the

seller’s total expected discounted revenue

E[pe−ατbuy |buyout]P (buyout)+E[e−αT1{N(T )>0}max(v, v
(2)
N(T ))|no buyout]P (no buyout), (11)

where the first term is the expected discounted revenue from the buyout auction (τbuy denotes

the conditional buyout exercise time), while the second is the expected discounted revenue from

regular bidding. For a given buyout price p, the permanent buyout option is exercised with higher

probability and, conditional on its exercise, later on average than the temporary option (it may

be exercised by other bidders besides the first one). This suggests that the price maximizing the

first term alone in (11), which is a unimodal function of the buyout price, will be larger with a

permanent option than with a temporary one. Figure 1 also indicates that for any given buyout

price both the expectation and the probability forming the expected revenue from bidding (second

term in (11)), which is increasing in the buyout price, will be smaller with a permanent option than

with a temporary one. The buyout price value at which the marginal decrease in expected buyout

revenue equals the marginal increase in expected bidding revenue in (11) should thus be higher with

a permanent option than with a temporary option. Finally, note that the higher the seller time-

sensitivity α, the larger the difference between the conditional buyout revenues E[pe−ατbuy |buyout]

for permanent and temporary options, explaining the larger difference between optimal permanent

and temporary buyout prices observed in Figure 2.

Our last set of experiments focuses on the seller’s relative gain in utility from an auction

with temporary and permanent buyout options over an auction with no buyout price, that is

(E[US
tmp(p∗tmp)] − E[US

nb])/E[US
nb] or (E[US

prm(p∗prm)] − E[US
nb])/E[US

nb], where E[US
tmp(p∗tmp)] and

E[US
prm(p∗prm)] denote the seller’s expected utility from an auction with optimal temporary and per-

manent buyout options respectively, and E[US
nb] the seller’s expected utility from the basic auction

mechanism without a buyout price described in §3.2. As described in §4.3 the optimal buyout prices

p∗tmp and p∗prm are obtained by performing a simulation-based line search; for all values estimated

by simulation, the true value is within 1% of the estimate with 95% confidence. The results from

these experiments are plotted in Figure 3 and 4, which show the seller’s relative utility increase just

defined for both option types in various environments. A first observation is that, as intuition sug-

gests, the relative gain from both types of buyout option generally increases with both the seller’s

time sensitivity α and the bidders’ time sensitivity β – the possibility of selling the item earlier is

more valuable for a time-sensitive seller, and bidders with a high time-sensitivity are willing to pay
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Figure 3 Relative increase in seller’s utility from a buyout option (β = 0.03)

more if they can get the product earlier. Figure 4 suggests however that the impact of the bidders’

time sensitivity on the relative utility gain from a buyout option becomes insignificant when the

expected number of bidders λT becomes moderately large. On the other hand, the expected utility

gain from a buyout option always seems to increase substantially with the seller’s time sensitivity,

independently of the expected number of bidders. Our interpretation is that while the seller’s time

sensitivity directly impacts his utility, the effect of the bidders’ time sensitivity is more indirect

in that it only affects the bidders’ relative preference between the buyout option and the regular

online auction, without otherwise affecting the seller’s discounted revenue from either alternative.

Moreover, when the number of bidders is large, affecting the probability that a single one of them

will exercise the buyout option for a given time-sensitivity β becomes relatively easier.

Another important finding is that the optimal seller’s utility derived from a permanent buyout

option is always larger than that obtained with a temporary buyout option, as can be seen from

comparing the two vertical scales in Figure 3 and 4; although unable to show this analytically,

we have more generally observed this in all the experiments we have conducted besides the ones

reported here. Within the strict boundaries of our model definition, a permanent buyout option

seems like a more powerful instrument than a temporary one, because it allows to leverage the

time-sensitivity of all participating bidders as opposed to only the first one. This interpretation

ignores some of the features of actual online auctions that our model does not capture however,

and we come back to this issue in §6.

Finally, we observe that while the increase in seller’s utility achieved by introducing a temporary

buyout option (Figures 3(a) and 4(a)) is decreasing in the bidder arrival rate, with a permanent
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Figure 4 Relative increase in seller’s utility from a buyout option (α = 0.03)

buyout option the exact opposite occurs (Figures 3(b) and 4(b)). Our interpretation is that since

a temporary buyout option is only available to the first bidder, its relative impact diminishes in an

environment with a high expected number of participants. On the other hand, a permanent option

is potentially available to all arriving bidders and thus its relative impact does increase with the

expected number of bidders.

5. Dynamic Buyout Prices
In this section we study the mechanism obtained when the buyout price, either temporary or per-

manent, is no longer constant but instead varies over time according to a pre-announced trajectory

[p(t)]t∈[0,T ]. While we are not aware of any actual auction site currently implementing such a fea-

ture, our goal is to develop a theoretical analysis providing some prediction for what the outcome

of such mechanism is likely to be (in §5.1), and bound the maximum expected revenue achievable

by the seller when setting this buyout price trajectory optimally (in §5.2).

5.1. Outcome Prediction. In an auction with a temporary buyout price following a dynamic

trajectory [p(t)]t∈[0,T ], consider the extension of strategy T [ν] obtained for any function ν : [0, T ]→
[v, v̄] by substituting p(t) with p in the first line of (1); for notational simplicity we will still refer to

the resulting strategy as T [ν]. The following result establishes that any non-decreasing continuous

threshold function ν can be supported by some price trajectory in equilibrium:

Theorem 5. For any non-decreasing continuous function ν : [0, T ]→ [v, v̄], define function p :

[0, T ]→ [v, v̄] as

p(t) = ν(t)− e−(λ+β)(T−t)

∫ ν(t)

v

eλ(T−t)F (x)dx. (12)
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The symmetric strategy profile T [ν] is then a Bayesian Nash equilibrium for the auction with

temporary buyout price trajectory [p(t)]t∈[0,T ].

Likewise, in an auction with a permanent buyout price following trajectory [p(t)]t∈[0,T ], for any

function ν : [0, T ]× [v, v̄]∪ {0}→ [v, v̄] we can consider the extension of strategy P[ν] obtained by

substituting p(t) with p in the first line of (5), and keep using the same notation. The following

result is the exact analogue of Theorem 5 for the case of a permanent buyout option:

Theorem 6. For any continuous function ν : [0, T ]× [v, v̄]∪{0}→ [v, v̄] such that ν(t,0) , ν(t)

is non-decreasing in t and ν(t, I) is decreasing in I for all t, define function p : [0, T ]→ [v, v̄] as

p(t) = ν(t)− e−β(T−t)Et

[∫ ν(t)

v

∏N(t)

i=1 F
(
min(ν(ti), x)

)
∏N(t)

i=1 F
(
ν(ti)

)
(
F (x)

)N(t,T )
dx

]
(13)

where the expectation Et is with respect to the number N(t) and epochs t1, ..., tN(t) of arrivals in

[0, t) of a non-homogeneous Poisson process with rate λF
(
ν(τ)

)
with τ ∈ [0, t), and number N(t, T )

of arrivals in (t, T ] of a Poisson process with rate λ. The symmetric strategy profile P[ν] is then a

Bayesian Nash equilibrium for the auction with permanent buyout price trajectory [p(t)]t∈[0,T ].

Theorems 5 and 6 have similar interpretations: for both the temporary and permanent case, any

threshold function ν that is continuous and non-decreasing with time corresponds to a buyout price

trajectory such that the strategy profile T [ν] or P[ν] forms an equilibrium. In fact, the negative of

the second terms in the right-hand side of (12) and (13) both represent the expected utility that a

bidder arriving at time t and having a valuation equal to the threshold would obtain by submitting

a regular bid (as opposed to exercising the buyout option) in the corresponding game. Therefore,

both (12) and (13) express that the buyout price p(t) they define is such that a bidder arriving

at time t with a valuation equal to the threshold ν(t) would be indifferent between submitting

a regular bid and exercising the buyout option (provided it is still open) at that price. However,

setting the buyout price p(t) according to (12) or (13) is only a necessary condition in general,

and would not eliminate alone the possibility that a bidder could benefit from waiting beyond his

arrival before choosing between these two options – this could occur for example if the buyout

price is known to substantially decrease in the future, and would give rise to a competitive optimal

stopping situation in which neither strategy T [ν] or P[ν] would form an equilibrium. Theorem 5

and 6 actually establish in their respective settings that no rational bidder will ever find such wait

to be more profitable a priori than acting immediately when the target valuation threshold is non-

decreasing over time. Note that this does not imply that the buyout price itself is non-decreasing –

in fact, for a constant valuation threshold ν(t) = ν ∈ [v, v̄], which satisfies the conditions of Theorem
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5, the price trajectory defined by (12) is decreasing. Only, in the incoming bidders’ assessment

it does not decrease fast enough for the possible utility increase derived from waiting to strictly

overcome time discounting and the risk associated with the arrival of another bidder while the

option is still open.

Note that, as is the case with static buyout options, there may exist other equilibria for the tem-

porary and permanent dynamic buyout price games besides those characterized here. In contrast

with the static buyout case unfortunately, we have not been able to develop any formal robustness

results rationalizing the use for outcome prediction of these specific equilibria among all possible

ones. We do however make the observation that the following form of reciprocal holds for Theorems

5 and 6, as should be clear from their respective proofs: for every continuous valuation thresh-

old curve ν that is strictly decreasing with time on some interval, there exist bidders whose best

response to the symmetric profile T [ν] (resp. P[ν]) will not be T [ν] (resp. P[ν]). This suggests

that any equilibrium we may be ignoring is likely to involve strategic and possibly risky waiting

behavior relative to exercising the buyout option, which in practice may be unattractive to some

bidders for reasons that our model does not capture (e.g. cost of auction monitoring efforts).

5.2. Seller’s Optimization Problem. In this subsection we study the maximum expected

discounted revenue achievable by the seller through the choice of a temporary or permanent buyout

price trajectory [p(t)]t∈[0,T ], using the equilibria characterized in Theorems 5 and 6 as a prediction

of the relevant game outcome.

An important implication of Theorems 5 and 6 is that, within the range of equilibria consid-

ered, finding an optimal price trajectory [p(t)]t∈[0,T ] exactly corresponds to finding its associated

continuous and non-decreasing threshold function ν : [0, T ]→ [v, v̄] subject to either (12) or (13).

Denoting by C+ the set of all such functions and starting with the case of a temporary option, for

ν ∈ C+ and [p(t)]t∈[0,T ] given by (12), the seller’s expected discounted revenue conditional on the

first bidder arriving at t1 = t when all bidders follow strategy T [ν] is given by

utmp(ν(t), t) , E[US
tmp(ν)|t1 = t] = e−αTEt[max(v, v

(2)
N(t,T )+1)|v1 ≤ ν(t)]F (ν(t)) (14)

+e−αt
(
ν(t)− e−(λ+β)(T−t)

∫ ν(t)

v

eλ(T−t)F (x)dx
)(

1−F (ν(t))
)

where the definition of Et, N(t, T ) and v
(2)
N(t,T )+1 is the same as in (8) – note that the instantaneous

buyout price p(t) has been substituted with the right-hand side of (12), and that the notation

utmp(ν(t), t) introduced shows explicitly that the right-hand side of (14) only depends on the value

of ν at t. The seller’s revenue maximization problem can thus be stated as

Z∗
tmp , sup

ν∈C+

E[US
tmp(ν)] = sup

ν∈C+

∫ T

0

utmp(ν(t), t)λe−λtdt. (15)
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The next proposition establishes that a discretized version of problem (15) provides an upper

bound for the maximum seller’s expected discounted revenue Z∗
tmp just defined:

Proposition 3. Consider any partition τ , (τj)j∈{0,...,m} of [0, T ] into m subintervals such that

τ0 = 0 < τ1 < ... < τm = T , define 4τj , τj+1 − τj for j ∈ {0, ...,m− 1} and let 4τ , maxj4τj be

the mesh size of τ . Then

Z∗
tmp ≤ Z̄tmp(τ) , max

(νj)j∈{0,...,m}

m−1∑
j=0

utmp(νj, τj)λe−λτj4τj

subject to: v≤ νj−1 ≤ νj ≤ v̄ for all j ∈ {1, ...,m}
(16)

From a practical standpoint, Proposition 3 provides a way to construct an upper bound for

the seller’s maximum expected discounted revenue by solving a nonlinear program. Note however

that the function utmp appearing in the objective of (16) may not be always easy to express

analytically, because of the expectation Et in (14). Also, we do not provide here any description of

the relationship between the mesh size of a partition τ (or size of nonlinear program (16)) and the

quality of upper bound Z̄tmp(τ). For our numerical experiments in §5.3, we focus on the special

case of uniform valuations, for which a closed-form expression for utmp is readily derived.

Turning now to the case of a permanent buyout option, the seller’s revenue maximization problem

can be stated similarly as supν∈C+ E[US
prm(ν)], where E[US

prm(ν)] is obtained by substituting p

with (13) and νprm(p, t) with ν(t) in (9). While we were able to derive an upper bound for that

optimization problem using some approximations and an approach similar to that employed when

deriving Z̄tmp(τ), those approximations were quite coarse. Consequently, the resulting bound proved

too loose to support any assertive statement, as evidenced by the fact that the piecewise constant

solution obtained by solving the problem analogous to (16) for the permanent case performed

significantly worse in all our simulation experiments than all other policies tested, including not

using a buyout price at all. Consequently, the experimental results we report for dynamic permanent

buyout prices in the next section are not quite as conclusive as for dynamic temporary buyout

prices.

5.3. Numerical Experiments. In this subsection we compare in different market environ-

ments the utility derived by the seller with a dynamic buyout price auction, a static buyout price

auction, and an auction with no buyout price; the results presented are representative of a much

larger set of experiments than those reported here.

Let E[US
tmp(p∗tmp)], E[US

prm(p∗prm)] and E[US
nb] be as defined in §4.4. As before, estimates of those

terms are obtained by simulation, and are within 1% of the true values with 95% confidence. For

both temporary and permanent options, we also consider the special case of the seller’s revenue
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optimization problem whereby maximization is restricted to the set of fixed threshold valuation

functions, i.e. ν(t) = v for all t. The optimal fixed temporary (resp. permanent) threshold valu-

ation v∗tmp (resp. v∗prm) can then be computed by solving numerically the single variable concave

maximization problem obtained by the above substitution. Slightly abusing notation, we denote

by E[US
tmp(v∗tmp)] and E[US

prm(v∗prm)] the corresponding expected utility of the seller in a temporary

and permanent buyout auction respectively. For the temporary buyout option we also compute the

upper bound Z̄tmp(τ) defined in Proposition 3, where τ is a partition of [0, T ] into 500 subinter-

vals of equal length. We report the values of all the terms above relative to the seller’s expected

discounted revenue from an auction with no buyout price in Table 3.

α 0.01 0.03
λT 4 8 16 4 8 16

E[US
tmp(p∗tmp)]−E[US

nb]

E[US
nb

]
2.87% 2.07% 1.49% 12.89% 10.34% 8.79%

Temporary E[US
tmp(v∗tmp)]−E[US

nb]

E[US
nb

]
3.65% 2.02% 1.40% 13.64% 10.31% 8.60%

Z̄tmp(τ)−E[US
nb]

E[US
nb

]
4.13% 2.87% 3.05% 13.91% 10.78% 10.38%

Permanent
E[US

prm(p∗prm)]−E[US
nb]

E[US
nb

]
6.55% 5.78% 6.88% 23.43% 25.22% 30.08%

E[US
prm(v∗prm)]−E[US

nb]

E[US
nb

]
7.30% 6.68% 7.49% 24.57% 26.13% 30.47%

Table 3 Utility increase achieved by fixed buyout price and fixed threshold valuation auctions

A first observation from Table 3 is that the relative performances of the optimal static buyout

option and the dynamic buyout option with optimal static valuation are within 1.5% of each other

in both the temporary and the permanent case for all environments considered. In the temporary

case, these two relative performances are furthermore always within 2% of the maximum relative

performance achievable by any dynamic buyout price policy, as shown by a comparison with the

relative value of the upper bound Z̄tmp(τ). Our results therefore support the prediction that online

auction sellers stand to gain relatively little from using a dynamic temporary buyout price rather

than a static one.

In the permanent case, a similar upper bound for the maximum revenue achievable with a

dynamic buyout price is unfortunately not available to us, and our results are therefore not as

conclusive. However, the fact that the dynamic buyout option with optimal static valuation and

optimal static buyout price perform very similarly in both cases and are provably very close to

optimal in the temporary case indicates that they may also be close to optimal in the permanent

case. In light of the higher implementation complexity and possible negative reactions from bidders

faced with the untested concept of a dynamic buyout price, our results thus suggest that one should
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at least have a pessimistic prior about any potential gain from a dynamic permanent buyout price

relative to a static one.

6. Conclusion

We now summarize the answers to the three motivational questions raised in the introduction

obtained from the analysis just presented:

Question 1: How should a seller using an online auction set the buyout price (if at all)? Our

equilibrium analysis of an auction with a buyout option produces a prediction for the seller’s

expected discounted revenue resulting from a given value of the buyout price, which we can then

use to formulate and analyze an optimization problem where this buyout price is the main decision

variable. While this problem is difficult to solve analytically in the general case, for practical

purposes its solution may still easily be computed with high precision using simulation. From a

qualitative standpoint, this model and our numerical experiments confirm the intuition that the

optimal buyout price for the seller increases with the expected number of bidders and the bidders’

time-sensitivity, and decreases with the seller’s time-sensitivity. Our results also suggest that when

facing a given market environment, the value of the permanent buyout price which is optimal

for the seller is higher than that for a temporary buyout price. Finally, our asymptotic analysis

of the seller’s optimization problem yields, in some special cases, closed-form expressions for the

optimal buyout price that may be potentially useful to practitioners (the reader will find more

such expressions in Gupta (2006)). But it also generates some mechanism design insights for the

dynamic market environment we consider that extend those described in Harris and Raviv (1981)

for a static market environment. Specifically, in our model where the relative values of the seller’s

and bidders’ time sensitivity and the bidder arrival rate effectively capture market power and the

ratio between supply and demand, a time-sensitive seller facing few patient bidders should use a

fixed posted price, while a patient seller facing many bidders should bypass the buyout option and

only use a regular auction mechanism; the hybrid mechanism and smooth transition enabled by a

buyout option is appropriate for a range of market environments between those two extremes.

Question 2: What are the implications of using a temporary buyout option relative to a permanent

one? Our equilibrium analysis suggests that with a temporary option the first bidder to submit a

regular bid will also do so immediately upon arrival, but with a permanent option all regular bids

should be submitted shortly before the end of the auction. Note that our model does not provide

any prediction for when regular bids from the second and subsequent bidders will be submitted

in an auction with a temporary buyout option. In practice, the timing of bid submissions is also

affected in various ways by features not captured here; for example a high cost of monitoring the
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auction could hasten bid submissions, while common value could delay them. However, our model

does suggest that the marginal impact of a permanent buyout option relative to a temporary one is

to delay the first bid (presumably a negative for the seller if bidding activity may be attracting more

bidders), and concentrate bidding activity near the end of the auction. From that perspective, we

find it remarkable that Amazon’s online auction site, one of the largest with a permanent buyout

option, also features a rule whereby the first bidder is offered a 10% discount on the final selling

price should he win the auction. However, this obvious incentive for early bidder involvement is

not used on any site with a temporary buyout option we are aware of, most prominently eBay.

Another relevant remark is that automatic activity-based bidding period extension rules, which

Roth and Ockenfels (2002) show to reduce bidding concentration near the end of the auction,

are predominantly featured by auction sites using a permanent buyout option (e.g. Amazon and

Yahoo!), and conspicuously absent from the site eBay. Taken together, these observations lend

support in our view to the validity of our analysis and robustness of our model predictions. This

paper thus sheds some light on, but does not resolve, the issue of which type of buyout option is

preferable from a seller’s standpoint. A first insight we obtained is that the relative attractiveness

for the seller of a temporary buyout option decreases with the expected number of bidders, whereas

it increases in the case of a permanent buyout option. Furthermore, the seller’s expected discounted

revenue derived from an optimal permanent buyout option was larger than that obtained with an

optimal temporary option in all the numerical experiments we performed with our optimization

model. In practice however, the higher incentives for late bidding associated with the permanent

option may negatively impact the seller’s revenue for reasons that our model does not capture (e.g.

signaling effect of bidding activity). The theoretical results just mentioned thus do not justify in

our view an unambiguous recommendation to always use a permanent option over a temporary

one, except perhaps for very time-sensitive sellers in environments with a high expected number of

bidders, the conditions under which the predicted difference in expected discounted revenue was

largest in our experiments. This nuanced interpretation also seems justified by the continued use

by eBay (the largest and arguably most successful auction site currently operating) of a temporary

buyout option.

Question 3: What is the potential benefit associated with using a dynamic buyout price that may

vary as the auction progresses? While our results are not quite as conclusive in the permanent

case as in the temporary one, they still suggest that the potential revenue increase enabled by such

dynamic buyout price is small, seemingly not justifying the associated implementation complexity

and possible negative reactions from bidders; the fact that to the best of our knowledge no dynamic

buyout price has ever been used in any actual auction site may also be corroborating these findings.
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We mention in closing several possible extensions of this work. Although as stated in §2 we

focused in this paper on time-sensitivity as a primary driver for the use of buyout options, it turns

out that the structure of the equilibrium strategy derived in §4.1 remains the same when bidders

are also assumed risk averse with CARA utility function U(v, t, τ) , 1− e−re−β(τ−t)(v−x) (r > 0 is

the coefficient of risk aversion, see §3.1 for other notation). That is, Theorem 1 can be extended to

show that for a temporary buyout price auction with such bidders, there exists a threshold function

ν
(r)
tmp such that T [ν(r)

tmp] defines a Bayesian Nash equilibrium. Furthermore, it follows from Jensen’s

inequality that ν
(r)
tmp ≤ νtmp. Intuitively, the riskless buyout option is more attractive to risk averse

bidders relative to regular bidding (which involves both winning and selling price uncertainty),

resulting in a lower buyout valuation threshold. The results for the permanent buyout price case

stated in §4.2 can be similarly generalized for such bidders. A more complete study of the impact

of seller and bidders’ risk aversion on the buyout price in this dynamic environment remains to

be conducted however. While we conjecture that the qualitative impact of seller and bidder risk-

aversion on the optimal buyout price is similar to that of our time-sensitivity discount factors α

and β because in this game the riskier outcome (auction, as opposed to buyout) is also more distant

in time, we leave this issue aside for future research. Also, while focusing on the seller’s perspective

seemed justified in this first study because sellers typically choose auction sites and parameters, it

would be valuable to explore the impact of buyout options on bidders’ utilities. Finally, we would

like to extend our analysis to the case of multi-item auctions, and also consider dynamic buyout

prices that would not be pre-determined but rather modified according to actual bidding activity

during the auction.
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