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Buyout options allow bidders to instantly purchase at a specified price an item listed for sale through an
online auction. A temporary buyout option disappears once a regular bid is submitted, whereas a permanent

option remains available until it is exercised or the auction ends. Such buyout price may be static and remain
constant throughout the auction, or dynamic and vary as the auction progresses. We formulate a game-theoretic
model featuring time-sensitive bidders with independent private values and Poisson arrivals but endogenous
bidding times to answer the following questions: How should a seller set the buyout price (if at all)? What are
the implications of using a temporary buyout option relative to a permanent one? What is the potential benefit
associated with using a dynamic buyout price? For all buyout option types we exhibit a Nash equilibrium in
bidder strategies, argue that this equilibrium constitutes a plausible outcome prediction, and study the problem
of maximizing the corresponding seller revenue. Our numerical experiments suggest that when any participant
is time sensitive, the seller may significantly increase his utility by introducing a buyout option, but that dynamic
buyout prices may not provide a substantial advantage over static ones. Furthermore, whereas permanent
buyout options yield higher predicted revenue than temporary options, they also provide additional incentives
for late bidding and may therefore not be always more desirable.
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1. Introduction
When conceived in the 1990s, online auctions ar-
guably suffered from two drawbacks relative to
posted-price mechanisms: waiting time and price
uncertainty. Many auction sites have since introduced
a new feature known as a buyout option, which offers
potential buyers the opportunity to instantaneously
purchase at a specified price an item put for sale
through an online auction. Augmented with this
option, an online auction becomes a hybrid between
a fixed-price catalogue and a traditional auction.
Buyout options are now widespread and have sig-

nificant economic importance: In the fourth quarter
of 2003 alone, fixed-income trading (primarily from
the buyout option “Buy-It-Now”) contributed $2 bil-
lion or 28% of eBay’s gross annual merchandise sale;1

other examples of buyout options include Yahoo!’s
“Buy Price,” Amazon’s “Take-It,” and uBid’s “uBuy
it!” Remarkably, buyout options in these large auction

1 “Investor Relations” (eBay); see also Reynolds and Wooders
(2003).

sites currently differ in one important aspect: their
time frame. As soon as a regular bid above the reserve
price is submitted, eBays Buy-It-Now option disap-
pears so it is called temporary; in contrast Yahoo!,
Amazon, and uBid’s options remain until they are
exercised or until the auction in which they are fea-
tured ends, so they are called permanent (Hidvégi et al.
2006). However, all auction sites just mentioned (and
for that matter all auction sites we are aware of) use
static buyout options, meaning that the buyout price
is fixed at the outset and may not be modified during
the auction.
These observations motivate the following ques-

tions:
1. How should a seller using an online auction set

the buyout price (if at all)?
2. What are the implications of using a temporary

buyout option relative to a permanent one?
3. What is the potential benefit associated with

using a dynamic buyout price that may vary as the
auction progresses?
This paper contains the description and analysis

of a game-theoretic model designed to answer these
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questions in a stylized setting. It is organized as fol-
lows: After a discussion of our contribution relative
to the existing literature in §2, we present and discuss
our model in §3. Section 4 contains an equilibrium
analysis for the temporary buyout option (in §4.1),
the permanent buyout option (in §4.2), and a study of
the associated seller’s optimization problem (in §4.3).
A comparative discussion of the insights obtained for
both types of buyout options, relying on numerical
experiments and our theoretical results of the previ-
ous subsections, is then provided in §4.4. We next dis-
cuss dynamic buyout prices in §5, where §5.1 focuses
on outcome prediction, §5.2 on the resulting optimiza-
tion problem, and §5.3 on numerical experiments. Sec-
tion 6 contains our concluding remarks and all proofs
can be found in a technical supplement (provided in
the e-companion).2

2. Literature Review and Paper
Contributions

Although the literature on auction theory is large,
existing research work on buyout prices is recent and
relatively limited. Indeed, the comprehensive survey
of the auction literature by Klemperer (1999) makes
no mention of buyout prices, and although Lucking-
Reiley (2000) observes the use of buyout prices in his
survey of internet auction practices, he points out that
he is “not aware of any theoretical literature which
examines the effect of such a buyout price in an auc-
tion.” The theoretical papers written since on buyout
prices are listed in Table 1, which shows some of their
model features. The table also shows which one(s) of
the three motivational questions listed in the previous
section they address.
A first set of papers relies on simple models to shed

light on why the addition of a buyout option may
increase the seller’s revenue under various circum-
stances. Kirkegaard and Overgaard (2003) show that
when two bidders with multi-unit demand face two
sequential auctions of one item each, the seller may
benefit from using a buyout option in the second auc-
tion because of the information revelation occurring
in the first. Budish and Takeyama (2001) show that
a seller facing two risk-averse bidders may improve
expected profit by using an optimal permanent buy-
out price, and Hidvégi et al. (2006) show that this last
observation still holds in an extended model with an
arbitrary number of bidders and continuous valuation
distributions.
Among the papers focusing on the impact of

risk aversion, Reynolds and Wooders (2003) deserves

2 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.

special mention, as it appears to be the only theo-
retical paper besides ours comparing temporary and
permanent buyout options in the same unified frame-
work, which seems an indispensable methodological
requirement when addressing the second motiva-
tional question listed in §1. However, their analysis
ignores the issues of time sensitivity and bid-arrival
times altogether. As a first consequence, it fails to
identify the different implications of temporary and
permanent buyout options on bidding concentration
near the end of the auction (see also the discussion of
Caldentey and Vulcano 2007 below). Secondly, in the
model of Reynolds and Wooders (2003) all participat-
ing bidders (who are not differentiated by their arrival
time) may exercise both types of options at the out-
set, with success determined by tie probabilities. The
first bidder’s strategic option in practice to remove
a temporary buyout option is thus not captured, and
neither is the near certainty that a bidder will get the
item when exercising either type of buyout option.
This casts some doubts on the validity or at least gen-
erality of their analysis, because the key difference
between temporary and permanent options is the set
of bidders to whom the option is available. Finally,
we point out that Reynolds and Wooders (2003) do
not address motivational Question 1 and, like all other
papers cited here, Question 3 from §1.
More generally, the discussion forums of experi-

enced online-auction users suggest that time sensitiv-
ity of both sellers and buyers is an important reason
for using a buyout option in practice (Gupta 2006).
The importance of time sensitivity on buyout exer-
cise is also confirmed by the survey of auction users
reported in Wan et al. (2003). In its user guidelines,
eBay itself states the reduction in waiting time as the
very first reason why both sellers (“Sell your items
fast”) and buyers (“Buy items instantly!”) would want
to use their Buy-It-Now feature (eBay). Recogniz-
ing this, a second and more recent subset of papers,
including ours, investigates models of buyout options
that capture explicitly the time sensitivity of partici-
pants and the dynamic arrivals of bidders.
In particular, Caldentey and Vulcano (2007) use

a model similar to ours in several respects (Poisson
arrival of bidders, utility functions with exponen-
tial time-discounting) in order to study equilibrium
behavior and optimal price for a “dual auction and
list-price channel” resembling an auction with a per-
manent buyout option. In Caldentey and Vulcano
(2007) however, when making decisions during the
bidding period buyers are assumed to ignore past
bid values and current auction asking price, and
even whether the item listed is still available. In our
model (as is currently the case on all major auc-
tion sites), bidders are provided with that informa-
tion, and their decisions may change accordingly. The
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Table 1 Existing Theoretical Models of Buyout Options

Motivational
question(s)

Number of bidders Auction participants Bidding times Buyout option addressed

Two Arbitrary Unknown Risk-averse Time-sensitive Not captured Exogenous Endogenous Temporary Permanent 1 2 3

Kirkegaard and • • • •
Overgaard (2003)

Budish and • • • • •
Takeyama (2001)

Hidvégi et al. (2006) • • • • •
Reynolds and • • • • • •

Wooders (2003)
Caldentey and • • • • •

Vulcano (2007)
Mathews • • • • • •

(2003a, b; 2004)
This paper • • • • • • • •

information structure assumed in Caldentey and Vul-
cano (2007) is thus less realistic, but more importantly
it could not support the comparative study between
permanent and temporary buyout options that we
undertake here. Indeed, the key differences between
bidder strategies in the temporary and permanent
cases stems from bidders’ different strategic options
and different assessment of the competition they face
when confronted with given past bidding activity
(see §4.4), the very information assumed away in
that paper. As a result, the information model of
Caldentey and Vulcano (2007) is too coarse to predict
any difference in bidder behavior between temporary
and permanent buyout option cases. Secondly, bid-
ders in Caldentey and Vulcano (2007) are assumed to
bid or exercise the buyout option instantly on their
arrival, whereas in practice bidding activity concen-
trates near the end of the auction (Roth and Ockenfels
2002). Because bidding times are endogenous and an
integral part of the bidders’ strategy in our model, we
are able to show that using a permanent option likely
increases last-minute bidding relative to a temporary
one. The issue of last-minute bidding seems impor-
tant to major auctioneers (Amazon.com offers a 10%
discount to the first bidder in order to induce early
bidding), so that these model differences are material.
We point out however that Caldentey and Vulcano
(2007) investigate the multi-unit case, whereas we
only consider the case of a single item.
Finally, Mathews (2003a, b; 2004) investigates vari-

ations of a model of a temporary buyout option
featuring time-sensitive participants, dynamic bidder
arrivals and endogenous bidding times. This model
also assumes uniform valuations, and that the total
number of bidders is fixed at the outset and known
to all. As a result, these papers fail to capture that
the availability of the temporary buyout option con-
veys some important information to an incoming bid-
der about the amount of competition he is likely to

face in the auction, which obviously affects the attrac-
tiveness of exercising the buyout option relative to
placing a normal bid. In Mathews’s model, the first
bidder does not modify his assessment of the likely
number of competing bidders, regardless of whether
he arrives at the very beginning or at the very end of
the bidding period. This results in bidder equilibrium
strategies that are qualitatively different from those
we derive: When bidders’ time sensitivity becomes
very small in Mathews (2003a), the valuation thresh-
old triggering the buyout option exercise becomes
independent of the bidder’s arrival time (this is easily
seen in Mathews [2003b, 2004], which consider time-
insensitive bidders). In contrast, the buyout threshold
function in our model does depend on (specifically,
increases with) the first bidder’s arrival time, even in
the limit where bidders are time insensitive. Further-
more, Mathews’s model of bidder arrivals is not spe-
cific enough to support a comparative study between
temporary and permanent buyout options: A bidder
finding the buyout option still available likely infers
that he is the first to arrive in the temporary case, but
only that previously arrived bidders did not decide to
exercise the buyout option in the permanent case. As
a result, a bidder arriving to an auction with a given
buyout price and no past bidding activity is more
likely to exercise a permanent option than a tem-
porary one. Because bidders’ belief about their com-
petitors’ arrival process is not specified in Mathews
(2003a, b; 2004), this important issue (see our Figure 1
and following comments) could not be captured with-
out a more complete information structure of the
type we propose. Finally, although Mathews (2004)
exhibits as we do an equilibrium whereby the first
bidder bids or exercises the temporary buyout option
immediately, the paper does not provide any argu-
ment why this specific equilibrium constitutes a better
outcome prediction than any of the many other ones.
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It should be noted, however, that Mathews (2003b)
explores the issue of bidder welfare, which we do not
address here.
We highlight in closing that this paper is to the best

of our knowledge the first to
• present an optimization study generating quali-

tative insights on whether sellers should use a posted
price, a pure auction, or an auction with a buyout
price when confronted with various time sensitivities
and bidder arrival rates;
• compare temporary and permanent buyout op-

tions using a unified modeling framework capturing
the impact of participants’ time-sensitivity;
• analyze dynamic buyout prices.

Note that our model feature of endogenous bidding
times is also key for that purpose, as for example bid-
ders knowing of a future decrease of the buyout price
could not realistically be assumed to bid or buyout
upon their arrival regardless.

3. Model
In this section, we first describe our game-theoretic
model, focusing on the market environment in §3.1
and the auction mechanism in §3.2. We then discuss
its realism in §3.3.

3.1. Market Environment
We consider a monopolistic seller opening at time 0
a market for one item. From that point on, he faces an
arrival stream of potential buyers (or bidders) which
is nonobservable per se, but is correctly believed
by all participants to follow a Poisson process with
a known, exogenous, and constant rate �. Bidders’
valuations (or the prices at which they are indiffer-
ent between purchasing the item and not participating
in the market) are assumed to follow an indepen-
dent private-values model—see Klemperer (1999) for
background. Specifically, each bidder has a privately
known valuation, and all other participants initially
share the correct belief that this valuation has been
drawn independently from a distribution with cdf F
(which is assumed to be Lipschitz continuous) and
compact support �v� �v� (define m= �v− v).
All participants are risk neutral and time sensitive.

In particular, the utility of the seller when earning rev-
enue R at time 	 is assumed to be US�R�	� e−�	R,
where �> 0 denotes his time-discounting factor. Like-
wise, a bidder arriving at time t > 0 with valuation v ∈
�v� �v� who purchases the item at time 	 ≥ t for a pay-
ment of x gets utility U�v� t� 	� e−��	−t�v− x, where
� > 0 denotes his time discounting factor, assumed
to be the same for all bidders. A losing bidder is
assumed to derive zero utility from the market.

3.2. Auction Mechanism
The basic market mechanism we consider is a second-
price auction with a time-limited bidding period

�0�T �. That is, any bidder arriving at time t ∈ �0�T �
may submit a bid at any time in �t� T �, provided it
is larger than any other he may already have submit-
ted (i.e. bidders are not allowed to renege on their
purchasing offers). At time T , the item is sold to the
highest bidder who then pays a price equal to the
second highest bid; if only one bidder has submitted
a bid by T the item is sold to her for a price of v, and
if there are no bids the item is not sold. Note that the
lower bound of the distribution support v thus effec-
tively corresponds to a publicly advertised minimum
required bid (any bids lower than v are ignored).
In addition to all the other information described

previously, every bidder is assumed to know at every
time 	 subsequent to his arrival the value of I	 ,
defined as the payment that would be made by the
winning bidder if the auction were instead terminated
at 	 . That is, I	 is equal to (i) the second highest bid
submitted over �0� 	� if there are at least two such
bids; (ii) v if there is only one; and (iii) 0 if there is
none. As is the case on all auction websites we are
aware of, we assume that It is truthfully revealed to
any arriving bidder.
The basic auction mechanism just defined is investi-

gated for example in Gallien (2006). The critical exten-
sion that we study in this paper is the addition by
the seller at the outset of a buyout price p, either tem-
porary or permanent. Any bidder may exercise that
buyout option at any time between her arrival and the
end of the auction T , provided the option is still open
by then; this amounts to purchasing the item instan-
taneously at a price p, effectively terminating the auc-
tion. A temporary buyout option remains open from
the beginning until its exercise or the first time that
a regular bid is submitted by any bidder, whereas a
permanent buyout option remains open until its exer-
cise or the end of the auction. That is, submissions
of regular bids do not prevent bidders from subse-
quently exercising a permanent buyout option, but
they do terminate a temporary buyout option. In line
with observed practice, we assume that all partici-
pants know at any point in time whether the buyout
option is still open.
Although we assume in §4 that the buyout price p

remains constant throughout the auction, we study
dynamic buyout prices in §5. In the dynamic exten-
sion, the seller commits upfront to a function of time
�p�t�t∈�0�T � describing the evolution of the buyout
price (either temporary or permanent) over time, and
that function is known to all bidders.

3.3. Model Discussion
We first comment on our allocation mechanism.
Online auction sites now typically feature “proxy-
bidding” systems, allowing bidders to enter the max-
imum amount they are willing to pay for the item.
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The system then submits bids on behalf of the bidder,
increasing his outstanding bid whenever necessary
and by as little as possible to maintain his position
as the highest bidder, up until the maximum amount
stated is reached.3 As observed by Lucking-Reiley
(2000), an online auction with a proxy bidding sys-
tem effectively amounts to a second-price auction, the
payment mechanism we assume.
For the closing rule, we assume a hard bidding ex-

piration deadline similar to the one used on eBay,
whereas some other sites such as Amazon use instead
a floating deadline that automatically extends (within
some limits) whenever a new bid close to the current
deadline is submitted. As pointed out in Roth and
Ockenfels (2002), this difference is material and eBay-
like hard bidding deadlines account for a demonstra-
bly higher concentration of bids near the end of the
auction. In principle, our model allows to predict such
surge of bids shortly before the end, because while
we assume exogenous bidder arrival times, their bid-
ding times are endogenous. In fact, our analysis in
§4 confirms the intuition that last-minute bids seem
more likely with a permanent buyout option than
with a temporary one. However, our model does not
capture some of the other important reasons why last-
minute bidding does occur: presence of inexperienced
bidders engaging in irrational bidding wars; informa-
tional value of bids when the item being sold has
a common value component; reluctance to bring an
auction to the attention of competing bidders per-
forming searches on individual users’s bidding activ-
ity; possibility that late bids may not reach the auction
site due to network transmission delays � � � � Although
we refer the reader to Roth and Ockenfels (2002) for
an excellent discussion and empirical study of this
phenomenon, we argue that factors such as the loss of
last-minute bids due to network transmission capac-
ity and the presence of inexperienced bidders may
not remain as prevalent in the long run, partly justify-
ing our modeling choices (otherwise primarily moti-
vated by tractability considerations). Consequently, in
the model we assume for an online auction without
a buyout option (or after a temporary buyout option
has been removed), any sequence of bids culminat-
ing in the submission of one’s true valuation before
the bidding deadline T forms a weakly dominant
strategy.
Another feature of the market mechanism we con-

sider is the possible presence of a publicly announced
minimum required bid, effectively captured in our
model by the lower bound v of the valuation distribu-
tion support. Note that this is distinct from what some
auction sites (such as eBay) call a “reserve price,”
which is likewise set by the seller as a minimum

3 See “Bidding on eBay” (eBay) for a description.

selling price for the item but which is, in contrast
with the minimum required bid we use, not publicly
announced—when used by the seller, bidders are typ-
ically only informed that a reserve price has been set
for the auction, and whether or not it has already been
met by any of the existing bids. We assume that the
seller does not use such concealed reserve price, in
part because this would entail some inference of its
value by the bidders, and may lead to further strategic
interactions in the form of post-auction negotiations
between the winning bidder and the seller.
Several limitations of our analysis also stem from

the market environment we consider. Our assumption
that bidder arrivals follow a Poisson process seems
more realistic than assuming that the number of bid-
ders is known to all with certainty (as in nearly all
other papers discussed in §2), and is partly justified
by the classical Palm limit theorem on the superposi-
tion of counting processes. Nevertheless, the assump-
tion that its arrival rate is constant and known to
all participants (common to all other auction models
assuming Poisson bidder arrivals that we are aware
of) is still a strong one. In practice, the arrival rate of
potential bidders to an auction could not only be vari-
able but also endogenous, and depend for example
on the bidding activity that it has generated to date.
In practice, the arrival rate of bidders to a specific
auction is also influenced by factors such as advertis-
ing, the presence of a reserve price, the seller’s feed-
back ratings, the presence and quality of photographs
describing the item, etc. Our assumption of a con-
stant known arrival rate saliently implies that bidders,
including those arriving early in the auction when
only a little bidding history is available, correctly syn-
thesize the impact of these factors when estimating
how many competing bidders they are likely to face.
The structure assumed here for the utility func-

tions of the seller and the bidders (time-discounted
quasi-linear incentives) is also used for example in
Caldentey and Vulcano (2007) and Gallien (2006), and
reflects the proposed time sensitivity of participants.
It saliently implies that bidders in our model do not
have any fixed bidding or waiting costs. This is an
important limitation, since bidders arriving to an auc-
tion may in practice decide to balk if their estimated
transactional utility does not make up for these fixed
costs. Our model, which only reflects that this utility
is discounted by the transaction time, may thus sig-
nificantly underestimate this balking behavior and its
impact. Also, while all the results in the paper have
been derived for auctions with risk-neutral partici-
pants, some of them generalize to the case of risk-
averse bidders—see §6 for a detailed discussion.
In summary, although our model captures some of

the key features of an online auction, it does not repro-
duce some others as faithfully. We point out that an
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actual online auction is a complex and random pro-
cess involving multiple heterogeneous participants
with various incentives and rationality levels inter-
acting in a dynamic manner. As such, any tractable
analytical model designed to predict its outcome
(including ours and every other one described in the
literature) must necessarily rely on fairly restrictive
assumptions. Given the fact that one of our main
research objectives is to understand the differential
impact of temporary and permanent buyout prices,
we observe that several of these assumptions (e.g.,
common beliefs and bidder arrival process) may not
specifically impact our model predictions when one
type of buyout option is used as opposed to the
other. From that perspective, we find it reassuring
that our results rationalize some of the actual prac-
tices of auction sites using buyout options (see §6),
and that some of our model predictions can be veri-
fied through a statistical analysis of real auction data
(see §EC.7 in the online supplement).

4. Static Buyout Prices
This section includes an equilibrium analysis for our
model of an auction with a static buyout price, both
temporary (in §4.1) and permanent (in §4.2), fol-
lowed by a study of the seller’s optimization problem
(in §4.3). Numerical experiments are then described
in §4.4.

4.1. Equilibrium Analysis of the Temporary
Buyout Option

We now assume that the seller uses a fixed tempo-
rary buyout price p, which disappears if a bid above
the reserve price is placed in the auction. For any bid-
der arriving at time t with valuation v, consider the
following family � �·� of threshold strategies:

� ����v� t�




Buyout at p immediately
if buyout option available and
v > ��t� It�

Bid v immediately
if buyout option available and
v≤ ��t� It�

Bid v at any time in �t� T �
otherwise�

(1)

where �� �0�T �× �0� �v�→ �v� �v� is a threshold valua-
tion function depending a priori on both the arrival
time t and the second highest bid It defined in §3.2.
Note however that a temporary option is only avail-
able when no bid has yet been placed or It = 0, so that
ignoring the dependence of � on It , as we will in the
following, entails no loss of generality for the tempo-
rary option case. Observe also that the only compo-
nents of an increasing sequence of bids submitted by

a participant that have strategic implications in our
model of a temporary option are the time at which the
first bid is submitted (because this may remove the
buyout option), and the value of the highest bid sub-
mitted (because it may affect the auction outcome).
Consequently, we will not distinguish between two
bidding strategies that are equivalent modulo those
two components. For example, even though the sec-
ond possible action stated in the definition of � ���
in (1) is “Bid v immediately,” a strategy whereby
a bidder in the same case would place any bid v′

in �v�v� immediately, then submit any sequence of
bids with highest value v before the end of the auc-
tion would result in the exact same payoff and action
space for himself, the other bidders, and the seller. All
the results to be stated about � ��� will thus also hold
for any equivalent strategy or profile of strategies in
the sense just defined. The concept of equilibrium
uniqueness (see statement of Theorem 2) is also to be
understood in this context, meaning that there does
not exist any other equilibrium which is not equiv-
alent to the one exhibited. Likewise, by a symmetric
strategy profile we mean a set of strategies played by
all equivalent players. Finally, we will use the same
notation for a strategy and the symmetric strategy
profile obtained when every bidder plays that strat-
egy, because no ambiguity arises from the present
context.
The following theorem establishes the existence of

a threshold function �tmp such that � ��tmp� forms
a Bayesian Nash equilibrium, and also provides a
characterization of that function.

Theorem 1. Define function �tmp as

�tmp�t=min��v�t� �v
where �v�t is the unique solution on �v�+� of the equa-
tion

�v�t− p= e−��+��T−t
∫ �v�t

v
e��T−tF �x dx� (2)

Then the symmetric strategy profile � ��tmp� is a Bayesian
Nash equilibrium for the online auction game with a tem-
porary buyout price p.

The proof of Theorem 1 consists of deriving, for an
arbitrary threshold function �, a best response strat-
egy to profile � ���, which is a strategy maximizing
the utility of a bidder entering an auction where every
other bidder uses strategy � ���. Specifically, denot-
ing ��� ��� the set of these best-response strategies,
we characterize a threshold function �tmp such that
� ��tmp� ∈ ��� ���. We further show that � ��tmp� ∈
��� ��tmp�, establishing that the profile � ��tmp� con-
stitutes indeed a Nash equilibrium; as in all our
other proofs most of the difficulty stems from the
bidimensional action space allowing for bidders to
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wait. Before discussing the intuition behind Theo-
rem 1 and some qualitative implications, we state a
proposition providing a closed-form expression for
�tmp in the special (but widely assumed) case of uni-
formly distributed valuations:

Proposition 1. When bidder valuations are uniformly
distributed on �v� �v�, the threshold function �tmp charac-
terizing the Bayesian Nash equilibrium described in Theo-
rem 1 is

�tmp�t = min
(
p− m

��T − t
·(W (−e−e−��+��T−t+�p−v��T−t/m−��+��T−t)

+ e−��+��T−t)� �v
)
� (3)

where W is Lambert’s W or omega function, i.e., the in-
verse of W �→WeW .

In the equilibrium characterized by Theorem 1, the
first incoming bidder compares on his arrival the rel-
ative attractiveness of the buyout option and that
of a regular bid, accounting for the likely compe-
tition resulting from the specific auction time then
remaining; the dynamic threshold �tmp valuation char-
acterized in (2) corresponds to the valuation of a bid-
der who at that time would be indifferent between
the two options. Accordingly the threshold function
�tmp is nondecreasing over time (this is easily estab-
lished formally by inspection of (2)): The continu-
ous buyout option availability over time indicates
a reduced likely level of competition for the auction
if it should take place, and therefore progressively
makes the buyout option less attractive relative to
submitting a regular bid.
Note also that strategy � ��tmp� and the associated

equilibrium result just stated do not provide a pre-
diction of when the second and subsequent bidders
will submit their bid. That is, the timing of bid sub-
missions for these bidders does not have any strategic
implication within the strict boundaries of our model
definition. In practice however, it could be affected in
various ways by features not captured by our model;
for example, a high cost of monitoring the auction
could hasten bid submissions, whereas common value
signaling could delay them—see §3.3 for a more com-
plete discussion and related references.
An important observation is that the equilibrium

� ��� specified in Theorem 1 is not unique. Indeed,
for any w > 0 one may choose a threshold function
�� �0�T �→ �v� �v� such that the strategy � �w��� gener-
alizing � ��� and defined by replacing the action asso-
ciated with the second case in (1) with “Bid v after
min�w�T − t time units” also constitutes an equi-
librium. That is, in the equilibria � �w��� with w> 0,
a bidder finding the buyout option still available

when he arrives may wait for some time before sub-
mitting a bid. This is because, provided the threshold
function is nondecreasing, this first bidder would lose
in the auction anyway to any second bidder exer-
cising the buyout option while the first bidder is
still waiting. In the remainder of this subsection, we
argue that, in contrast to � ���, such equilibrium does
not survive some perturbations of our hypotheses,
and does, therefore, not provide a robust outcome
prediction.
Let G denote the online auction game with a tem-

porary buyout option described in §§3.2 and 3.1. We
use the classical methodology of payoff perturbations
(see van Damme 1987) in order to refine our equilib-
rium analysis, and define G�� as a game identical to G
except that with a small probability � > 0 an arriving
bidder is desperate, meaning that his utility from the
auction with a type �v� t is described instead by

UD�v� t=



+M if he obtains the item at t"
−M if he bids in the auction"
0 otherwise� where M� 0�

(4)

In words, desperate bidders greatly value the item
auctioned, have an outside alternative with negligi-
ble value, and cannot wait under any circumstances;
the dominant strategy for a desperate bidder obvi-
ously is to exercise the buyout option if it is available
and to not participate at all otherwise. This specific
perturbation seems appealing, because it may reveal
the limiting impact of irrational bidders or bidders
with different time sensitivities that our model other-
wise assumes away (see §3.3). We prove the following
result:

Theorem 2. For any � > 0, the game G�� does not have
any Bayesian Nash equilibrium where a nondesperate bid-
der, who arrives when the buyout option is present, waits
before bidding (e.g., plays � �w�·� with w> 0). In addition,
there exists a threshold function ���tmp� �0�T �→ �v� �v� such
that for nondesperate bidders the strategy profile � ����tmp� is
a unique Bayesian Nash equilibrium of the game G��, and
lim�→0 �

��
tmp = �tmp where �tmp is defined in Theorem 1.

The intuitive explanation for the first statement in
Theorem 2 is that when the first bidder decides to bid
in the auction she is strictly better off bidding imme-
diately and then removing the buyout option, because
this prevents any subsequent desperate bidders from
participating. It is clear however that the utility func-
tion of desperate bidders has been precisely defined
to achieve that effect, and may thus appear ad hoc or
arbitrary. But from the perspective of refining our out-
come prediction, what is striking about Theorem 2 is
not that the introduction of desperate bidders per se
preserves the equilibrium � ��� we propose and elim-
inates all other equilibria. The meaningful part is that
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this selection of equilibria occurs regardless of how
small the introduction probability � of these desper-
ate bidders is. Indeed, an equilibrium which would
not survive an arbitrarily small perturbation of the
model payoff structure (whatever that perturbation)
could hardly be considered robust. Theorem 2 actu-
ally establishes that the equilibrium � ��tmp� charac-
terized in Theorem 1 is the only one to survive the
specific perturbation defined above, however small its
probability.
Another standard robustness test (or equilibrium

refinement technique) for outcome prediction is to use
the solution concept of trembling-hand perfect equilib-
rium instead of the less discriminating Bayesian Nash
equilibrium (Fudenberg and Tirole 1991). Although
we omit that analysis here due to length restric-
tions, it can also be shown that � ��tmp� is the unique
trembling-hand perfect equilibrium of G (Gupta
2006).
Finally, we describe in §EC.7 of our online sup-

plement a simple empirical study that we have con-
ducted in order to validate our model predictions.
That is, we collected bidding data from a number
of actual auctions of similar items (iPod music play-
ers and accessories) on the website eBay (which fea-
tures a temporary buyout option), and focused on
testing an implication of our analysis on the bidding
times of auction participants. Specifically, the equilib-
rium analysis in our model does not generate any
prediction for the first bidding time (or any other bid-
ding time for that matter) in an online auction with-
out a buyout option, although Theorems 1 and 2 do
imply that the first bidder will act (bid or buyout)
immediately on his arrival. Consequently, in auctions
featuring a buyout option, the first activity (bid or
buyout) should occur earlier than in an auction with-
out a buyout option. The data set we constructed was
clearly imperfect, because it did not capture many
factors besides the buyout option, which could also
conceivably explain differences in bidder behavior:
e.g., quality of items auctioned, presence and size
of accompanying photographs, how prominently the
auction is listed by eBay’s search engine, etc. Another
issue is that a buyout price set excessively high is
very unlikely to generate any modification of bid-
ding behavior, as it will effectively be discarded by
the buyers. We attempted to control for these factors
and others by proxy using the value of the buyout
price, the final selling price and the ratio of the buy-
out price to the final selling price, and our statistical
analysis relying on a two sample t-test lead to accept
the hypothesis of earlier first activity with a p-value
of 2× 10−27.
Taken together, these observations support in our

view the use of equilibrium � ��tmp� in the remainder
of this paper as a predictor for the outcome of an
online auction with a temporary buyout price.

4.2. Equilibrium Analysis of the Permanent
Buyout Option

We now assume that the seller uses a fixed permanent
buyout price p that remains available until it is exer-
cised or the auction ends. For any bidder with valua-
tion v arriving at time t and then observing a current
second-highest bid It (see §3.2), consider the following
family ��·� of threshold strategies:

�����v� t� It�



Buyout at p immediately

if v > ��t� It�

Bid v at time T if v≤ ��t� It�
(5)

where �� �0�T �× �v� �v� ∪ #0$→ �v� �v� is a continuous
function. Note that the action of bidding at time T in
the definition of ��·� clearly is a theoretical limit, and
would correspond in practice to submitting a first bid
as close as possible to the end of the auction, with
the goal of denying other bidders the opportunity to
respond. Observe also that the definition of ��·� in (5)
corresponds to a single strategy, whereas in the tem-
porary option case (1) defines a class of equivalent
strategies, as discussed in §4.1. That is, with a perma-
nent buyout option it is no longer only the timing of
the first bid and the highest bid submitted that hold
strategic implications for a bidder. The time and value
of every bid from a sequence submitted by a partici-
pant is now material, because that information affects
how It evolves over time, which in turn is relevant
to whether competitors decide to exercise the buyout
option.
The following theorem establishes the existence of a

threshold function �prm such that the symmetric strat-
egy profile ���prm� constitutes indeed a Bayesian Nash
equilibrium, and also provides a characterization.

Theorem 3. Consider a maximal solution �v�· of the
following functional equation on �0�T �→ �v�+�:

�v�t− p = Et
[
e−��T−t

(∫ �v�t

v

∏N�t
i=1 F �min��v�ti� x∏N�t

i=1 F ��v�ti
· F �xN�t�T  dx

)]
� (6)

where the expectation Et is with respect to the number N�t
and epochs t1� � � � � tN�t of arrivals in �0� t of a nonhomo-
geneous Poisson process with rate �F ��v�	 for 	 ∈ �0� t,
and number N�t�T  of arrivals in �t� T � of a Poisson pro-
cess with rate �. Let �v�t� I be a continuous extension of
�v�· to �0�T �× �v� �v� ∪ #0$ such that �v�t�0 = �v�t and
�v�t� I is nonincreasing in I for all t, nondecreasing in t
for all I , and define �prm�t� I=min��v�t� I� �v. The sym-
metric strategy profile ���prm� is a Bayesian Nash equilib-
rium for the online auction game with a permanent buyout
price p.
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Denoting by������ the set of best-response strate-
gies to the profile where every other player follows
strategy ����, the proof of Theorem 3 first establishes
that ���prm� ∈�����prm� if and only if �prm�t�0 sat-
isfies (6). The most challenging part of the proof
then consists of proving the existence of a solu-
tion to (6); to do so we establish that a general-
ization of Schauder’s fixed-point theorem applies to
an appropriately defined functional space and con-
tinuous mapping on that space. Before discussing
the intuition behind Theorem 3 and its qualitative
implications, we show how the threshold function
characterization (6) specializes to a first-order nonlin-
ear differential equation in the case where valuations
follow a uniform distribution:

Proposition 2. When bidder valuations follow a uni-
form distribution with cdf F on �v� �v�, the threshold func-
tion �prm characterizing the Bayesian Nash equilibrium
described in Theorem 3 satisfies �prm�t�0=min��v�t� �v
where �v�t is the unique solution on �0�T � of the differen-
tial equation

d �v�t
dt

= ��+��1− F (�v�t��v�t− p
1− e−��+��1−F ��v�t�T−t (7)

with initial value �tmp�0 as defined in (3).

In the statement of Theorem 3, the requirement
that �prm�t� I be nondecreasing for I fixed is intu-
itive: From the auction still running at time t it can be
implied that vi ≤ ��ti� Iti  for all bidders i with type
�vi� ti observing a current second-highest bid Iti ≤ I
on their arrival in �0� t. Consequently as t increases
with I fixed, the expected final second-highest val-
uation among all bidders decreases, thus increasing
the expected utility from bidding in the auction rel-
ative to exercising the buyout option. This effect is
compounded with the reduced relative discounting of
the utility from bidding as t increases. The require-
ment that ��t� I be nonincreasing in I for every t is
likewise easily interpreted: Holding t fixed, a higher
value of I implies that the expected second highest
bid in the auction is higher, which lowers the expected
utility from bidding relative to exercising the buyout
option. Note that Theorem 3 only provides a stringent
characterization of the equilibrium threshold function
value �prm�t� I for I = 0. This is because when all
bidders follow strategy ���� then on the equilibrium
path It = 0 for all t in �0�T , since all bidders not
exercising the buyout option only bid then at time T .
Indeed, equation (6) specifies quantitatively the valu-
ation for which an incoming bidder should be indif-
ferent between exercising the option and submitting a
regular bid, accounting for the information about the
valuations of potential competing bidders provided
by the presence of an open buyout option. Other val-
ues of �prm�t� I correspond to off-equilibrium path

behavior, and are only required to satisfy the mono-
tonicity properties discussed above. While in a strict
game-theoretic sense Theorem 3 thus defines multi-
ple equilibria, all of them result in the same equi-
librium path and therefore yield the same utility for
the bidders and the seller. As in the temporary case
however, equilibria also exist for the permanent buy-
out option game other than the one(s) characterized
above. Indeed for a threshold function � satisfying the
conditions of Theorem 3 and such that ��t� I≥ p for
all �t� I, consider the strategy

� ′����v� t� It




Buyout at time 	 ≥ t if v > ��	� I	�

Bid v at time T
if p < v≤ ��	� I	 for all t ≤ 	 ≤ T �

Bid v at any time in �t� T � if v≤ p�
Note that when following � ′��� a bidder with valua-
tion v≤ p bids at any time, whereas such bidder only
bids at T when following ����. It can be shown how-
ever that � ′��� also induces an equilibrium for some
function �. This is because any bidder with a valua-
tion v≤ p has no incentive in our model for delaying
his bid in order to prevent the published second high-
est bid It from increasing, even if this would poten-
tially trigger the exercise of the buyout option by
another bidder. The valuation v′ of any bidder exer-
cising the buyout option would be larger than his
because buyout exercise at 	 implies v′ > ��	� I	 ≥
p ≥ v, therefore that other bidder would win in the
auction anyway.
As in the temporary case, we now introduce a game

perturbation to argue that ��·� is a more robust out-
come prediction than other equilibria such as � ′�·�.
Suppose that with probability � each arriving bidder
is a common value bidder, having type �v� t and fol-
lowing strategy ���c� where �c�t�0 = �prm�t�0 and
�c�t� I= v, ∀ I > 0� t. That is, a common value bidder
exercises the buyout option irrespective of its price
as soon as any regular bid is placed in the auction,
and if none is placed submits at the end a bid equal
to his private valuation. Such a bidder can be ratio-
nalized as one whose valuation includes not only an
independent private value component as assumed so
far, but also a large common value component. That
is, any bid placed before the auction ends is perceived
by that bidder as a signal to drastically increase the
estimated value of the item being sold, thus trigger-
ing the exercise of the buyout option (see McAfee
and McMillan 1987 for background). Again, we point
out that although the perturbation just described is
completely ad hoc, we are only interested here in
its impact when the perturbation probability � is
arbitrarily small. Denoting by G�� the corresponding
perturbed game, we specifically show the following
result:
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Theorem 4. For any � > 0, the game G�� does not
have any Bayesian Nash equilibrium where bidders bid at
any time 	 < T (e.g., play � ′�·�). In addition, the only
Bayesian Nash equilibria of the game G�� are such that
normal (non common value) bidders play strategy profile
���prm� defined in Theorem 3.

The underlying intuition is that a normal bidder is
strictly better off placing a bid near time T because
bidding earlier may cause a common value bidder,
who could have otherwise lost in the auction, to
exercise the buyout option. Any equilibrium strat-
egy where a normal bid is placed before time T
is thus eliminated, although strategy profile ���prm�
still constitutes an equilibrium of the perturbed game
for normal bidders. Consequently, only the strategies
characterized in Theorem 3 survive the above game
perturbation, no matter how small.
Finally, we have conducted a simple empirical study

in order to validate some of our model predictions in
the permanent case as well, which is described more
extensively in §EC.7 of our online supplement. In sum-
mary, we collected bidding data from actual auctions
of the same category of items considered in the tem-
porary case (iPod music players and accessories), from
the website Yahoo! this time (which features a perma-
nent buyout option), and likewise identified a testable
implication of our analysis. Specifically, we observed
that the equilibrium analysis in our model does not
generate any prediction of bidding times in an online
auction without a buyout option, although Theorems 3
and 4 imply that with a permanent buyout option bid-
ders not exercising the option will submit their bids
as late as possible. Consequently, in auctions featur-
ing a permanent buyout option that is not exercised,
bids should be submitted on average later than in an
auction without a buyout option. We applied the same
proxy controls as described in §4.1 in order to mit-
igate the impact of our data set flaws. Though our
statistical analysis leads to accepting the hypothesis
of later average bidding times, the associated p-value
was higher at 0.0963, so that our associated confidence
level was much lower than for the test we conducted
in the temporary case. This was hardly surprising
however, as the data set we were able to construct in
the permanent case was significantly smaller (to date
Yahoo! Auctions receives significantly less traffic than
eBay), and also because auctions on Yahoo! feature
an automatic bidding deadline extension mechanism
(see §3.3), which is a deviation from our model known
to impact the concentration of bids near the end of the
auction (Roth and Ockenfels 2002).
Taken together, these observations support in our

view the use of equilibrium ���prm� in the remainder
of this paper as a predictor for the outcome of an
online auction with a permanent buyout price.

4.3. Seller’s Revenue Optimization Problem
We now consider the problem of finding the buyout
price p maximizing the seller’s expected discounted
revenue from a temporary (resp. permanent) buyout
price auction when all bidders follow the equilibrium
strategy � ��tmp� (resp. ���prm�). Note that p is the
only decision variable we consider here (see Vakrat
and Seidmann 2001, and Gallien 2006 for optimization
studies focusing on the variables T and �v).
4.3.1. Formulation and Numerical Solution. We

first consider the temporary case. Making the depen-
dence of the threshold function on p explicit from now
on and conditioning on both the arrival time and the
action of the first bidder, the problem can be stated
mathematically as

max
p∈�v� �v�

E�U S
tmp�p�

=
∫ T

0
e−�TEt�max�v�v

�2
N �t�T +1 � v1 ≤ �tmp�p� t�

· F ��tmp�p� t�e−�t dt

+
∫ T

0
e−�tp�1− F ��tmp�p� t�e−�t dt� (8)

where the expectation Et in the first integrand is with
respect to the number N�t�T  of arrivals in interval
�t� T � of a Poisson process with rate � and the second
highest value v�2N �t�T +1 among N�t�T +1 independent
draws v1� � � � � vN�t�T +1 from the valuation distribution
with cdf F , where by convention v�21 = 0. Note that
the first and second integral in (8) correspond respec-
tively to the seller’s expected revenue when the first
bidder submits a regular bid on his arrival and when
he exercises the buyout option.
Turning next to the permanent buyout option, let

�prm�p� t denote the value of the threshold function
on the equilibrium path (i.e., the variable It = 0 is
omitted). In equilibrium, the arrivals of bidders who
will exercise the buyout option follow a nonhomoge-
neous Poisson process with instantaneous rate ��1−
F ��prm�p� t, and we denote its counting measure by
Nbuy. Likewise, the arrivals of bidders who will wait
until the end of the auction to submit a bid follow a
nonhomogeneous Poisson process with instantaneous
rate �F ��prm�p� t, and we denote its counting mea-
sure by Nbid. As a result, the probability that the buy-
out option will not be exercised is P�Nbuy�T  = 0 =
exp�−� ∫ T0 �1− F ��prm�p� t dt, and the problem can
be stated as

max
p∈�v� �v�

E�U S
prm�p�

=
∫ T

0
e−�tp��1− F ��prm�p� te−�

∫ t
0 �1−F ��prm�p� 	 d	 dt

+ e−�
∫ T
0 �1−F ��prm�p� t dte−�T

·E[1#Nbid�T >0$max(v�v�2Nbid�T 
) �vi≤�prm�p�ti ∀i]� (9)
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where the expectation E is with respect to the number
Nbid�T  and epochs t1� � � � � tNbid�T  of arrivals in �0�T � of
the second Poisson process defined above, and second
highest value v�2Nbid�T  among v1� � � � � vNbid�T  (by con-
vention v�20 = v�21 = 0), where the ith valuation vi fol-
lows a distribution with cdf Fi�v= F �v/F ��prm�p� ti.
The first term in (9) is equal to the seller’s expected
discounted revenue from the option, whereas the sec-
ond term is the expected discounted revenue from
regular bidding, which only occurs if the buyout
option is not exercised.
Although solving analytically these optimization

problems in the general case seems particularly chal-
lenging, computing through a line search over p
a numerical solution to (8) and, in the special case of
uniformly distributed valuations, to (9) is relatively
straightforward. For each value of p, one may numer-
ically solve (2) for �tmp�p� t and (7) for �prm�p� t; the
seller’s expected utility can then be estimated through
Monte Carlo simulation by generating repeated ran-
dom bidder arrival streams #�v1� t1� �v2� t2� � � �$. This
is the method we implement to obtain the numerical
results reported later in §4.4. The other method we
have followed to study the difficult stochastic opti-
mization problems (8) and (9) is an asymptotic anal-
ysis, which is discussed next.

4.3.2. Asymptotic Analysis. We were able to char-
acterize analytically the limits of the solutions p∗tmp
and p∗prm to (8) and (9) respectively for various asymp-
totic regimes of the bidders’ arrival rate �, seller’s
time sensitivity �, and bidders’ time sensitivity �.
While their somewhat lengthy and technical deriva-
tions are relegated to the online supplement, we pro-
vide here a summary of these results in Table 2, which
uses the notations


p1�argmax
p∈�v� �v�

p�1−F �p
p2�argmax

p∈�v� �v�
�p�1−F �p+vF �p

p3�*�argmax
p∈�v� �v�

p�1−F �p
*+1−F �p for *∈ �0�+���

(10)

Before interpreting p1, p2, and p3�*, we first observe
that for these quantities to be uniquely defined we
need to impose in the following some additional
mild assumptions on the distribution function F �·.
A possible sufficient condition is for F �· to be strictly
increasing on �v� �v�, convex, and continuously differ-
entiable. It is then easy to prove (see Lemma 13 in the
online supplement) that p1 ≤ p2, p1 ≤ p3�* for any *,
p3�* is decreasing in *, and lim*→+� p3�*= p1, with
the last statement justifying the notational extension
p3�+�.
In Table 2(i), each entry ��→ 0� �→A� �→ B

with �A�B ∈ #0��$2 corresponds more precisely to

Table 2 Optimal Buyout Prices in Asymptotic Regimes

Seller time sensitivity

Low ��→ 0� High ��→��

(i) Low demand rate limit
��→ 0�

Bidder time sensitivity
Low ��→ 0� Any p in �v 	 �v
 p∗

tmp	 p
∗
prm → v

High ��→�� p∗
tmp	 p

∗
prm → p2 p∗

tmp	 p
∗
prm → p1

(ii) High demand rate limit
��→��

Bidder time sensitivity
Low ��→ 0� p∗

tmp	 p
∗
prm → �v p∗

tmp → p1, p∗
prm → p3���

High ��→�� where �= lim�→� �/�

the regime �→ 0, � = f1��, and � = f2�� where fi�
�0��→ �0��, i ∈ #1�2$ are any functions such that
limx→0 f1�x=A and limx→0 f2�x= B. A first interest-
ing observation is that, in contrast with Table 2(i),
the limit statements in Table 2(ii) are independent of
the bidders’ time-sensitivity parameter �. More pre-
cisely, each entry ��→ �� �→ A with A ∈ #0��$
in Table 2(ii) corresponds to the asymptotic regime
�→�, �= f1��, and �= h��, where f1 is any func-
tion �0��→ �0�� such that limx→+� f1�x=A and h
is any nonnegative function of �. Our interpretation is
that the seller’s utility only depends on bidders’ time
sensitivity via the buyout threshold functions, where
� discounts the utility from bidding relative to exer-
cising the buyout option. However, the utility from
bidding in an auction with a high bidder arrival rate
is already made negligible by the very high associated
level of competition, consequently the effect of � on
the optimal buyout price vanishes then. That is, in this
dynamic setting bidders’ time sensitivity effectively
acts as a negative adjustment to their market power,
and thus looses leverage in the asymptotic regimes of
Table 2(ii) where that market power is low.
Table 2(i) and (ii) can be further interpreted as fol-

lows. The case p∗tmp� p
∗
prm → v effectively amounts to

using a fixed price mechanism, because no bidding
activity will ever occur then; this is optimal for a very
impatient seller facing very few time-insensitive bid-
ders (i.e., �→ 0� �→�� �→ 0). Indeed, a seemingly
large number of auction listings on eBay now fea-
ture only a Buy-It-Now option and no “Place Bid”
option, providing anecdotal evidence for the rele-
vance of this case in practice. At the other extreme, the
case p∗tmp� p

∗
prm → �v is equivalent to an auction with-

out a buyout option since the buyout price is never
exercised then. That is, a patient seller ��→ 0 with
high market power ��→� finds it beneficial to not
use any buyout option at all and only rely on a tra-
ditional bidding mechanism—there are clearly many
examples of such sellers on auction sites as well.
These results are thus reminiscent of those obtained
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by Harris and Raviv (1981), who study a mechanism
design model in which the seller should use an auc-
tion when demand exceeds supply but a posted price
otherwise (see also Gallien 2006). In our model, the
relative values of the seller’s and bidders’ time sensi-
tivity (� and �) and the expected number of bidders
� effectively capture the ratio between supply and
demand, and the seller’s market power; the hybrid
mechanism relying on both bidding and posted price
enabled by the buyout option makes for a continuous,
smoother transition between those two mechanisms.
More specifically, consider first market environ-

ments where demand for the auctioned item is low
but bidders are highly time sensitive (�→ 0, �→�).
Such bidders gain negligible utility from submitting
a regular bid (which entails winning almost for sure
but waiting up to time T ), and thus always exer-
cise the buyout option provided the buyout price
is no larger than their valuation (formally �tmp�p� t�
�prm�p� t→ p for all t). A highly time-sensitive seller
��→� also gets zero utility from selling the prod-
uct at time T , and thus offers then the buyout price
p1 defined in (10), which maximizes his expected rev-
enue from the event that the first (and, most likely,
only) bidder exercises the buyout option. In the same
environment however, a seller with low time sensitiv-
ity ��→ 0 can potentially wait until the end of the
auction to sell the product, and hence finds it optimal
to offer a higher buyout price p2 ≥ p1 maximizing his
utility from the event that the first (only) bidder either
exercises the buyout option or bids, in which case the
product sells for v at the end of the auction (see (10)).
Next, the regime ������→ 0 corresponds to the

case when both the seller and the bidders have low
time sensitivity and the bidder arrival rate is small.
Any incoming bidder is unlikely to face any com-
petition then (as �→ 0), and consequently a buyout
option with price p > v is never exercised. Therefore
in the limit any incoming bidder either exercises the
option if the buyout price p is set to v, or bids in the
auction if p > v and gets the item at time T , still for v
(since the probability of two or more bidder arrivals
becomes negligible). In either case, the seller gains the
same utility because he is not affected by the time of
sale ��→ 0, and is thus indifferent between any buy-
out price p ∈ �v� �v�. More formally we show that for
any p′ ∈ �v� �v�

lim
�→0
�=f1��
�=f2��

maxp∈�v� �v� E�U S
tmp�p�

E�U S
tmp�p

′�
= 1 and

lim
�→0
�=f1��
�=f2��

maxp∈�v� �v� E�U S
prm�p�

E�U S
prm�p

′�
= 1�

where fi� �0��→ �0��, i ∈ #1�2$ are any functions
such that limx→0 fi�x = 0. In words, the additional
utility obtained by choosing the optimal buyout price
relative to using any buyout price becomes asymptot-
ically negligible in that regime.
Finally, the only regime where p∗tmp and p

∗
prm con-

verge to different limits is the one in which a very
impatient seller faces a high demand ���� → �.
Although such a seller could sell the product for �v via
an auction, that outcome would only occur at time T
and would therefore give her negligible utility rela-
tive to a buyout option exercise. Hence, in the tempo-
rary case where the buyout option is only available
to the first bidder, the seller offers the buyout price p1
maximizing his expected utility from the event that
the buyout option is exercised by that bidder. A key
observation is that in the temporary case the buyout
price affects only the probability, but not the time,
of the buyout exercise. In contrast, a permanent buy-
out option is available to all arriving bidders until
exercised, and is therefore exercised with probabil-
ity 1 in this limiting regime, provided p < �v. However,
the buyout price in the permanent case does affect the
time at which the option is exercised, confronting the
seller with the trade-off of selling time versus sell-
ing price. The optimal balance in this trade-off is dic-
tated by the relative values of � and �, explaining the
impact of the ratio * = lim�→+��/� on the optimal
permanent buyout price p3�* shown in (10). As noted
earlier p3�* is decreasing with *, which reflects that a
seller who is more time sensitive or facing fewer bid-
ders should reduce the permanent buyout price. The
fact that lim*→+� p3�*= p1 reflects that in the extreme
case where the seller’s time sensitivity is very high
relative to the bidders’ arrival rate, the seller obtains
negligible utility from waiting for a subsequent bid-
der beyond the first one and should then, as in the
temporary case, maximize the revenue obtained from
the first bidder alone. Finally, we point out that the
argmax operand defining p3�* in (10) is equal to the
seller’s expected discounted revenue J �p obtained by
offering the item for a fixed posted price of p to an
infinite Poisson arrival stream of bidders with valu-
ation distributions given by F . This is easily seen by
substituting terms and solving for J �p in

J �p= E�e−�X���1− F �pp+ F �pJ �p�

where X denotes an exponential random variable
with mean 1/�. That is, in this limiting regime the im-
pact of the finite time horizon T and regular bidding
on the optimal buyout price are effectively oblivi-
ated by the seller’s high time sensitivity and bidders’
arrival rate.
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Figure 1 Equilibrium Threshold Valuation in Temporary and
Permanent Buyout-Price Auction
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4.4. Numerical Experiments
In this section we compare the equilibrium behavior,
optimal buyout price, and seller’s revenue associated
with the temporary and permanent buyout options,
drawing on both numerical experiments and our theo-
retical results from the previous subsections. Although
we only report here the results from a small number of
experiments due to length restrictions, we found those
to be representative of a larger set of scenarios.
A first insightful exercise is to compare the bidders’

equilibrium buyout threshold functions �tmp and �prm
(see statements of Theorems 1 and 3) corresponding
to the same buyout price and market environment.
Figure 1 shows a plot of these two functions for the
specific case ptmp = pprm = 350, � = 0�25, T = 16, � =
0�03; as in all other experiments to be discussed in
this section we assume that valuations are uniformly
distributed on �50�500�.
A first observation is that both curves shown in

Figure 1 are nondecreasing, which can be easily estab-
lished for the general case from (2) and (6). That is,
either type of buyout option remaining open as time
goes by indicates reduced competition among bidders
participating in the auction and therefore progres-
sively makes the buyout option less attractive rela-
tive to submitting a regular bid, so that fewer bidders
will decide to exercise it. The temporary threshold
function �tmp does lie above the permanent thresh-
old function �prm however, suggesting that the effect
just described is less pronounced with a permanent
option than with a temporary option. Indeed, when
participants follow the equilibrium strategy � ��tmp�
described by (1) and Theorem 1, the fact that a tem-
porary option is still open when a bidder arrives indi-
cates to him that he is the first bidder and that the

only competition he is likely to face should he sub-
mit a regular bid will come from bidders who are
yet to arrive. On the other hand, under the strat-
egy profile ���prm� described by (5) and Theorem 3,
if a permanent option is still open when a bidder
arrives he can only infer that all the bidders who have
already arrived have valuations lower than the value
of the threshold valuation at the time of their respec-
tive arrivals. Consequently, for such a bidder the deci-
sion to submit a regular bid appears less attractive
relative to exercising the buyout option than it is for
a bidder facing an open temporary option in circum-
stances that are otherwise the same. As a result, with
identical buyout prices bidders will more likely tend
to exercise a permanent option than a temporary one.
Finally, note that the initial values �tmp�0 and �prm�0
shown in Figure 1 are identical, which is intuitive but
can also be established analytically by calculating the
right-hand sides of (2) and (6) for t = 0.
Next we compare the optimal permanent and tem-

porary buyout prices for the special case when par-
ticipating bidders are very impatient, i.e., �→�. The
optimal temporary (resp. permanent) buyout price
is obtained by solving numerically the optimization
problem obtained when substituting the very impa-
tient bidder condition in (8) (resp. (9)). These optimal
buyout prices are plotted in Figure 2 for various val-
ues of the bidder arrival rate � and seller time sensi-
tivity �.
The graph in Figure 2 confirms the intuition that

both optimal buyout prices should increase with the
bidder arrival rate and decrease with seller time sensi-
tivity. Although not reported here, other experiments
show that these prices also decrease with the bidders’

Figure 2 Optimal Temporary and Permanent Buyout Prices with
Impatient Bidders
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time sensitivity. Another observation is that the opti-
mal buyout price is higher with a permanent option
than with a temporary one; our explanation follows
from examining the individual terms of the equation
for the seller’s total expected discounted revenue

E�pe−�	buy � buyout�P�buyout
+E[e−�T 1#N �T >0$max(v�v�2N �T ) � no buyout]
· P�no buyout� (11)

where the first term is the expected discounted rev-
enue from the buyout auction (	buy denotes the con-
ditional buyout exercise time), while the second is
the expected discounted revenue from regular bid-
ding. For a given buyout price p, the permanent buy-
out option is exercised with higher probability and,
conditional on its exercise, on average later than the
temporary option (it may be exercised by other bid-
ders besides the first one). This suggests that the
price maximizing the first term alone in (11), which
is a unimodal function of the buyout price, will be
larger with a permanent option than with a tempo-
rary one. Figure 1 also indicates that for any given
buyout price both the expectation and the probability
forming the expected revenue from bidding (second
term in (11)), which is increasing in the buyout price,
will be smaller with a permanent option than with
a temporary one. The buyout price value at which
the marginal decrease in expected buyout revenue
equals the marginal increase in expected bidding rev-
enue in (11) should thus be higher with a perma-
nent option than with a temporary option. Finally,
note that the higher the seller time sensitivity �, the
larger the difference between the conditional buy-
out revenues E�pe−�	buy � buyout� for permanent and
temporary options—explaining the larger difference
between optimal permanent and temporary buyout
prices observed in Figure 2.
Our last set of experiments focuses on the seller’s

relative gain in utility from an auction with temporary
and permanent buyout options over an auction with
no buyout price, that is �E�U S

tmp�p
∗
tmp�−E�U S

nb�/E�U
S
nb�

or �E�U S
prm�p

∗
prm�−E�U S

nb�/E�U
S
nb�, where E�U

S
tmp�p

∗
tmp�

and E�U S
prm�p

∗
prm� denote the seller’s expected util-

ity from an auction with optimal temporary and per-
manent buyout options respectively, and E�U S

nb� the
seller’s expected utility from the basic auction mech-
anism without a buyout price described in §3.2. As
described in §4.3 the optimal buyout prices p∗tmp and
p∗prm are obtained by performing a simulation-based
line search; for all values estimated by simulation, the
true value is within 1% of the estimate with 95% confi-
dence. The results from these experiments are plotted
in Figures 3 and 4, which show the seller’s relative
utility increase just defined for both option types in

Figure 3 Relative Increase in Seller’s Utility from a Buyout Option
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various environments. A first observation is that, as
intuition suggests, the relative gain from both types
of buyout option generally increases with both the
seller’s time sensitivity � and the bidders’ time sen-
sitivity �—the possibility of selling the item earlier
is more valuable for a time-sensitive seller, and bid-
ders with a high time sensitivity are willing to pay
more if they can get the product earlier. Figure 4 sug-
gests, however, that the impact of the bidders’ time
sensitivity on the relative utility gain from a buyout
option becomes insignificant when the expected num-
ber of bidders �T becomes moderately large. On the
other hand, the expected utility gain from a buyout
option always seems to increase substantially with the
seller’s time sensitivity, independently of the expected
number of bidders. Our interpretation is that although
the seller’s time sensitivity directly impacts his utility,
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Figure 4 Relative Increase in Seller’s Utility from a Buyout Option
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the effect of the bidders’ time sensitivity is more indi-
rect in that it only affects the bidders’ relative prefer-
ence between the buyout option and the regular online
auction, without otherwise affecting the seller’s dis-
counted revenue from either alternative. Moreover,
when the number of bidders is large, affecting the
probability that a single one of them will exercise the
buyout option for a given time sensitivity � becomes
relatively easier.
Another important finding is that the optimal seller’s

utility derived from a permanent buyout option is
always larger than the one obtained with a tempo-
rary buyout option, as can be seen from comparing
the two vertical scales in Figures 3 and 4; although
we are unable to show this analytically, in general we
have observed this in all the experiments we have
conducted besides the ones reported here. Within the

strict boundaries of our model definition, a perma-
nent buyout option is a more powerful instrument
than a temporary one, because it allows to lever-
age the time sensitivity of all participating bidders as
opposed to only the first one. We come back to the
features of actual online auctions that our model does
not capture in §6.
Finally, we observe that although the increase in

seller’s utility achieved by introducing a temporary
buyout option (Figure 3(a) and 4(a)) is decreasing in
the bidder arrival rate, the exact opposite occurs (Fig-
ure 3(b) and 4(b)) with a permanent buyout option.
Our interpretation is that because a temporary buyout
option is only available to the first bidder, its rela-
tive impact diminishes in an environment with a high
expected number of participants. On the other hand, a
permanent option is potentially available to all arriv-
ing bidders and thus its relative impact does increase
with the expected number of bidders.

5. Dynamic Buyout Prices
In this section we study the mechanism obtained when
the buyout price, either temporary or permanent, is no
longer constant but instead varies over time accord-
ing to a preannounced trajectory �p�t�t∈�0�T �. Although
we are not aware of any auction site currently imple-
menting this feature, our goal is to develop a theoret-
ical analysis providing some prediction for what the
outcome of this mechanism is likely to be (in §5.1),
and bound the maximum expected revenue achiev-
able by the seller when setting this buyout-price tra-
jectory optimally (in §5.2).

5.1. Outcome Prediction
In an auction with a temporary buyout price fol-
lowing a dynamic trajectory �p�t�t∈�0�T �, consider the
extension of strategy � ��� obtained for any function
�� �0�T �→ �v� �v� by substituting p�t with p in the
first line of (1); for notational simplicity we will still
refer to the resulting strategy as � ���. The following
result establishes that any nondecreasing continuous
threshold function � can be supported by some price
trajectory in equilibrium:

Theorem 5. For any nondecreasing continuous func-
tion �� �0�T � → �v� �v�, define function p� �0�T � →
�v� �v� as

p�t= ��t− e−��+��T−t
∫ ��t

v
e��T−tF �x dx� (12)

The symmetric strategy profile � ��� is then a Bayesian
Nash equilibrium for the auction with temporary buyout-
price trajectory �p�t�t∈�0�T �.

Likewise, in an auction with a permanent buyout
price following trajectory �p�t�t∈�0�T �, for any func-
tion �� �0�T � × �v� �v� ∪ #0$→ �v� �v� we can consider
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the extension of strategy ���� obtained by substitut-
ing p�t with p in the first line of (5), and keep using
the same notation. The following result is the exact
analogue of Theorem 5 for the case of a permanent
buyout option:

Theorem 6. For any continuous function �� �0�T �×
�v� �v� ∪ #0$→ �v� �v� such that ��t�0 � ��t is nonde-
creasing in t and ��t� I is decreasing in I for all t, define
function p� �0�T �→ �v� �v� as

p�t = ��t−e−��T−tEt
[∫ ��t

v

∏N�t
i=1 F �min���ti�x∏N�t

i=1 F ���ti

·�F �xN�t�T dx
]

(13)

where the expectation Et is with respect to the number N�t
and epochs t1� � � � � tN�t of arrivals in �0� t of a nonhomo-
geneous Poisson process with rate �F ���	 with 	 ∈ �0� t,
and number N�t�T  of arrivals in �t� T � of a Poisson pro-
cess with rate �. The symmetric strategy profile ���� is
then a Bayesian Nash equilibrium for the auction with per-
manent buyout-price trajectory �p�t�t∈�0�T �.

Theorems 5 and 6 have similar interpretations:
For both the temporary and permanent case, any
threshold function � that is continuous and nonde-
creasing with time corresponds to a buyout-price tra-
jectory such that the strategy profile � ��� or ����
forms an equilibrium. In fact, the negative of the sec-
ond terms in the right-hand side of (12) and (13) both
represent the expected utility that a bidder arriving at
time t and having a valuation equal to the threshold
would obtain by submitting a regular bid (as opposed
to exercising the buyout option) in the correspond-
ing game. Therefore, both (12) and (13) express that
the buyout price p�t they define is such that a bid-
der arriving at time t with a valuation equal to the
threshold ��t would be indifferent between submit-
ting a regular bid and exercising the buyout option
(provided it is still open) at that price. However, set-
ting the buyout price p�t according to (12) or (13)
is only a necessary condition in general, and would
not eliminate alone the possibility that a bidder could
benefit from waiting beyond his arrival before choos-
ing between these two options. This could occur, for
example, if the buyout price is known to substan-
tially decrease in the future, and would give rise to a
competitive optimal stopping situation in which nei-
ther strategy � ��� or ����would form an equilibrium.
Theorem 5 and 6 actually establish in their respective
settings that no rational bidder will ever find such
wait to be more profitable a priori than acting imme-
diately when the target valuation threshold is non-
decreasing over time. Note that this does not imply
that the buyout price itself is nondecreasing—in fact,
for a constant valuation threshold ��t = � ∈ �v� �v�,

which satisfies the conditions of Theorem 5, the price
trajectory defined by (12) is decreasing. Only, in the
incoming bidders’ assessment it does not decrease
fast enough for the possible utility increase derived
from waiting to strictly overcome time discounting
and the risk associated with the arrival of another bid-
der while the option is still open.
As is the case with static buyout options, other

equilibria may exist for the temporary and permanent
dynamic buyout-price games besides those character-
ized here. Unfortunately, in contrast with the static
buyout case we have not been able to develop any
formal robustness results rationalizing the use for out-
come prediction of these specific equilibria among all
possible ones. We do however make the observation
that the following form of reciprocal holds for The-
orems 5 and 6, as should be clear from their respec-
tive proofs: For every continuous valuation thresh-
old curve � that is strictly decreasing with time on
some interval, bidders exist whose best response to
the symmetric profile � ��� (resp. ����) will not be
� ��� (resp. ����). This suggests that any equilibrium
we may be ignoring is likely to involve strategic and
possibly risky waiting behavior relative to exercising
the buyout option, which in practice may be unattrac-
tive to some bidders for reasons that our model does
not capture (e.g., cost of auction monitoring efforts).

5.2. Seller’s Optimization Problem
In this subsection we study the maximum expected
discounted revenue achievable by the seller through
the choice of a temporary or permanent buyout-price
trajectory �p�t�t∈�0�T �, using the equilibria character-
ized in Theorems 5 and 6 as a prediction of the rele-
vant game outcome.
An important implication of Theorems 5 and 6 is

that, within the range of equilibria considered, find-
ing an optimal-price trajectory �p�t�t∈�0�T � exactly cor-
responds to finding its associated continuous and
nondecreasing threshold function �� �0�T � → �v� �v�
subject to either (12) or (13). Denoting by �+ the set
of all such functions and starting with the case of a
temporary option, for � ∈ �+ and �p�t�t∈�0�T � given
by (12), the seller’s expected discounted revenue con-
ditional on the first bidder arriving at t1 = t when all
bidders follow strategy � ��� is given by

utmp���t�t � E�U
S
tmp�� � t1= t�

= e−�TEt�max�v�v
�2
N �t�T +1 �v1≤��t�F ���t

+e−�t
(
��t−e−��+��T−t

∫ ��t

v
e��T−tF �xdx

)

·�1−F ���t� (14)

where the definition of Et , N�t�T  and v
�2
N �t�T +1 is

the same as in (8). Note that the instantaneous buy-
out price p�t has been substituted with the right-
hand side of (12), and that the introduced notation
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utmp���t� t shows explicitly that the right-hand side
of (14) only depends on the value of � at t. The seller’s
revenue maximization problem can thus be stated as

Z∗
tmp� sup

�∈�+
E�U S

tmp���= sup
�∈�+

∫ T

0
utmp���t�t�e

−�t dt� (15)

The next proposition establishes that a discretized
version of problem (15) provides an upper bound for
the maximum seller’s expected discounted revenue
Z∗
tmp just defined:

Proposition 3. Consider any partition � � �	j j∈#0�����m$
of �0�T � into m subintervals such that 	0 = 0< 	1 < · · ·<
	m = T , define �	j � 	j+1 − 	j for j ∈ #0� � � � �m− 1$ and
let �� �maxj �	j be the mesh size of �. Then

Z∗
tmp ≤ �Ztmp��� max

��j j∈#0�����m$

m−1∑
j=0
utmp��j� 	j �e

−�	j�	j

subject to: v≤ �j−1 ≤ �j ≤ �v
for all j ∈ #1� � � � �m$� (16)

From a practical standpoint, Proposition 3 provides
a way to construct an upper bound for the seller’s
maximum expected discounted revenue by solving a
nonlinear program. Note however that the function
utmp appearing in the objective of (16) may not always
be easy to express analytically, because of the expec-
tation Et in (14). Also, we do not provide here any
description of the relationship between the mesh size
of a partition � (or size of nonlinear program (16)) and
the quality of upper bound �Ztmp��. For our numerical
experiments in §5.3, we focus on the special case of
uniform valuations, for which a closed-form expres-
sion for utmp is readily derived.
Turning now to the case of a permanent buyout

option, the seller’s revenue maximization problem
can be stated similarly as sup�∈�+ E�U S

prm���, where
E�U S

prm��� is obtained by substituting p with (13) and
�prm�p� t with ��t in (9). Although we were able to
derive an upper bound for that optimization problem
using some approximations and an approach simi-
lar to the one employed when deriving �Ztmp��; those
approximations were quite coarse. Consequently, the
resulting bound proved too loose to support any
assertive statement, as evidenced by the fact that the
piecewise constant solution obtained by solving the
problem analogous to (16) for the permanent case
performed significantly worse in all our simulation
experiments than all other policies tested, including
not using a buyout price at all. Consequently, the
experimental results we report for dynamic perma-
nent buyout prices in the next section are not quite as
conclusive as for dynamic temporary buyout prices.

5.3. Numerical Experiments
In this subsection we compare in different market
environments the utility derived by the seller with
a dynamic buyout-price auction, a static buyout-price
auction, and an auction with no buyout price; the
results presented are representative of a much larger
set of experiments than those reported here.
Let E�U S

tmp�p
∗
tmp�, E�U

S
prm�p

∗
prm�, and E�U

S
nb� be as

defined in §4.4. As before, estimates of those terms are
obtained by simulation, and are within 1% of the true
values with 95% confidence. For both temporary and
permanent options, we also consider the special case
of the seller’s revenue optimization problem whereby
maximization is restricted to the set of fixed thresh-
old valuation functions, i.e., ��t = v for all t. The
optimal fixed temporary (resp. permanent) threshold
valuation v∗tmp (resp. v

∗
prm) can then be computed by

solving numerically the single variable concave maxi-
mization problem obtained by the above substitution.
Slightly abusing notation, we denote by E�U S

tmp�v
∗
tmp�

and E�U S
prm�v

∗
prm� the corresponding expected util-

ity of the seller in a temporary and permanent buy-
out auction, respectively. For the temporary buyout
option we also compute the upper bound �Ztmp�	
defined in Proposition 3, where 	 is a partition of
�0�T � into 500 subintervals of equal length. We report
the values of all the terms above relative to the seller’s
expected discounted revenue from an auction with no
buyout price in Table 3.
A first observation from Table 3 is that the relative

performances of the optimal static buyout option and
the dynamic buyout option with optimal static valu-
ation are within 1.5% of each other in both the tem-
porary and the permanent case for all environments
considered. Furthermore, in the temporary case, these
two relative performances are always within 2% of
the maximum relative performance achievable by any
dynamic buyout-price policy, as shown by a com-
parison with the relative value of the upper bound
�Ztmp�	. Our results therefore support the prediction
that online auction sellers stand to gain relatively little
from using a dynamic temporary buyout price rather
than a static one.
In the permanent case, a similar upper bound for

the maximum revenue achievable with a dynamic
buyout price is unfortunately not available to us, and
our results are therefore not as conclusive. However,
the fact that the dynamic buyout option with optimal
static valuation and optimal static buyout price per-
form very similarly in both cases and are provably
very close to optimal in the temporary case indicates
that they may also be close to optimal in the perma-
nent case. In light of the higher implementation com-
plexity and possible negative reactions from bidders
faced with the untested concept of a dynamic buy-
out price, our results thus suggest that one should
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Table 3 Utility Increase Achieved by Fixed Buyout Price and Fixed Threshold Valuation Auctions

� 0.01 (%) 0.03 (%)

�T 4 8 16 4 8 16

Temporary
E�US

tmp�p
∗
tmp�
− E�US

nb


E�US
nb


2.87 2.07 1.49 12.89 10.34 879

E�US
tmp�v

∗
tmp�
− E�US

nb


E�US
nb


3.65 2.02 1.40 13.64 10.31 860

�Ztmp�� �− E�US
nb


E�US
nb


4.13 2.87 3.05 13.91 10.78 1038

Permanent
E�US

prm�p
∗
prm�
− E�US

nb


E�US
nb


6.55 5.78 6.88 23.43 25.22 3008

E�US
prm�v

∗
prm�
− E�US

nb


E�US
nb


7.30 6.68 7.49 24.57 26.13 3047

at least have a pessimistic prior about any potential
gain from a dynamic permanent buyout price relative
to a static one.

6. Conclusion
We now summarize the answers to the three moti-
vational questions raised in the introduction obtained
from the analysis just presented:
Question 1: How should a seller using an online auction

set the buyout price (if at all)? Our equilibrium anal-
ysis of an auction with a buyout option produces a
prediction for the seller’s expected discounted rev-
enue resulting from a given value of the buyout price,
which we can then use to formulate and analyze an
optimization problem where this buyout price is the
main decision variable. Although this problem is diffi-
cult to solve analytically in the general case; for practi-
cal purposes its solution may still easily be computed
with high precision using simulation. From a qualita-
tive standpoint, this model and our numerical exper-
iments confirm the intuition that the optimal buyout
price for the seller increases with the expected num-
ber of bidders and the bidders’ time sensitivity, and
decreases with the seller’s time sensitivity. Our results
also suggest that when facing a given market envi-
ronment, the value of the permanent buyout price
which is optimal for the seller is higher than the one
for a temporary buyout price. Finally, our asymptotic
analysis of the seller’s optimization problem yields,
in some special cases, closed-form expressions for the
optimal buyout price that may be potentially use-
ful to practitioners (the reader will find more such
expressions in Gupta 2006). But it also generates some
mechanism design insights for the dynamic market
environment we consider that extend those described
in Harris and Raviv (1981) for a static market envi-
ronment. Specifically, in our model where the rela-
tive values of the seller’s and bidders’ time sensitivity

and the bidder arrival rate effectively capture market
power and the ratio between supply and demand, a
time-sensitive seller facing few patient bidders should
use a fixed posted price, while a patient seller fac-
ing many bidders should bypass the buyout option
and only use a regular auction mechanism; the hybrid
mechanism and smooth transition enabled by a buy-
out option is appropriate for a range of market envi-
ronments between those two extremes.
Question 2: What are the implications of using a tem-

porary buyout option relative to a permanent one? Our
equilibrium analysis suggests that with a temporary
option the first bidder to submit a regular bid will do
so immediately upon arrival, but with a permanent
option all regular bids should be submitted shortly
before the end of the auction. Note that our model
does not provide any prediction for when regular
bids from the second and subsequent bidders will
be submitted in an auction with a temporary buy-
out option. In practice, the timing of bid submissions
is also affected in various ways by features not cap-
tured here. For example, a high cost of monitoring
the auction could hasten bid submissions, while com-
mon value could delay them. However, our model
does suggest that the marginal impact of a perma-
nent buyout option relative to a temporary one is to
delay the first bid (presumably a negative outcome
for the seller if bidding activity may be attracting
more bidders), and concentrate bidding activity near
the end of the auction. From that perspective, we
find it remarkable that Amazon’s online auction site,
one of the largest with a permanent buyout option,
also features a rule whereby the first bidder is offered
a 10% discount on the final selling price should he
win the auction. However, this obvious incentive for
early bidder involvement is not used on any site
with a temporary buyout option we are aware of,
most prominently eBay. Another relevant remark is
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that automatic activity-based bidding period exten-
sion rules, which Roth and Ockenfels (2002) show
to reduce bidding concentration near the end of the
auction, are predominantly featured by auction sites
using a permanent buyout option (e.g. Amazon and
Yahoo!), and conspicuously absent from the site eBay.
Taken together, these observations lend support in
our view to the validity of our analysis and robust-
ness of our model predictions. This paper thus sheds
some light on, but does not resolve, the issue of which
type of buyout option is preferable from a seller’s
standpoint. A first insight we obtained is that the rela-
tive attractiveness for the seller of a temporary buyout
option decreases with the expected number of bid-
ders, whereas it increases in the case of a permanent
buyout option. Furthermore, the seller’s expected dis-
counted revenue derived from an optimal perma-
nent buyout option was larger than the one obtained
with an optimal temporary option in all the numeri-
cal experiments we performed with our optimization
model. In practice however, the higher incentives for
late bidding associated with the permanent option
may negatively impact the seller’s revenue for rea-
sons that our model does not capture (e.g., signaling
effect of bidding activity). The theoretical results just
mentioned thus do not justify in our view an unam-
biguous recommendation to always use a permanent
option over a temporary one, except perhaps for very
time-sensitive sellers in environments with a high
expected number of bidders—the conditions under
which the predicted difference in expected discounted
revenue was largest in our experiments. This nuanced
interpretation also seems justified by the continued
use by eBay (the largest and arguably most success-
ful auction site currently operating) of a temporary
buyout option.
Question 3: What is the potential benefit associated with

using a dynamic buyout price that may vary as the auc-
tion progresses? Although our results are not quite as
conclusive in the permanent case as in the tempo-
rary one, they still suggest that the potential revenue
increase enabled by such dynamic buyout price is
small, seemingly not justifying the associated imple-
mentation complexity and possible negative reactions
from bidders. The fact that to the best of our knowl-
edge no dynamic buyout price has ever been used
on any actual auction site may also be corroborating
these findings.
We mention in closing several possible extensions

of this work. Although as stated in §2 we focused
in this paper on time sensitivity as a primary driver
for the use of buyout options, it turns out that the
structure of the equilibrium strategy derived in §4.1
remains the same when bidders are also assumed
risk averse with CARA utility function U�v� t� 	 �

1− e−re−��	−t�v−x (r > 0 is the coefficient of risk aver-
sion; see §3.1 for other notation). That is, Theorem 1
can be extended to show that for a temporary buyout-
price auction with such bidders, a threshold function
�
�r
tmp exists such that � ��

�r
tmp� defines a Bayesian Nash

equilibrium. Furthermore, from Jensen’s inequality
follows that ��rtmp ≤ �tmp. Intuitively, the riskless buyout
option is more attractive to risk-averse bidders rela-
tive to regular bidding (which involves both winning
and selling price uncertainty), resulting in a lower
buyout valuation threshold. The results for the per-
manent buyout-price case stated in §4.2 can be simi-
larly generalized for such bidders. A more complete
study of the impact of seller’s and bidders’ risk aver-
sion on the buyout price in this dynamic environment
remains to be conducted however. Although we con-
jecture that the qualitative impact of seller and bidder
risk aversion on the optimal buyout price is similar to
that of our time-sensitivity discount factors � and �
because in this game the riskier outcome (auction, as
opposed to buyout) is also more distant in time, we
leave this issue aside for future research. Also, focus-
ing on the seller’s perspective seemed justified in this
first study because sellers typically choose auction
sites and parameters; however, it would be valuable
to explore the impact of buyout options on bidders’
utilities. Finally, we would like to extend our analysis
to the case of multi-item auctions, and also consider
dynamic buyout prices that would not be predeter-
mined but rather modified according to actual bid-
ding activity during the auction.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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