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Abstract
Wave-based release policies are prevalent in warehouses with an automated sorter, and take different

forms depending on how much waves overlap and whether the sorter is split for operating purposes. Waveless
release is emerging as an alternative policy adopted by an increasing number of firms. While that new policy
presents several advantages relative to waves, it also involves the possibility of gridlock at the sorter. Using
an extensive dataset of detailed flow information from the warehouse of a leading US online retailer, we first
develop a model with validated predictive accuracy for a warehouse operating under a waveless release policy.
We then use that model to compute operational guidelines for dynamically managing the main control lever
of that policy, with the goal of maximizing throughput while keeping the risk of gridlock under a specified
threshold. Secondly, we leverage that model and dataset to perform through simulation a performance
comparison of wave-based and waveless policies in this context. The waveless policy yields larger or equal
throughput than the best performing wave-based policy with a lower gridlock probability in all scenarios
considered. Waveless release policies thus appear to merit serious consideration by practitioners. Facilities
using a non-overlapping wave policy should also consider overlapping waves or a split sorter policy.

1 Introduction

Efficiently fulfilling a high volume of small orders chosen from a large number of SKUs

is critical to many online retailers, direct mail-order firms, and retail distributors shipping

to many stores on a frequent basis. The most critical infrastructure component in these

distribution systems is often an automated split-case sorter. It enables a labor-efficient

fulfillment process whereby a large set of orders can be disaggregated into individual item

picking instructions distributed simultaneously in several zones within a split-case picking

area (batch and zone picking), each having its dedicated team of workers (pickers). Picking

an item typically involves scanning its bar-code and moving it from a storage rack to a small

container (tote) carried by a rolling cart. When full, totes are offloaded onto a conveyor

belt system transporting them to the sorter’s induction stations; sometimes this transport

system includes an intermediate circulating loop where selected totes may be temporarily

1 The question of this title is from Gilmore (2006b).
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held for the purpose of reducing the sorting time of orders. At the induction stations, workers

empty incoming totes by placing their items onto individual tilting trays. These trays are

circulated along a loop located above some accumulation chutes temporarily assigned to

individual orders, and drop items into the appropriate chutes. Finally, when all the items

of an order have been dropped to a chute, dedicated workers (packers) place them into a

cardboard box which is then moved to a downstream shipping area4.

The present paper focuses on the problem of coordinating the flow of work for the fulfill-

ment process just described through order release control. Two main types of policies are

currently used in practice to address this challenge: a very widespread and relatively old one

known as wave picking, and a more recent and emerging one which is called in contrast wave-

less picking (we defer a detailed description of these policies until our practice survey section

§3). While proponents of the latter claim it can increase throughput, equipment utilization

and labor productivity relative to the former, there is currently no published rigorous study

in support of these claims. In addition, waveless picking appears more challenging to control,

and creates the possibility of a congestion-induced collapse known as gridlock.

The research work to be described here leverages our collaboration with a leading US

online retailer, who had switched all of its warehouses with an automated sorter from wave-

based to waveless picking before our interaction began, and provided most of our field obser-

vations and data. While our partner reports observing significant performance improvements

with waveless picking, it did not initially establish formal guidelines for how managers should

dynamically control this new policy, and experienced gridlock more frequently than desired.

Indeed, there were no published guidelines on the control of waveless picking in either the

trade or the academic literature then, and this still appears to be true at the time of writing.

These observations motivate the two research objectives pursued in this paper: (Objective

1) Develop a quantitative model to generate prescriptive control guidelines for waveless pick-

ing; and (Objective 2) Leverage this model to conduct a rigorous performance comparison

between wave-based and waveless picking.

After a discussion of the related literature and our contributions in §2, we provide in §3

a more detailed survey of the current practice for order release control in warehouses with

an automated sorter. We then describe in §4 our work on the first objective stated above,

4 Some sorters rely on different mechanisms to drop items into the accumulation chutes, also many include two or
more vertical levels of accumulation chutes which can be accessed by the same trays (Saenz 2002).
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present a quantitative model describing wave-based picking in §5, and discuss in §6 the

simulation experiments we performed in order to achieve our second objective. Concluding

remarks are provided in §7, and the Online Appendix to this paper contains supporting ma-

terial, including auxiliary results and detailed algorithm statements. Mathematical variables

in capital letters refer throughout to random quantities, while those in lower case refer to

deterministic quantities. Also, notations with an upper (resp. lower) bar refer to the maxi-

mum (resp. minimum) value in an index set or interval, variables in bold refer to vectors or

control policies, and new terminology being defined appears in italics.

2 Literature Review

We focus here on papers specifically motivated by warehouses with an automated sorter

(either a split-case sorter as in §1 or a case sorter), and refer the reader to de Koster et al.

(2007) for a recent survey of the extensive work on other types of warehouses.

A first set of papers examines whether an automated sorter constitutes a justified design

option. Using queueing models, Choe et al. (1992) compare the cycle times associated with

the three strategies of single order picking, batch picking and batch zone (wave) picking

with an automated sorter. With simulation, Petersen (2000) investigates these policies plus

sequential zone picking, considering not just cycle time but also labor requirements. Finally,

Russell and Meller (2003) develop a deterministic cost model to decide whether manual or

automated sorting should be used with wave picking.

A second group relies on simulation models to determine various warehouse dimensioning

and control parameters. Bozer and Sharp (1985) explore the impact of the number of sorter

chutes and their storage capacity as well as the use of recirculation and the concentration

of items from each order within a wave. Bozer et al. (1988) also investigate the throughput

implications of the wave profile (size, distribution of items per order), the chute assignment

policy and the degree to which consecutive waves are allowed to overlap. Finally, Johnson

and Lofgren (1994) report the use of model decomposition when designing a new warehouse.

Also relevant is Johnson and Meller (2002), which presents an analytical model predicting

the throughput of induction stations used in split-case sorting operations.

A last set explores more specific operational problems motivated by the use of automated

sorters. Armstrong et al. (1979) and Le-Duc and de Koster (2005) formulate mixed integer

optimization models to compute order batches, taking into account both discrepancies in
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wave completion times across zones and limitations of sorter capacity. Owyong and Yih

(2006) present a heuristic for modifying pick lists to reduce order accumulation time. Finally,

Meller (1997) describes integer programming models for assigning orders to sorter chutes,

assuming that the sequence of incoming items is known. Relaxing this last assumption,

Johnson (1998) develops a stochastic model predicting the impact of various chute assignment

strategies on expected wave sorting time.

The present paper makes the following five contributions to the existing literature:

1. We provide (in §3) the first academic survey of the various order release control methods

used in practice for warehouses with an automated sorter, based on field research and

a review of both trade and academic literatures. In particular, our paper is the first

academic study to describe waveless picking (in §3.2);

2. We describe (in §4) the first quantitative model predicting warehouse flow dynamics under

waveless picking. This model is noteworthy because (i) it has been validated empirically

with field data (see Figure 1 and discussion in §4.3.2); (ii) it supports the first quantitative

study of whether and how gridlock can be avoided, a topic discussed in the trade literature

(e.g., Bradley 2007, Holste 2008); and (iii) more generally, it captures the relationship

between the release of picking orders and sorter congestion, which has been consistently

described as an important yet unexplored research topic (Johnson 1998, Petersen 2000,

Owyong and Yih 2006);

3. We state (in §4.4) the first optimization formulation for the problem of dynamically

controlling a waveless picking policy, which is meaningful because such control has been

characterized as challenging in the trade literature (Demery 2007, Bradley 2007). In

addition, we develop (in §4.5) a numerical algorithm for solving this problem, which

leads us to describe (in §4.6) the first quantitative prescriptive guidelines for controlling

a waveless picking policy;

4. We present (in §5) a model predicting sorter dynamics under wave picking. This model

is noteworthy because (i) it generates the first quantitative description of the detailed

dynamics of packing labor and sorter utilization under various wave picking policies (see

Figure 4 and discussion in §6.2.2); and (ii) its output exhibits the same qualitative features

that are discussed in the trade literature (e.g., Hinojosa 2006, Bradley 2007);

5. We perform the first rigorous performance comparison between wave-based and waveless
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picking policies (see Table 1 and discussion in §6.2). This comparison is admittedly par-

tial, because while our model supports an examination of throughput, sorter utilization,

gridlock probability and packing labor, it does not capture the important dimension of

picking labor, which is a primary cost driver in many warehouses. However, the exer-

cise is still managerially relevant because many facilities see a relatively large fraction of

their demand occur in a relatively short period of time (e.g., Christmas), during which

throughput becomes a more important consideration than picking efficiency.

3 Survey of Practice for Order Release Control

3.1 Wave-Based Release Policies The traditional approach for coordinating the flow

of work in warehouses with an automated sorter is aptly referred to as wave picking. In

its simplest form, it consists of releasing large batches of orders (the waves) in a sequential

manner, so that picking work for a given wave can only start when all the items from the

previous wave have been already picked (Choe et al. 1992, Petersen 2000). Likewise, items

of a given wave are only released into the sorter when all the orders from the previous wave

have been already sorted and/or packed (Armstrong et al. 1979, Meller 1997). This approach

presents several benefits: (i) Using large wave sizes increases the density of items to be picked

and thus picking labor productivity, at least at the beginning and in the middle of the wave

(see discussion below); (ii) Pick lists can be determined for all the workers simultaneously

at specific points in time, and can be communicated using simple paper printouts; and (iii)

Blocking effects at the sorter can be completely avoided by ensuring that the number of

orders in each wave is less than or equal to the number of sorter chutes.

However, many sources also discuss several important drawbacks associated with this

simplest form of wave picking: (i) Because the time for pickers to complete a wave is variable,

some pickers may experience idle time at the end of waves (Choe et al. 1992, Petersen

2000, Gilmore 2006a, Gilmore 2006b and Bradley 2007); (ii) Large wave sizes generate a

large buffer of inventory (cycle stock) between picking and sorting, which is costly because

of the resulting accumulation conveyor and floor space requirements (Russell and Meller

2003, Bradley 2007). Due to the link with the number of chutes, wave sizes also drive

the sorter purchase cost; (iii) Waves also add a cycle time component to order completion

times, which can be problematic with time-sensitive customers; (iv) The sequential release of
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non-overlapping waves into the sorter results in low capacity utilization, because the chutes

corresponding to completed orders cannot be re-assigned until the end of the current wave.

This issue is particularly critical during peak periods because sorters often constitute the

throughput bottleneck (Apple 2006, Gilmore 2006a, Perkins 2008); and (v) The packing

workload is concentrated in the second half of each wave, as most chutes only become ready

to be packed then (Hinojosa 1996, 2006, Perry 2007).

Tomitigate these problems, more sophisticated forms of wave picking have been developed.

To reduce pickers’ idling at the end of waves, some companies allow different waves to overlap

in the picking area, either across zones (Armstrong et al. 1979) or within each zone (Owyong

and Yih 2006). However, this practice creates the need for a pre-sorting operation to separate

items from different waves before release into the sorter. To increase throughput as well as

sorter and packing labor utilization, different waves are sometimes also allowed to overlap

in the sorter. A first strategy consists of starting the release of each wave as soon as the

previous one has reached a specified completion threshold such as 90% (Bozer et al. 1988) or

50% (Johnson and Lofgren 1994) of the orders. As pointed out in Johnson (1998) however,

overlapping waves in the sorter presents control challenges, because of the blocking that

occurs if all the sorter accumulation space becomes full (see discussion below).

A second strategy consists of splitting the available sorter space in two halves, with each

half dedicated to a different wave so that packers can work on a completed wave in one

half while the next wave is being accumulated into the other half (Ruben and Jacobs 1992,

Russell and Meller 2003, Perry 2007, Perkins 2008). As a result, packers wait little or no

time for the next wave to complete accumulation, and their utilization is much improved.

In practice, this policy typically leverages a physical sorter design where chutes are laid out

in two vertical levels, and packers work on a completed wave in one of the two levels (e.g.,

the lower level), while the next wave is being sorted in the other (e.g., upper) level. While

many systems allow both packers and tilting trays to access both levels independently, others

only allow sorting/accumulation in the upper level and packing in the lower level, with a

dropping mechanism allowing to transfer complete orders from the upper level to the lower

level when the latter is empty5. In those systems where only the chutes of the lower level are

accessible to packers, they are sometimes referred to as pack-out only chutes in contrast with

5 We are grateful to a referee for providing a description of this alternative design.
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the accumulation chutes of the upper level. While this split sorter strategy seems relatively

widespread, note that for all sorters except those with pack-out only chutes it divides the

largest possible wave size by two6, which may impact picking labor productivity (Perry 2007).

3.2 Waveless Release Policy Because of the challenges described above, a growing

number of companies are using an alternative order release control policy referred to as

waveless picking or continuous flow picking (Bradley 2007). While the different implemen-

tations of this new policy vary in details (see Hinojosa 2006, Trebilcock 2007, McMahon 2008

and Morris 2008), they all involve the same core principle, which is perhaps best explained

through a comparison with traditional wave picking.

Wave picking conceptually involves a first queue of incoming customer orders and a second

picking queue corresponding to all the orders covered by the current active picking assign-

ments; whenever the second queue becomes empty, it is replenished at once by an entire

batch of a given number of orders (the wave), which is transferred then as a whole from the

first queue. In contrast, waveless picking involves the continuous transfer of individual orders

from the first queue to the second one, based on a priority ranking of incoming customer

orders typically based on target shipping dates.

The second queue (called a revolving batch or a virtual wave) still has a maximum capacity,

which is an important control parameter that we will later refer to as the revolving batch

size; when that maximum buffer size is reached, any new customer order may only enter the

picking queue as another one exits, which occurs when the last one of its items is picked.

Pick lists for individual pickers are determined and continually updated in real-time from

the picking queue, using a partition of the warehouse storage area into continuous directed

picking loops (the zones), and a dynamic partition of each picking loop between all the

pickers assigned to that zone. Specifically, every worker’s pick list consists at all times of all

the items from orders in the picking queue that are located between his last recorded position

and that of the next picker down his picking loop. In addition, this method involves a labor

balancing mechanism which continuously evaluates for each zone the expected completion

time of the current picking queue, and re-assigns pickers whenever imbalances of this quantity

across zones exceed specified thresholds.

6 With sorters where all the chutes can be used for both accumulation and packing, as an alternative to this
split sorter strategy one could release sequential waves with a (doubled) size equal to the total
number of chutes in both vertical levels. In contrast, the maximum wave size in a sorter with
pack-out only chutes remains equal to the number of upper accumulation chutes.
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Note that the waveless policy just described critically relies on expensive technology and

software, specifically dependable real-time two-way wireless digital communications with

every picker in the warehouse (typically provided by portable devices also including a bar-

code reader), and real-time centralized database management. The benefit of this new

method however is that while it involves batch and zone picking and may therefore achieve

high picking productivity (with the density of pick assignments determined by the revolving

batch size), it also appears to eliminate some of the inefficiencies associated with wave

picking. In particular, no picker is ever starved for work at the end of a wave and, relative to

facilities allowing picking waves to overlap, there is no need for a pre-sorting operation. In

addition, the rate at which orders become available for packing is more steady, and completed

orders in sorter chutes never need to wait before they can be assigned to a packer. Finally,

any urgent incoming order can be assigned for picking almost instantly without waiting until

the end of the current wave, and the average completion time of all orders is improved by

the elimination of the cycle times before picking and between picking and sorting that are

introduced by waves. Indeed, several trade journal articles and corporate white papers point

out that waveless picking may generate substantial improvements in both throughput and

labor costs relative to wave picking (Hinojosa 2006, Cooke 2007, Perry 2007), and several

support this claim with observations from actual implementations (Bradley 2007, Morris

2008, McMahon 2008).

An essential caveat however is that waveless picking no longer involves the release into the

sorter of separate batches of a fixed number of orders, which assures that its accumulation

space is never exceeded. This new policy therefore creates the potential for severe blocking

(Bradley 2007). Specifically, when all the chutes in the sorter are tied up (either by incom-

plete orders or by complete orders waiting for a packer), upstream congestion can start to

build. As a result, the very items needed to complete orders tying up chutes and relieve

this congestion may no longer reach the sorter because of... the same congestion. This phe-

nomenon is known as gridlock (Johnson and Lofgren 1994), and because the corresponding

recovery procedure is typically long and laborious, it can significantly reduce capacity and

productivity (Holste 2008). In the words of Sam Sanders, a warehouse consultant quoted in

Bradley (2007): “It’s like a game of solitaire. If all the slots in the game are full, the game

is over, and you lose. If you have 10,000 SKUs and 1,200 drop points, you can have a lot of
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SKUs on the sorter with no place to drop into. If you want to work with continuous flow,

you have to be cognizant of this.”

In the rest of this paper, we develop and analyze quantitative models of warehouse flow

dynamics under both waveless (§4) and wave-based (§5) release control.

4 Waveless Release Model and Analysis

This section begins with a formal definition of our predictive model in §4.1 and a related

discussion in §4.2. We then present approximate dynamics and discuss their validation

in §4.3, state the related optimization problem we consider in §4.4, present an associated

solution algorithm in §4.5 and finally discuss in §4.6 the qualitative features of the waveless

release policies computed through this approach.

4.1 Model Definition Our waveless release model is a three station serial queueing

network with state-dependent service rates and a dynamically controllable input rate. Each

circulating entity in this network represents a customer order. The release of new orders

follows a Poisson process, with a controllable rate at time τ ≥ 0 noted λ(τ). This arrival

process corresponds in the real system to the sequence of times at which the first item of any

order is picked across the entire picking area. Control λ(τ), which thus corresponds to the

current average order picking rate, is limited for capacity reasons by a fixed upper bound

λ̄. Also, because of database synchronization issues this average release rate may only be

changed at discrete time points separated by a period δ (of the order of a few minutes).

Consequently, the release policies λ considered amount to a discrete sequence of controls

(λt)t∈N, where each discrete time period t ∈ N corresponds to the continuous time interval
[tδ, (t+ 1)δ), i.e., λ(τ) = λt for τ ∈ [tδ, (t+ 1)δ).
The first queueing station has an infinite number of servers, each with identically dis-

tributed service times following a state-dependent distribution noted A and representing the

time-to-chute, or delay between the time when the first item of an order is picked and the

time when the first item from that order reaches a sorter chute. The process representing

the number of orders undergoing service in this first station is denoted X(τ), and provides a

partial measure of the conveyor congestion upstream of the sorter. In the following, we will

use the notation Xt , X(tδ).

The second station has an infinite number of servers, each with identically distributed
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service times following a state-dependent distribution noted B and representing the chute-

dwell time of every order, which is the delay between the arrivals of its first and last items to

a chute. The number of orders undergoing service in this second station thus represents the

number of incomplete chutes in the sorter, and follows a process denoted Y (τ). As before,

we define Yt , Y (tδ).

The third station represents the packing stage. It has a finite number of servers equal

to the number w of packers assigned to the sorter, each with identically distributed service

times representing the pack-to-pack time C, or cycle time experienced by a packer for each

customer order (e.g., time spent walking to the next chute + time spent packing). The

process representing the number of orders in this station (in queue and in service) is denoted

Z(τ), which thus corresponds to the number of complete chutes in the sorter at any point in

time (either complete and waiting for a packer, or being packed). Its values at the discrete

time points (tδ)t∈N are also denoted Zt , Z(tδ). Note that Y (τ) + Z(τ) thus represents

the total number of busy chutes at any time τ , so that the occurence of gridlock can be

characterized as the event Y (τ) + Z(τ) > n where n is the number of sorter chutes.

Finally, the state dependency of A and B captures the relationship between the actual

time-to-chute and chute-dwell time of orders and the congestion upstream of the sorter,

which is itself directly related to the processes X(τ) and Y (τ)7. To capture this endogeneity,

we consider a small number of congestion levels g ∈ {1, ..., ḡ} corresponding to adjacent
consecutive ranges [dg, dg+1) for conveyor system congestion, defined as the total number

of items I(τ) on the conveyor system between the picking area and the sorter. With E[M ]

denoting the average number of items per customer order, we verified with field data that

the expression I(τ) ≈ E[M ](X(τ) + Y (τ)/2) provides an accurate estimate8. The last step

is to specify fixed distributions A(g) and B(g) for all the congestion levels g ∈ {1, ..., ḡ},
respectively providing the service times of the first and second stations when the system

state is such that E[M ](X(τ) + Y (τ)/2) ∈ [dg, dg+1). The Online Appendix illustrates how
these distributions may be estimated using available field data, and contains empirical density

plots of the service time distributions obtained with a specific data set.

4.2 Modeling Discussion
7 The walking time of packers and therefore distribution C may also appear endogenous. However,
field data shows that C is in fact fairly stationary.
8 This expression corresponds to the approximation that the order statistics of the arrival times
of the items of each order to their assigned chute are equally spaced in expectation
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4.2.1 Scope and Control We observed in the field that the main daily flow control

levers available as part of the waveless picking policy described in §3.2 include the size of the

revolving batch, which can be adjusted a few times per hour, as well as the staffing levels for

pickers and packers. Note that the revolving batch size directly affects the overall picking rate

through the resulting density of items to be picked along the picking loops9. In practice, we

have observed the use of simple but reliable data tables constructed empirically to determine

the size of the revolving batch required to generate a specified overall average picking rate

under various staffing levels for pickers. However, we saw that no formal guidelines were

available for dynamically changing the target picking rate as a function of observed process

conditions and packers’ staffing level10. This motivates our choice of the target picking rate

as the primary control, even if that control is to be effectively implemented through changes

in the revolving batch size and pickers’ staffing level. Also, our model considers the packers’

staffing level as a fixed parameter, which seems justified because it is only changed a few

times per day in practice.

As Russell and Meller (2003), we thus do not explicitly model the picking area layout,

stowing policies and picker routing policies employed. Note however that we do consider their

aggregate impact on downstream congestion, i.e., the overall rate at which pickers release

items onto the conveyor system. Specifically, this impact is captured by the empirical data

tables mentioned above, which link overall average picking rate with the revolving batch size

and the pickers’ staffing level. As Chew and Tang (1999) and Le-Duc and de Koster (2007)

demonstrate, this relationship can also be derived analytically in some settings.

The main drawback of this approach is that our model does not allow to quantify the

impact of waveless picking on picker productivity (see related discussion in §7). It presents

however several important benefits: (i) our model remains tractable; (ii) this modular ap-

proach separates the problems of minimizing the labor cost of a target picking rate on one

hand, and setting the picking rate to maximize warehouse throughput on the other hand — as

a result we can better focus on the latter here; and (iii) our model is more widely applicable,

because idiosynchratic features such as the layout of the picking area do not need to be

9 Picking rate in this setting can be conceptually modeled by the throughput of a closed queueing network with a
single station having as many servers as there are pickers, and where the number of circulating
entities, which corresponds to the revolving batch size, affects the service rate.
10 Instead, there were informal guidelines prescribing to try and stabilize the process around target
numbers of complete and incomplete sorter chutes. These target numbers were not supported by analysis, appeared
inconsistent across managers and facilities.
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explicitly captured.

Finally, note that the arrival process in our model is random, which reflects that the actual

system is only partially controllable. That is, specifying the revolving batch size for a given

staffing level only implements an average picking rate, from which the current instantaneous

picking rate may differ — this stems in practice from variability in the actual density of picks

along the picking loops, pickers’ individual productivity, the actual number of items per

order, etc. The specific structure assumed for that randomness (Poisson) is motivated by

both tractability considerations and the intuitive applicability of the Poisson superposition

theorem to this setting11.

4.2.2 Processing Our model of the order accumulation process is derived from Gallien

and Wein (2001). Note that the conveyor transport system linking the picking area and

the sorter is entirely captured by the congestion-dependent service time distributions A(g)

and B(g). Similar to our modeling of the picking process, this approach relieves us from

explicitly modeling idiosynchratic features such as the layout of the conveyor belt system

and the possible use of an intermediate circulating loop (see §1). In the Online Appendix, we

apply this approach to field data in order to illustrate that it can capture the key dynamics

of a complex actual warehouse system.

In addition, we do not explicitly capture staffing decisions for induction stations (and

more generally their capacity). This is justified by our field observations of induction stations

with automated coordinated induction belts designed using realistic throughput models of

the type described in Johnson and Meller (2002), so that only few operators are required to

achieve a high induction capacity.

Finally, note that the number of servers of the second station is infinite and that the

buffer size of the third station is unlimited, even though both parameters should be limited

by the number of sorter chutes n. This is justified because (as will be seen in §4.4) we

only consider release control policies λ ensuring with high probability that the gridlock

event {Y (τ) + Z(τ) > n} does not occur. Under such policies the seemingly salient model
assumptions just stated are immaterial, because both events {Y (τ) > n} and {Z(τ) > n}
are contained in the previous one.

11 Many pickers simultaneously contribute to the overall picking rate, and the sequence of each worker’s
item picking times can be modeled as an independant renewal process. See e.g., Theorem 9.8.1 in Whitt (2002).
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4.2.3 Input and Output Data The primary model data (A,B,C, λ̄, w) should be

readily available in all warehouses using a modern warehouse control system (WCS), which

involve bar-code scanners carried by pickers and packers as well as many sensors placed in

many locations in the conveyor system, induction stations and sorter chutes. In addition,

the primary model output (X(τ), Y (τ), Z(τ)) is directly observable in practice, and this

information corresponds in fact exactly to that actually observed by some managers when

adjusting the revolving batch size. This model feature guarantees that the informational

requirements of the release control policy developed are realistic, and also allows for an

empirical model validation to be performed (see §4.3.2);

4.3 Approximate Dynamics

4.3.1 Derivation Our next step is to study the dynamics of the queueing model described

in §4.1 as a function of the release control policy λ. Unfortunately, an exact analysis appears

challenging because (i) the short control time period δ precludes steady-state assumptions;

and (ii) service time distributions for the first two stations are state-dependent. Instead, we

develop here a more tractable approximate version of our queueing model and verify in §4.3.2

through a validation experiment that this version remains suitably realistic. We specifically

consider the following approximations:

— The service times A(g), B(g) and C of the three queueing stations follow exponential

distributions with first moments given by actual data. The empirical distributions of B(g)

and C constructed from data exhibit shapes that are similar to that of an exponential

(see Online Appendix). However, the empirical distributions we constructed for A(g) do

not12.

— Orders move at most one station downstream during each time period [tδ; (t + 1)δ). Be-

cause the actual expected service times E[A(g)] and E[B(g)] at the first and second stations

are several times larger than the control period δ, the transitions that this assumption

ignores have very low probability relative to all others.

— The congestion level remains constant within each control period [tδ; (t + 1)δ). We have

found through simulation of the original system that consecutive changes of congestion

level occuring less than δ time units apart were very rare.

12 Weber (2005) derives more accurate system dynamics for this model using phase-type distributions and results
on the Mt/G/∞ queue from Eick et al. (1993). However, the optimization problem considered
in §4.4 becomes much harder to solve under these dynamics.
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— The minimum of the numbers of packers w and closed chutes Z(τ) remains constant within

each control period [tδ; (t+1)δ). We have likewise observed that policies performing well

in simulations result in a relatively high capacity utilization for the third queue, yielding

min(w,Z(τ)) = w with high probability.

From elementary properties of Markovian queues, the above approximations result in the

following discrete-time system dynamics (see Weber 2005 for this and other derivations of

transient dynamics for this system)13:

⎧⎪⎪⎨⎪⎪⎩
Xt+1 = Xt +N→X

t −NX→Y
t

Yt+1 = Yt +NX→Y
t −NY→Z

t

Zt+1 = Zt +NY→Z
t −NZ→

t

gt =
Pḡ

g=1 g1[dg,dg+1)(E[M ](Xt +
Yt
2
))

with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N→X

t ∼ Poisson(λtδ)
NX→Y

t ∼ Binom(Xt, 1− e
− δ
E[A(gt)] )

NY→Z
t ∼ Binom(Yt, 1− e−

δ
E[B(gt)] )

NZ→
t ∼ Poisson( (w∧Zt)δE[C] )

,

(1)

where the four random variables (N→X
t , NX→Y

t , NY→Z
t , NZ→

t ) represent the number of cus-

tomer orders that are respectively released into the first station, moved from the first to the

second and the second to the third station, and processed out of the third station, between

time periods t and t + 1. An appealing feature is that simulating system (1) only involves

generating four standard random variables in each time period, and can thus be performed

very efficiently14.

4.3.2 Validation We now validate the approximate queueing dynamics (1) with field

data; our methodology is to compare the predicted model state under some given release rate

and packer staffing history against that actually observed in the real system when subjected

to the same input. Specifically, we rely on collected data series with one point per minute

recording the actual state evolution (x∗(τ), y∗(τ), z∗(τ)), actual control history λ∗(τ) and

actual number of staffed packers w∗(τ) over a period of several days of peak demand. We

use the control period δ (of the order of a few minutes) as our prediction lead-time, since the

associated DP involves an expectation of the value function δ units of time into the future. We

thus computed for every time τ the average release rate over the following period of length δ,

λ̃
∗
(τ) = 1

δ

δ−1P
i=0

λ∗(τ+i), and simulated the random variables (Xt+1, Yt+1, Zt+1) characterized by

13 In particular, the last expression of (1) corresponds to the departure process over a period of
length δ from a Markovian queue with w servers assumed to work continuously, except in the ramp-up periods.
14 The binomial variables NX→Y

t and NY→Z
t can be substituted with normal random variables

having the same mean and variance, which from the De Moivre-Laplace theorem is asymptotically
exact for the large values of Xt and Yt that are typical of our setting.
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(1) given (Xt, Yt, Zt) = ((x
∗(τ), y∗(τ), z∗(τ)), λt = λ̃

∗
(τ) and w = w∗(τ). We then compared

them with the actual state for the corresponding period (x∗(τ + δ), y∗(τ + δ), z∗(τ + δ)).

Note that the historical data available only corresponds to a specific realization of our

stochastic predictive model. For this reason, any discrepancy between the actual state (x∗(τ+

δ), y∗(τ + δ), z∗(τ + δ)) and the estimated means of the random variables (Xt+1, Yt+1, Zt+1)

just defined should be interpreted in light of the variability predicted by the model around

those means. While our findings were consistent across all state variables, we only report

here actual and predicted values for the number of busy chutes, which is particularly relevant

because gridlock is modeled by the event {Yt + Zt > n}.
Figure 1 shows the mean E[Yt+1 + Zt+1] and associated centered empirical range with

length 6σ[Yt+1 + Zt+1] estimated at each record time point (τ) over one representative day,

along with the actual historical value y∗(τ + δ) + z∗(τ + δ). Also highlighted in Figure

1 (with a gray background) are the time periods corresponding either to workers’ breaks

(from approximately 1:30 to 2:00, 5:30 to 6:00, 8:00, 10:15, 12:00 to 13:00, 15:15, 17:30 to

18:00, 20:15, 22:15, 23:30 onwards) or reduced activity due to shift change-over, equipment

maintenance, breakdown or repair (around 0:15, 3:15, 11:30 to 12:00, 21:00).

Our main observation on the results shown in Figure 1 is that the time periods when

the actual number of busy chutes falls outside of the empirical range predicted by our

model coincide almost exactly with the workers’ breaks and episodes of equipment main-

tenance/breakdown mentioned above. Furthermore, in all these periods the model signifi-

cantly overestimates the number of busy chutes. This is because our model does not explicitly

capture the induction stations. This modeling choice is justified during the regular (non-

highlighted) working hours, as the induction stations have appropriate processing capacity

then. However, induction staffing is drastically reduced during the periods highlighted in

Figure 1, so that the actual flow of items into the sorter then is either considerably reduced

(maintenance/breakdown) or stopped (work breaks). Indeed, note that the actual number

of busy chutes remains constant during all work breaks listed above, which reflects that both

actual flows into the sorter (induction) and out of it (packing) are stopped then. While the

model correctly captures the packing rate reduction during the highlighted periods through

its input data w, it ignores the corresponding decrease in induction rate, leading to the

overestimation observed.
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Figure 1: Predicted Distribution Yt+1 + Zt+1 and Actual Value y∗(τ + δ) + z∗(τ + δ) of the
Number of Busy Chutes over a 24 Hour Period.

While the results observed during the highlighted periods of reduced activity are insightful,

they do not pertain to validation since the goals of throughput maximization and gridlock

avoidance are not relevant then. During regular work periods the actual number of busy

chutes almost always lies within our model’s predicted range. Consequently, the approximate

dynamics tested appears sufficiently accurate given our purposes.

4.4 Optimization Problem Formulation We now state and discuss the formulation

CDP [β] which provides the framework of our optimization study:

CDP [β] : max
λ

E[
P+∞

t=0 α
tλt|X0, Y0, Z0]

s.t.: E[
P+∞

t=0 α
t1{Y λt +Zλt >n}|X0, Y0, Z0] ≤ β

λt ∈ [0, λ̄] for all t ∈ N,
(2)

where α ∈ (0, 1) is a discount factor, 1{.} is an event indicator function, β is the risk budget
or parameter defining the level of risk tolerated for the event of gridlock (see discussion

below), expectations are taken over the sample space of release and service time realizations,
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and (X0, Y0, Z0) is the initial state of the system. In (2), the maximum is taken over all

stationary closed-loop and non-anticipative policies λ, and the notations Y λ
t and Zλ

t reflect

the dependence of the model output process (Yt, Zt) on the release control policy considered.

Since no ambiguity arises here however, we will almost always omit that dependence from

now on.

The objective function in (2) captures the goal of maximizing the throughput of the pick-

to-ship process considered. Observe however that it is the (discounted) sum of release rates,

which are proportional to the process input as opposed to process output — this is justified

by the first constraint, which effectively prevents any unbounded accumulation of inventory

in the system and is further discussed below. Note that the discount factor α introduces a

preference for units shipped in earlier periods. The classical interpretation of such discount

factor as one minus the probability of a process termination is appealing here: when running

into gridlock, the real pick-to-ship process goes through a lengthy recovery procedure which

is not captured by the queueing model described in §4.1. However, the primary reason for

us to study here the discounted cost formulation (2) is that it is easier to solve numerically

than the natural average cost formulation of the same problem. That latter formulation is

formally linked to (2) through the following limiting statements (Blackwell 1962):⎧⎨⎩ lim
α→1−

(1− α)E[
P+∞

t=0 α
tλt|X0, Y0, Z0] = lim

k→∞
1
k
E[
Pk−1

t=0 λt]

lim
α→1−

(1− α)E[
P+∞

t=0 α
t1{Yt+Zt>n}|X0, Y0, Z0] = lim

k→∞
1
k
E[
Pk−1

t=0 1{Y λt +Zλt >n}] = lim
t→∞

P(Yt + Zt > n)

(3)

The second and third equality statements in (3) imply that the first constraint in (2) is

asymptotically equivalent as α → 1 (the relevant regime given the numerical value we use

for α) to the more intuitive expression

lim
t→∞

P(Yt + Zt > n) ≤ (1− α)β,

which specifies an upper bound on the steady-state probability that the system is in a state

of gridlock. The unintuitive exact expression of that constraint in (2) (i.e., a discounted sum

of indicator functions) is only motivated by technical dynamic programming considerations

(see §4.5). From a modeling perspective, that constraint thus balances the throughput max-

imization objective in (2) with the need to avoid gridlock. Note that it is only a probabilistic

statement: because the support of the inter-arrival and service time distributions we use are

neither bounded from above or bounded away from zero, with any policy generating positive
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release rates it is impossible to guarantee in a deterministic sense that gridlock will never

occur.

Finally, observe that the statement of problem CDP [β] depends on the initial state

(X0, Y0, Z0). However, we have used values of α very close to 1 in our experiments, and

observed that the choice of the initial state had very little impact on the results, if any. This

is explained in part by the limiting statements (3), where the r.h.s is independent of the

initial state, as is typical of the objective of an average cost DP formulation.

4.5 Optimization Algorithm We have specifically formulated the dynamic program

CDP [β] in (2) so it would belong to a family of constrained Markov decision processes for

which some theoretical results and approximate computational methods are available (see

Altman 1999 for a review). In particular, we now outline a method for computing a solution

to CDP [β] by solving a sequence of related unconstrained DPs UDP [θ] obtained for any

θ ≥ 0 as

UDP [θ] : max
λ

E[
P+∞

t=0 α
t
¡
λt − θ.1{Yt+Zt>n}

¢ |(X0, Y0, Z0) = (x, y, z)]

s.t.: λt ∈ [0, λ̄] for all t ∈ N,
(4)

where the underlying state dynamics are identical to those of the original problem CDP [β].

Problem UDP [θ] is thus a Lagrangian relaxation of CDP [β] where the first constraint

in (2) is now captured through the objective function and weighted by the multiplier θ,

to be interpreted as an instant penalty for gridlock. Define now jθ(x, y, z) as the opti-

mal cost-to-go function for UDP [θ], equal to rθ(x, y, z) − θ.cθ(x, y, z) with rθ(x, y, z) ,
E[
P+∞

t=0 α
tλθt |(X0, Y0, Z0) = (x, y, z)] and cθ(x, y, z) , E[

P+∞
t=0 α

t1{Y λθt +Zλ
θ

t >n}|(X0, Y0, Z0) =

(x, y, z)], where λθ is an optimal policy for UDP [θ]. The following results are obtained

through straightforward adaptations to the discounted case of the proofs of Lemma 3.1,

Theorem 4.3 and Theorem 4.4 from Beutler and Ross (1985) and Corollary 3.5 from Beutler

and Ross (1986). In these statements, β denotes E[
P+∞

t=0 α
t1{Y λ̄

t +Z
λ̄
t >n}|X0, Y0, Z0], i.e., the

risk achieved by the constant release policy with rate λ̄.

Lemma 1 Assuming β < β, there exists a stationary optimal policy λ for CDP [β] that
is deterministic in all states but one, and randomizes between at most two actions in that
state. Moreover, λ achieves E[

P+∞
t=0 α

t1{Yt+Zt>n}|(X0, Y0, Z0) = (x, y, z)] = β and there
exists θ∗ ≥ 0 such that λ is optimal for UDP [θ∗].
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Lemma 2 Suppose that for some θ ≥ 0 there exists a policy λθ such that λθ is optimal for
UDP [θ] and achieves E[

P+∞
t=0 α

t1{Yt+Zt>n}|(X0, Y0, Z0) = (x, y, z)] = β. Then λθ is optimal
for CDP [β].

Lemma 3 For any initial state (x, y, z), jθ(x, y, z), rθ(x, y, z) and cθ(x, y, z) are all monotone
non-increasing in θ.

Our solution method consists of performing a line search over θ, where the optimal solution

λθ to UDP [θ] is computed at each iteration along with the corresponding cost-to-go functions

jθ, rθ and cθ using standard approximate DP methods, and the search proceeds until a value

of θ achieving cθ(x, y, z) ≈ β is found. Lemma 1 asserts that such θ exists; Lemma 2

suggests that once such θ is found, the resulting policy λθ should be (near) optimal for

CDP [β]; finally the monotonicity of cθ shown in Lemma 3 indicates that an efficient search

can be used. The specific algorithm we have implemented is a dichotomic search over a

specified interval [θ, θ̄]. In addition, we use an approximate policy iteration algorithm to

solve each instance of UDP [θ], and initialize this algorithm at each iteration of the search

with the best policy found in the previous iteration (see the Appendix for algorithmic details,

related references and discussion).

In the remainder of this paper, we refer to the policy obtained from the algorithm just

stated as ADP β (the superscript β is omitted when no ambiguity arises) and denote its

release rate function as λADP (x, y, z) or λADP
t , λADP (Xt, Yt, Zt).

4.6 Policy Structure We now discuss the qualitative features of policy ADP β. Because

theoretical structural results have so far eluded us, the following discussion is based instead

on a large number of consistent empirical observations.

The main observed features of policy ADP β are illustrated by Figure 2, which includes

plots of its normalized release rate λADP
t as a function of the reduced and normalized state

(Xt/n, (Yt + Zt)/n)
15 for three representative scenarios characterized by a limiting gridlock

probability of 10−6 and a number of packers w ∈ {0.75p, p, 1.25p}, where p is the average
number of packers used by our industrial partner during peak demand periods. A first

obvious feature is that the release rate is a decreasing function of the state, in the sense that

λADP (x0, y0, z0) ≤ λADP (x, y, z) when x0 ≥ x, y0 ≥ y and z0 ≥ z. In particular, the policy

releases orders at the maximum rate allowed when the system is almost empty (in the upper

15 More precisely the function plotted in the plane (Xt, Yt + Zt) is f(x, b) , 1
b+1

b

j=0

λADP (x, j, b− j).
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Figure 2: Release Rate Function of Policy ADP β for the Scenarios w ∈ {0.75p, p, 1.25p} and
β(1− α) = 10−6.

middle corner of all plots in Figure 2), and stops releases altogether in the regions of the

state-space corresponding to heavy congestion (as seen in the lower middle corner of the

plots).

A second noteworthy feature is that the release rate function displays sudden drops, as

seen around Xt/n ≈ 85% in Figure 2 (a), Xt/n ≈ 95% in Figure 2 (b) and Xt/n ≈ 100% in

Figure 2 (c). While this is not obvious from these figures alone because of the state reduction

used, it can be verified that these drops correspond to transitions of the congestion level

E[M ](Xt + Yt/2) between two consecutive ranges of values characterizing system dynamics

(see §4.3.1). Indeed, simulation shows that these drops enable the policy to maintain the

system in a desirable steady-state congestion level16.

Finally, the structure of policy ADP β is sensitive to the number of packers. Figure 2

(a) shows that with a small number of packers, the release rate function λADP
t is almost

independent of Xt. In such a regime good policies heavily utilize packing capacity, and

any given change in the arrival rate of orders to the third packing station has a substantial

impact on the number of green chutes Zt. Consequently, theADP β policy reacts considerably

more to changes in the state variable Zt than to changes of Xt or Yt, which is easily verified

quantitatively (along with all similar statements in this discussion) by examining the relative

values of the partial derivatives ∂λADP (x,y,z)
∂x

, ∂λADP (x,y,z)
∂y

and ∂λADP (x,y,z)
∂z

. In addition, ADP

compensates then for even small deviations around an implicit target value for Zt with

drastic changes in its instantaneous release rate, as illustrated by the sudden drop of the
16 The Online Appendix contains a more extensive discussion on why some congestion levels are
preferable to others.
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release rate surface seen in Figure 2 (a) around (Yt+Zt)/n ≈ 80%. In contrast, Figure 2 (c)
illustrates that with a high number of packers, policy ADP β reacts much more to changes in

the number of orders in transit Xt than to changes in the number of busy chutes Yt+Zt, and

it can be verified that λADP
t is in fact almost independent of Zt then. In this scenario with

low packing utilization, completed chutes are immediately attended to by a packer and the

third station experiences almost no queueing. Consequently, any temporary increase of Zt

around its operating steady-state average is absorbed by spare packing capacity, and likely

corrected by the time any change in the order release rate can have any impact on the sorter

(second and third queueing stations), as the expected time-to-chute E[A(g)] is long relative

to the pack-to-pack time E[C] (see §4.1).

5 Wave Release Models

The present section discusses how the waveless release model described in §4 can be

modified to support a performance comparison with wave-based policies. As observed by

Johnson and Lofgren (1994) and others, these more traditional policies effectively decouple

the warehouse areas of picking and sorting, since only batches of orders that have been

completely picked (the waves) are typically released into the sorter. Our wave release models

reflect this decoupling, in that they only consider the picking operation and the conveyor

system leading to the sorting area through the assumption that complete waves of picked

orders are always ready to be released into the sorter for induction, sorting and packing. This

approach enables a meaningful comparison between wave-based and waveless release policies

along the performance dimensions of throughput, gridlock probability, packer utilization

and sorter utilization. However, it leaves aside the dimensions of order cycle time as well

as storage requirements for the intermediary buffer between picking and sorting, which as

emphasized in §1 constitute substantial negatives of wave picking. Finally, picker utilization

is another important performance dimension that we are unable to explore, because our

models do not explicitly capture the detailed layout and resulting picking tours in the picking

area (see §4.2.1 and related discussion in §7).

In order to enable a meaningful comparison with waveless policies, we consider models

capturing the most sophisticated wave release policies that are either described in the lit-

erature or that we have observed in practice (see §3 for background), as described in §5.1

and §5.2 below. Note that we thus leave aside policies combining sorter splitting and wave
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overlapping, which are conceptually feasible but satisfy neither of those conditions.

5.1 Overlapping Waves Policy Under this policy (see §3), complete waves of items

constituting a number of orders equal to the total number of sorter accumulation chutes (n)

are successively released into the sorter. This is modeled using a three station serial queueing

network sharing several features with the one stated in §4.1 and defined as follows. First,

each wave is modeled as a sequence of items generated by simulating n independent draw

from a distribution M of the number of items per order constructed from empirical data,

and assuming that the items of each order are uniformely distributed within the wave (as

in Hinojosa 1996 and Johnson 1998). Also, the first and last items of each order within the

wave are tagged17, for a reason that will soon become clear.

Note that in the waveless picking model of §4 induction capacity is only considered implic-

itly through the dependence of the time-to-chute on the congestion upstream of the sorter

(see §4.2.2). While justified for waveless release however, that approach is not appropriate

to model wave-based release. This is because induction stations are periodically faced then

with the sudden release of large batches of orders, so that the congestion generated by their

capacity limitations does becomes material over some time periods. The first station in

our wave picking model thus represents the induction stations, and it processes individual

items from each incoming wave with a service time distribution obtained from empirical

data. The second station is an infinite server queue representing as before the incomplete

chutes, however its service time for each order is now given endogenously by the time be-

tween the completion of its first and last items by the induction station (hence the tagging

mentioned above). Finally, the third station represents the packing queue and is identical

to that described in §4.1.

In the simplest form of wave picking, each wave is released into the sorter just when the

last order of the previous one is packed. As in Bozer et al. (1988)) and Johnson and Lofgren

(1994) however, we also consider the more general release policy whereby each new wave

is released as a given percentage of the chutes in the sorter (denoted Ω ∈ (0, 100]) become
empty. This policy is easily simulated using the model defined above, and is referred to as

WΩ in the remainder of this paper. Note that the simple non-overlapping policy described

earlier corresponds to the particular case W100. Also, overlapping waves (Ω < 100) give rise

17 The waves do not include single item orders, which are typically processed through a separate process bypassing
the sorter.
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to the possibility of gridlock, which is still characterized by the event Y (τ)+Z(τ) > n, with

Y (τ) and Z(τ) representing as before the number of orders in the second and third stations

at time τ , respectively. This leads us to define Ωβ as the wave overlapping parameter such

that the corresponding policy WΩβ achieves the same steady-state gridlock probability as

policy ADP β, i.e., such that lim
τ→∞

P(Y (τ) + Z(τ) > n) = (1− α)β (see §4.4).

5.2 Split Sorter Policy We now consider the split sorter policy described at the end of

§3.1. With n denoting as before the total number of accumulation chutes, this policy involves

the sequential release of waves with a number of orders equal to half that quantity, or n/2

(e.g., in a sorter with two vertical levels of accumulation chutes, each level would include n/2

chutes). As described in §3.1 and Ruben and Jacobs (1992), Russell and Meller (2003) and

Perkins (2008), each sorter half (e.g., upper or lower level) is dedicated to a separate wave,

and a new wave is released for induction as soon as one of the two halves becomes empty.

The model we use to represent this policy is the same as described in §5.1, except that

the size of each wave is halved (see discussion below) and the second station as well as the

queue of the third station are duplicated, creating a fork from the first station and a merge

into the servers of the third station. Each wave is assigned the second station duplicate

which was empty upon its release, and this assignment is implemented at the fork following

the first (induction) station. Finally, orders belonging to the oldest wave are given a higher

priority by packers. That is, packers may start working on orders from a more recent wave,

but only if no order from the previous wave is ready to be packed. In the remainder of this

paper, this policy is referred to as W/2.

Note that the relative wave sizes we consider for our split sorter and overlapping waves

policies described in §5.1 and §5.2 correspond to a sorter where all the chutes can be flexibly

used for both accumulation and packing, i.e., without pack-out only chutes (see §3.1). The

reasons for this choice are that (i) the sorters with flexible chutes that we consider are very

widespread in practice; and (ii) while for the purpose of our benchmark with waveless policies

we want to consider the best performing wave-based policies, systems with pack-out only

chutes impose the additional restrictions that one part of the sorter storage space can only

be used for order accumulation and the other part for order packing. As a result, all else

being equal they generate a lower throughput under a split-sorter policy relative to a system

without such constraints (for example with pack-out only chutes idling packers may not be
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able to work on a wave which has not yet completed accumulation). In addition, under

wave-based policies that do not split the sorter (as described in §5.1) these systems reduce

the maximum wave size by half, because they do not allow all sorter storage space to be

used simultaneously for sorting a single larger wave (see Footnote 6).

6 Simulation Study

The goal of our simulation study is to estimate and understand the relative performance

of the main wave-based and waveless release policies described in §3. We first review the

policies considered and other experimental design issues in §6.1, then present and discuss

our results in §6.2.

6.1 Experimental Design In addition to the waveless release policy ADP β derived in

§4 and the wave-based release policiesWΩ andW/2 defined in §5.1 and §5.2 respectively, we

also consider the following simple waveless release policies:

Policy CST β (constant release): Releases orders at the constant rate λCST ∈ [0, λ̄] cor-
responding to the best constant solution to (2). That rate is easily found by simulation-based

search.

Policy CWP β (constant work in process): Releases orders at a rate given by the func-

tion

λCWP (x, y, z) =

½
λ̄
CWP if x+ y + z < k̄
0 otherwise

, (5)

where the parameters λ̄CWP ∈ [0, λ̄] and k̄ ∈ N are likewise determined by simulation-based
search so that the resulting policy is the best solution to (2) within the family of CONWIP

policies defined by (5).

The simulation scenarios we consider are characterized by five different values for the

number of packers w ∈ {0.75p, 0.875p, p, 1.125p, 1.25p}, where p denotes the average number
of packers working in our industrial partner’s warehouse during a peak demand period. We

also consider two risk values β̄ (high risk) and β (low risk), which correspond under our

assumed discount factor α = 0.97 to limiting gridlock probabilities of β̄(1− α) ' 10−3 and
β(1− α) ' 10−6 (see §4.4). In practice the level of gridlock risk associated with β̄ would be

unacceptably high, but we consider it here to study the impact of the risk parameter.

The main performance measure we investigate is the simulated throughput γD ,E[
Pk−1

t=0 λ
D
t ]/k

of each policy D ∈ {ADP β, CWP β, CST β,WΩ,W/2}, where the notation λDt denotes the
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simulated release rate of policy D at time t and time index k corresponds to 3.5 simulated

days (all policies have long reached steady-state by then). In order to enable a meaningful

assessment, all throughput results are provided as a ratio to the average throughput γHIST

observed in our industrial partner’s warehouse when p packers are assigned to the sorter.

Note that for all policies the packing capacity w(E[C])−1 constitutes an upper bound for

throughput, and that the packing utilization is given by γD/ (w(E[C])−1). While policies

ADP β, CWP β, CST β and WΩβ are constructed so that their limiting gridlock probability

is set by design to β(1 − α), we also report the estimated gridlock probability P(Gridlock)

associated with WΩ for other values of Ω. Finally, we also report the sorter utilization given

by E[Y D
∞ + ZD

∞]/n, where the numerator is an estimate obtained from simulation for the

average number of busy chutes in steady-state under each policy D considered.

6.2 Results and Discussion Table 1 summarizes our simulation results. We discuss

next in §6.2.1 the results for the waveless policies then the results for the wave-based policies

in §6.2.2. A summary and qualitative performance comparison between the two types of

policies is finally provided in §7.

6.2.1 Waveless Release Policies Table 1 shows that for the waveless policies D ∈
{ADP β, CWP β, CST β} considered, the effective packing capacity utilization γD/w(E[C])−1
is quite high at 97% and above when w ≤ p, then drops to 92.6% and below for w =

1.125p and even more drastically at 84.1% and below for w = 1.25p. We observe that

three factors may conceptually constrain throughput in this system: the maximum release

rate λ̄, the packing capacity w(E[C])−1 and the gridlock probability constraint. Because

λ̄ is substantially higher than the packing capacity in all simulation scenarios considered

however, only the last two factors are relevant. When w ≤ p, packing is effectively the

system bottleneck and the throughput of all policies remains close to the overall packing

capacity. Because packing capacity is an upper bound on the throughput of all policies

independently of the gridlock risk β, this also indicates that all three policies are near-

optimal then, and that the gridlock probability constraint results in very little throughput

loss relative to the unconstrained problem. When the number of packers increases (w > p)

however, the gridlock constraint effectively becomes the system bottleneck.

A deeper interpretation of these results stems from Theorem 1 in Chao and Scott (2000),

which states that the stochastic processes representing the number of jobs in G/M/w queue-
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Number of
Packers (w)

0.75p 0.875p p 1.125p 1.25p

Chutes per
Packer (n/w)

73.3 62.8 55 48.8 44

ADP β [ADP β̄ ]
Throughput

Packing Utilization
Sorter Utilization

78.7 [78.7]
99.9 [99.9]
73.2[73.2]

91.5 [91.5]
99.6 [99.6]
79.6[79.6]

104.4 [104.4]
99.4 [99.4]
85.5 [88.2]

109.3 [109.5]
92.6 [92.8]
78.2 [79]

110.3 [110.4]
84.1 [84.1]
80 [81.2]

CWPβ [CWP β̄ ]
Throughput

Packing Utilization
Sorter Utilization

78.3 [78.3]
99.3 [99.3]
88.4[88.8]

91.3 [91.3]
99.4 [99.4]
88.1[88.2]

104 [104.3]
99.0 [99.3]
80.4 [83.2]

105.3 [106.4]
89.2 [90.1]
77.1 [78.2]

105.8 [106.5]
80.6 [81.2]
77.1 [78.9]

CSTβ [CST β̄ ]
Throughput

Packing Utilization
Sorter Utilization

77.1 [77.1]
97.9 [98]
61.7 [64.6]

89.5 [90.7]
97.4 [98.7]
65.1[69.1]

101.9 [103]
97.0 [98.0]
74.3 [74.5]

102.7 [104.6]
87.0 [88.7]
74.1 [74.3]

102.8 [104.7]
78.3 [79.8]
74.9 [75.2]

WΩβ [WΩβ̄ ]

Throughput
Packing Utilization
Sorter Utilization

Ωβ [Ωβ̄]

73.4 [75.4]
93.7 [96.3]
72.6 [74.9]
61.2 [58]

85.2 [87.3]
93.2 [95.5]
76.2 [78.2]
54.6 [51.8]

94.7 [98.9]
90.7 [94.6]
78.1 [81.6]
50 [45.6]

101.7 [108.2]
86.4 [92.1]
78.5 [83.6]
44 [40.6]

109.9 [110.6]
84.0 [84.6]
80 [76.8]
30.5 [30]

W60

Throughput
Packing Utilization
Sorter Utilization
P(Gridlock)

74.3
94.8
73.4
0

81
88.6
72.5
0

86.9
83.3
71.7
0

92.1
78.3
71.1
0

96.7
74.0
70.5
0

W100

Throughput
Packing Utilization
Sorter Utilization
P(Gridlock)

53.4
68.1
52.7
0

59.3
64.8
53
0

64.7
61.9
53.3
0

69.5
59
53.6
0

74
56.6
53.9
0

W/2

Throughput
Packing Utilization
Sorter Utilization
P(Gridlock)

77.2
98.4
65.7
0

90.1
98.6
64.2
0

103.2
94.9
61.6
0

105.3
89.6
38.2
0

105.4
80.7
36.2
0

Table 1: Numerical Simulation Results. Notes: All numbers shown in the third and subsequent rows are percentages.
The length of the 95% confidence interval for all simulation results reported is smaller than 0.2% of the corresponding estimate.

ing systems with constant service effort w(E[C])−1 increase with the number of servers w

for the stochastic ordering relationship. This implies in our setting that the fractiles of the

distribution of busy chutes Yt + Zt increase with the number of packers w when the overall

packing utilization is held constant, or equivalently that with more packers a lower utiliza-

tion is required to maintain any of these fractiles at a constant value (which the gridlock

probability constraint imposes).

Another relevant insight from queueing theory is that the performance measures of highly

congested queues are more sensitive to a given change in their capacity utilization than that

of less congested queues. Consequently, when the number of packers is low and packing

utilization is high, even a small change in the release rate significant impacts the fractiles of

the distribution of busy chutes and the probability of gridlock. Equivalently, a given increase

in the tolerated probability of gridlock affords little additional throughput then. Indeed, for
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every policy considered in Table 1 the additional average throughput obtained by increasing

the gridlock risk parameter from β to β̄ increases with the number of packers w, and it

is almost negligible for policies ADP β and CWP β in the high congestion scenarios where

w ≤ p. This also explains why the throughput superiority of ADP β relative to CWP β

increases from 0.4% for w = p to 4.5% for w = 1.25p, and that of CWP β relative to CST β

increases from 2.1% to 3% as w increases from p to 1.25p (similar results are observed with

β = β). Indeed, the range of instantaneous release rates that do not lead to a violation

of the gridlock probability constraint is more limited when w ≤ p and packing utilization

is high. As a result, the greater structural ability of ADP relative to CWP (resp. CWP

relative to CST ) to dynamically adapt the release rate to process conditions does not provide

substantial benefits then. As seen in Figure 3 however, when w = 1.25p policy ADP and to

a slightly lesser extent CWP are more able to address temporary stochastic increases of the

number of busy chutes Yt+Zt above their operating averages by reducing the instantaneous

release rate accordingly, which results in a smaller volatility of the process Yt + Zt, and

ultimately maintains higher sorter and packing utilization than CST for the same level of

risk.

Figure 3: Two Standard Deviation Range of the Steady-State Number of Busy Chutes
E[Yt + Zt] ± 2σ[Yt + Zt] for Policies ADP β, CWP β and CST β with w = 1.25p Packers.
Note: Statistics are computed after 2 days of simulated time.

We also believe that the significant decrease of packing capacity utilization just beyond
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the average number of packers p actually used by our industrial partner lends support to the

validity of our results. A key performance metric used for the packing team is average worker

productivity, defined for any time period of time as the number of orders packed divided by

the corresponding number of man×hours used. This metric thus creates a local incentive
to maximize packing capacity utilization, which explains that the actual staffing level of

packers coincides with the point beyond which the marginal (throughput) return of additional

packing capacity starts to markedly decrease. However, we submit that during peak demand

periods when the financial benefits of additional throughput and short customer lead-times

are particularly high, keeping packing capacity heavily utilized may not be as important per

se, and the current policy may result in staffing less packers than is optimal. In that respect,

the results shown in Table 1 enable a better understanding of the impact of local staffing

policies on system throughput.

Finally, the results shown in Table 1 suggest that, in the case where p packers are assigned

to the sorter, policies CST β, CWP β and ADP β may yield a throughput increase of 1.9%

to 4.4% relative to the throughput γHIST experienced by our industrial partner then. Un-

fortunately, historical performance data was not available to us for other staffing levels than

p. However, assuming that the relative performance of CST β and our partner’s historical

policy would be maintained in such scenarios, we can speculate from Table 1 that policy

ADP β (resp. CWP β) would only yield a very modest throughput improvement with fewer

packers than p, but an increase in throughput close to 8% (resp. 3%) with 25% more packers

than when w = p. In any case, our model predicts that the combined use of policy ADP β

and addition of 25% more packers than p would increase throughput by about 10%.

6.2.2 Wave-Based Release Policies As should be obvious from their definition in §5,

policies WΩ and W/2 give rise to a periodic or cyclical steady-state, with a period equal to

the average time between consecutive wave releases. To help interpret the results reported

in Table 1, Figures 4 (a) to (d) show how the steady-state averages of the main system

processes evolve within a period for four wave-based policies of interest.

We first examine the example of policy W100 illustrated by Figure 4 (a), in part because

it is useful for understanding the other wave-based policies. Its period corresponds to the

completion of an entire wave of n orders (the number of sorter chutes), and is characterized

by three consecutive phases: (i) as the induction stations start to process the wave of orders
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just released, the number of incomplete chutes Yt drastically increase. Its rate of increase

progressively slows down as the items inducted become more likely to belong to an order for

which a chute has already been opened. During this first phase, packers mostly idle, and the

transition to the second phase occurs at the peak of the number of incomplete chutes Yt over

the period; (ii) as the induction rate of chute closers (last inducted item in an order) starts

to exceed that of other items, the number of incomplete chutes Yt starts to decrease and the

number of completed orders ready to be packed starts to overwhelm the packing capacity,

hence the increase of Zt. The transition to the third phase occurs when no more incomplete

chutes remain, which coincides with the peak of the number of chutes waiting to be packed

Zt; (iii) all busy chutes are occupied by complete orders, which the packers work on until the

sorter becomes empty. Note that the dynamics simulated by our model for policy W100 are

thus very consistent with several empirical observations of its behavior found in the literature

(see §3). In particular, because packing activity is concentrated during the last two phases

described above, overall packing utilization is relatively low for this policy (less than 64% in

all scenarios reported in Table 1). Sorter utilization is also very low (less than 53%) since

waves are only released when the sorter is empty18. As a result, the throughput of this policy

is about 30% lower than that of other policies tested and it is not significantly increased by

the addition of packers.

The much better throughput performance of policiesWΩβ andW60 seen in Table 1 may be

understood by noting from Figure 4 (a) that the peak of the number of busy chutes Yt +Zt

is very localized within the period of W100, and that the volatility of that process around its

mean is relatively small. This suggests that overall throughput may be considerably increased

with little additional risk of gridlock by processing several appropriately staggered waves in

parallel. Specifically, by releasing another wave late in the second phase (as WΩβ does) or

in the third phase (as W60 does) highlighted in Figure 4 (a), the increase of busy chutes

corresponding to that second wave coincides with the decrease of busy chutes corresponding

to the first one, so that the total number of busy chutes may still be kept below the gridlock

threshold (in physics terms, gridlock occurs when consecutive waves approach resonance).

Also, packing capacity is better utilized then because the second phase (W60) or third phase

(WΩβ) associated with one wave effectively overlaps with the first phase of the next one.

18 Sorter utilization can be observed graphically in Figures 4 (a) to (d) as the ratio of the area
under the curve E[Yt + Zt] to the total plot area.
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Figures 4 (a), (b) and (c) illustrate the evolution of system dynamics when waves are

made to increasingly overlap in this manner, and the shorter periods seen in their x-axis

show the corresponding improvement in throughput19 — note also from these Figures that

packers utilization increases with this overlap. More specifically, Figure 4 (b) (resp. (c))

shows that, consistent with the definition of W60 (resp. WΩβ), new waves are released when

40% (resp. 1−Ωβ = 69%) of the chutes in the sorter are occupied. When the relatively mild

overlap Ω = 60 is used, nearly all these chutes contain complete orders from the previous

wave. At the beginning of the period, packers work initially on these chutes while new

chutes are being opened by inducted items from the current wave, explaining why the total

number of busy chutes increases initially at a slower rate for as long as packing work from the

previous wave remains. With the more extensive wave overlap Ωβ = 31, induction stations

are still processing items from the previous wave upon the release of a new wave. As a

result, among all the sorter chutes which are occupied by orders from the previous wave

then, approximately 45% contain incomplete orders and only 24% contain complete orders.

Because it takes some time for the induction stations to start processing items from the new

wave after it is released, the number of busy chutes thus initially decreases at the beginning

of the cycle.

Note also that the estimated gridlock probability reported in Table 1 forW60 is zero across

all scenarios. This shows the existence of a range for the overlap parameter Ω where there

is no trade-off between throughput performance and risk. However, policy WΩβ and Figure

4 (c) show that the risk of gridlock does appear when the overlap parameter Ω is further

decreased — with p packers for example, it is estimated to be 10−6 at Ωβ = 49, and 10−3 at

Ωβ̄ = 46. This follows from the resonance effect mentioned earlier combined with the greater

variability of the process Yt + Zt representing the number of busy chutes, now generated as

the sum of several random processes corresponding to different waves. The numerical values

of Ωβ and Ωβ̄ for w = p and a fortiori those for w = 1.25p (Ωβ = 31 and Ωβ̄ = 30) also

suggest that, below a certain threshold for Ω, the gridlock probability is extremely sensitive

to that parameter.

Finally, the dynamics associated with the split sorter policy W/2 illustrated by Figure 4

(d) are easily understood by noting that while each sorter half processes then non-overlapping

19 The number of orders released at the beginning of each period is equal to n for all policies WΩ considered.
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waves of size n/2, waves assigned to different sorter halves do overlap. This creates dynamics

for the overall number of incomplete, complete and busy chutes which are qualitatively

comparable to that observed under W60, with the difference that the peaks of the number of

busy chutes underW/2 are about twice as small and occur about twice as frequently. As seen

in Table 1, this results in relatively high packing utilization (80.7% with 1.25p packers), and

therefore a throughput performance only slightly lower to that of WΩβ , which is particularly

remarkable becauseW/2, in contrast withWΩβ , does not involve any risk of gridlock and does

not require the determination of a critical policy parameter such as Ω. It must be pointed

out however that the reduction of wave sizes under policyW/2 may negatively affect picking

labor productivity (see §3, §5.2 and §7).

7 Conclusion

We now discuss the progress presented in this paper towards the two research goals stated

in §1:

(Objective 1) Develop a quantitative model to generate prescriptive control guidelines for

waveless picking. We presented in §4 a queueing model of a waveless operation that was

validated empirically using field data (see §4.3.2). This model can be embedded in an

optimization formulation for which an approximate DP solution procedure can be used (see

§4.4 and §4.5), which amounts to an operational solution to the problem defined in the

objective statement. In addition, our simulation experiments based on field data (see §6)

suggest that both our DP-based policy (ADP β) and a simpler heuristic such as CONWIP

(CWP β) may increase the throughput of an actual waveless operation by several percentage

points. They also suggest that local staffing incentives promoting packers’ utilization can lead

to ignore the system-wide importance of surge packing capacity for increasing throughput

and avoiding gridlock.

(Objective 2) Leverage this model to conduct a rigorous performance comparison between

wave-based and waveless picking. Slight modifications of the waveless model described above

allowed us to simulate and understand the performance of the most relevant wave-based

release policies used in practice (see §5 and §6.2.2). Because we used the same detailed field

input dataset to simulate both wave-based and waveless policies, our methodology enables a

meaningful comparison between these two controls. First, contrasting Figures 3 and 4 shows

that the qualitative workload patterns seen by the sorter and the packers are strikingly
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different under these policies: while wave-based policies give rise to contrasted periodic

cycles featuring high predictable variability, their waveless counterparts exhibit constant

steady-state averages.

From a throughput standpoint, the results presented in Table 1 suggest that when suffi-

cient packing capacity is available (e.g., w = 1.25p), the performance of our waveless policy

ADP β is virtually identical to that of the best performing wave policyWΩβ considered. The

throughput superiority of ADP β over WΩβ increases with less packing capacity however,

because the extent to which waves can overlap without violating the gridlock probability

constraint is reduced then (see Figure 4 (a)-(c) and discussion in §6.2.2). Also noteworthy is

the poor performance of the simple non-overlapping policyW100 relative to the waveless poli-

cies ADP β and CWP β. Remarkably, our simulation results of 30 − 40% lower throughput

for W100 depending on the scenario considered are consistent with the throughput increase

of up to 35% reported in Hinojosa (2006) for wave-based facilities switching to waveless

processing. Finally, the good throughput performance of the split-sorter policy W/2 across

all scenarios considered is also remarkable, because that policy is simple to implement, in-

volves no risk of gridlock, and does not require the determination of any parameter or other

preliminary computation. For sorters with certain physical designs however, it may have a

negative impact on picking productivity (see §3, §5.2 and discussion below).

It should be noted that our wave-based results rely on the key assumption that a complete

wave of picked items is always available to be released into the sorter when required. Should

it not always be satisfied in practice, the actual throughput of the wave-based policies could

be lower than predicted by our model. More broadly, waveless policies seem unquestionably

superior along the dimensions of order cycle time, storage space and work-in-process/buffer

inventory. On the other hand, a significant advantage of wave-based release policies which

should not be underestimated is their simplicity and low implementation cost. Another

critical performance dimension that our model leaves aside is picking labor, which account

for a significant fraction of many warehouses’ operating costs. While a detailed quantitative

study of this issue seems a particularly good opportunity for future research, it lies beyond

the scope of this paper because any model used for such study would need to capture many

more operational details than the one developed in §4, such as storage policies and the layout

of the order picking area. We point out however that waveless picking seems to have strong
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advantages in that regard. Specifically, under waveless picking no picker is ever starved

for work at the end of a wave and, relative to facilities allowing picking waves to overlap,

waveless picking does not require a pre-sorting operation before induction for separating

items belonging to different waves. Finally, while our model was primarily developed to aid

with order release control in split-case warehouse operations, we believe it also applies to

most case-based order fulfillment processes with automated sorting.
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Figure 4: Periodic Cycles of the Average Number of Incomplete Chutes E[Yt], Complete
Chutes E[Zt] and Busy Chutes E[Yt+Zt]±2σ[Yt+Zt] in Steady-State for SelectedWave-Based
Release Policies with w = 1.25p Packers. Notes: Statistics are computed between the first two consecutive
wave release times after 2 days of simulated time, except for W/2 for which dynamics following two wave releases are
shown.
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