
A Model for Make-To-Order Revenue Management1

Jérémie Gallien2, Yann Le Tallec3, Tor Schoenmeyr4

November 18, 2004

Abstract
Seeking to help practitioners establish quantitative guidelines for negotiating make-to-order contracts

along the dimensions of price, quantity and lead-time, we investigate the dynamic admission control of
jobs with hard deadlines into a single machine queue with preemptive scheduling. Using the concept of
minimum workload function, we establish that earliest due-date scheduling can be assumed at no cost
to optimality, and propose a discrete-time formulation for the problem of maximizing long-run expected
profit. We establish some properties and a characterization of the optimal policy, which we exploit to derive
two heuristic policies (fluid and lookahead) relying on different approximations for the opportunity cost of
accepting a job. Numerical experiments under various load, stretch and granularity parameters suggest that
they always perform better than common simple static policies. Limited experiments also suggest that the
optimal static policy may perform nearly as well as our two dynamic heuristics. While that policy is simple
to implement however, it seems challenging to derive using known methods. Overall, our fluid heuristic
stands out for its robust performance at a relatively low computational cost, and its possible extensions in
practice to non-stationary demand and orders with staggered deliveries.

1. Introduction

1.1. Motivation. Many firms operate in a make-to-order fashion, either because

the product they sell is unique to each customer (e.g. print shop, laundry service, commer-

cial DNA sequencing), or because they seek to offer greater product variety at a lower cost

(e.g. consumer electronics and PC assembly). Their customers are frequently price-sensitive

and/or time-sensitive, so that quoted prices and lead-times typically impact benefits and

market share significantly. The present paper describes a quantitative model designed to

improve the function known as order promising in make-to-order firms facing capacity con-

straints. That is, we seek to help the salesforce of those firms realize the full profit potential

associated with the production capacity available when quoting prices and lead-times to

prospective customers.

For modeling purposes, we assume that the terms of price, lead-time and quantity (or

1 Copyright c° 2004 Jérémie Gallien, Yann Le Tallec and Tor Schoenmeyr. Feedback on this
paper is welcome and appreciated.
2 Corresponding author: MIT Sloan School of Management, Cambridge, MA 02142, jgallien@mit.edu
3 MIT Operations Research Center, letallec@mit.edu
4 MIT Sloan School of Management, tor_s@mit.edu

1

capacity requirement) entirely characterize each transaction. In particular, other possible

differentiating terms (e.g. payment delays, warranty, insurance, return policy) are ignored for

now, as is the important notion of a "strategic" customer that could be offered advantageous

sales conditions in order to build a long-term relationship or to generate publicity (we will

come back to those issues later in §5). Under this assumption, we propose that any consistent

salesforce guidelines for a firm can be represented at each point in time by an acceptance

region (the subset of all transactions deemed profitable then) in the 3-dimensional space of

price, quantity and lead-time. We naturally define its complement as the rejection region,

and the border between those two regions as the admission surface. Our goal is to derive an

optimal admission control policy, that is develop a methodology for dynamically computing

admission surfaces as a function of the supply capacity available in order to maximize profits

in the long run.

Note that our use of the terms "admission" and "rejection" above suggest a situation

where customers request transaction terms, and the firm’s only control is to either accept of

reject them (i.e. the firm is terms taker). In contrast, sales agents often take a substantially

more active role in practice, and typically make price and lead-time quotes after a customer

describes product type(s) and quantity desired. In addition, the actual interaction between

a sales agent and a prospective customer is frequently an iterative negotiation, with both

parties exchanging offers and counter-offers. The quantitative model presented in this paper

does assume that the firm is terms taker, and the admission surfaces we eventually compute

are theoretically only valid under that restrictive assumption. However, we are motivated

by the belief that these admission surfaces may still allow to determine useful salesforce

guidelines in situations also involving active quotations and negotiations, even if we do not

provide any theoretical justification for such practice. For example, a sales agent asked to

provide a quote for a given quantity of some product type under a specified lead-time may

use the price coordinate (or some proportionately larger value) of the corresponding point

on the admission surface. Also, any feasible but unprofitable transaction requested by a

customer corresponds to a point in the rejection region which may be projected onto the

admission surface: if such a request is made by a price-sensitive customer, the lead-time

coordinate of that projection along the axis of lead-time onto the surface would arguably

suggest a sensible counter-offer; Likewise, the price coordinate of the projection along the

2

price axis may suggest a sensible counter-offer if the sales agent believes instead that the

customer is more time-sensitive — see Figure 1 for an example. In summary, we thus believe

our work to be potentially helpful for negotiation and active quotations as well, even if our

theoretical model exclusively focuses on admission control and does not attempt to capture

negotiation dynamics and the utility function of individual customers.

Price ($)

Quantity (#)

Delivery
Lead-time (days)

initial
transaction

request

suggested
counter-offers

60

55

10
300

450

20

ACCEPTANCE
REGION

ADMISSION
SURFACE

REJECTION
REGION

Figure 1: The admission surface and negotiation geometry

Intuition suggests that the optimal acceptance region should evolve dynamically (e.g.

expanding when there is much idle capacity and shrinking in the opposite case), and that it

should depend on the forecast of future orders. Indeed, the key challenge is to determine the

opportunity cost of using some capacity for a given incoming order, so it can be compared

with the profit obtained from accepting it. This feature is highly reminiscent of the problem

known in the field of airline revenue management as inventory control (allocation over time

of remaining flight seats to various fare classes, see van Ryzin and Talluri 2004), which

justifies our title. As will be seen from our model description in §2.1, another resemblance

with many airline revenue management studies is our modeling approach, which consists of

3

discretizing the space of possible customers into a finite set of demand classes. But we also

find it insightful to point out some differences between our problem and airline seat inventory

control:

(i) Production capacity is allocated over an infinite horizon, as opposed to the finite seat

allocation period ending with flight departure;

(ii) Capacity remaining at any point in time is characterized by the amount of production

available by all possible future due-dates, as opposed to a number of seats left;

(iii) Consumption of production capacity by customers is continuous, and its timing (order

scheduling) constitutes a decision variable constrained by different customer lead-times. In

contrast, "consumption" of seat capacity (flight departure) is instantaneous, exogenous and

simultaneous for all customers.

In the rest of this paper, we discuss the related literature in §1.2, and present our mathe-

matical model formulation in §2, which includes a problem statement in §2.1 and a dynamic

programming formulation in §2.2. We begin our analysis section §3 by presenting some

properties of the optimal policy in §3.1, then describe our proposed heuristic policies in §3.2.

We report the results of experiments designed to assess their relative performance in §4, and

Section §5 concludes the paper with a summary of results and a discussion of implementation

issues. All proofs are relegated to an appendix.

1.2. Literature Review. In line with the main features of our model to be described

in §2, we mostly restrict our discussion to papers jointly investigating the optimal admission

control (possibly through due-date or price quotations) and scheduling of several job classes

for a single make-to-order server.

A first such stream of papers originates in the branch of the computer science literature

known as online scheduling, typically assumes (as we do) deterministic service times with

hard due-date constraints, but (differing from our work) considers the objective of minimizing

worst-case performance through the concept of competitive ratio. That is, no assumptions

are made about the arrival process of future incoming jobs, and relatively little if anything is

typically assumed about their characteristics. The objective pursued is to design an online

admission control and scheduling policy with a guaranteed performance as close as possible

4

to that of a clairvoyant scheduler (i.e. with perfect knowledge of future jobs) over all possible

instances of job arrival sequences. The most relevant such papers include Locke (1986) and

Koren and Shasha (1995) for the preemptive case, Goldman et al. (2000) and Goldwasser

(2003) for the non-preemptive case.

A second set of papers, found in the operations management literature, is closer to our

work in that it considers (as we do) the objective of maximizing long-run average profit,

and also assumes some probabilistic structure for the arrival of future jobs. Differing from

our model however, these papers assume stochastic service times; Duenyas (1995) considers

a model where customers arrive according to Poisson processes, and the probability that

they accept a given order is a class-dependent function of the quoted due-date. Saliently, all

classes share the same service time distribution and linear tardiness cost. In that setting,

Duenyas shows that the optimal sequencing rule is EDD (earliest due-date), which we also

find to be true in our model, and proposes a heuristic for admission control based on the

approximation that the sequencing rule used is FCFS (first-come-first-serve). He also argues

that a joint admission control and sequencing model may be helpful in practice when jointly

negotiating price and lead-times with customers, a primary motivation for the present paper.

The model of Plambeck et al. (2001) involves job classes with renewal input processes

and general service time distributions as well as class-dependent rejection penalties and

upper bound constraints on throughput time. The admission control policy they investigate

consists of rejecting jobs from the class with the lowest penalty per unit of capacity required

when the total workload is above some threshold, and always accepting jobs from the other

classes. Their scheduling policy dynamically allocates machine capacity to the job class with

the highest relative backlog, defined for each class as the ratio of the number of queued jobs

from that class over a nominal number of jobs equal to its arrival rate times its throughput

time upper bound. Plambeck et al. show that, in the heavy-traffic regime, the policy just

mentioned complies asymptotically with the throughput time upper bound constraints, and

is also asymptotically optimal.

Plambeck (2004) studies the problem of setting static prices and dynamically quoting lead-

times for two customer classes (price-sensitive and time-sensitive customers); arrivals follow

nonhomogeneous Poisson processes with class-dependent rates decreasing linearly with price

and lead-times, but the two classes share the same exponential service time distribution. She

5

derives through an asymptotic analysis a policy consisting of giving scheduling priority and

promising immediate delivery to time-sensitive customers, and quoting price-sensitive cus-

tomers a lead-time proportional to the current workload. Using a methodology reminiscent

of Plambeck et al. (2001), she establishes that the policy described complies asymptotically

with the quoted lead-times, and is also asymptotically optimal in heavy traffic.

In a recent paper, Maglaras (2003) considers a model where admission control is effectively

performed through dynamic pricing decisions impacting a specified general demand model,

job arrivals from the different classes follow Poisson processes, and accepted orders have

class-dependent quadratic holding costs and exponential service times. Combining diffusion

and fluid approximations, Maglaras derives a pricing policy only depending on system work-

load, which consists of maximizing the instantaneous average revenue rate under a resource

utilization target constraint effectively stabilizing the system in the heavy-traffic regime; his

proposed scheduling policy is the generalized cµ rule described in Van Mieghem (1995).

Finally, Kapuscinski and Tayur (2003) study a single server quoting due-dates entail-

ing class-dependent waiting costs for two classes of customers arriving over time. While

that model differs in some important aspects from both the present paper and the others

just quoted above (no admission control, discrete-time, finite horizon), it also bears some

resemblance to our model (stochastic arrivals but deterministic processing times and hard

due-date constraints). Noticeably, Kapuscinski and Tayur also consider the function of re-

maining slack over time for a given deterministic schedule, which plays a fundamental role

in our analysis.

2. Problem Definition

The approach we develop for dynamically computing the admission surface described

in §1.1 relies on a discretization of the transaction space. Specifically, we describe next

a dynamic admission control model conceptually allowing to determine at any given time

whether each one of a large but finite number of transactions (the job classes defining the

discretization mentioned above) should belong to the admission or rejection region — the

admission surface may then be obtained as the border between two sets of discrete points.

While the remainder of this section as well as Sections §3 and §4 are dedicated to this

admission control subproblem (i.e. dynamically deciding whether any given incoming job

6

should be accepted or rejected), Section §5 contains a discussion of implementation issues

arising when using the admission control policies we eventually obtain in order to generate

admission surfaces over time.

2.1. Model Description. Our model describes a production facility with limited

capacity facing a random arrival stream of transaction opportunities with various capacity

requirements, due-dates and profits. The objective is to find admission control and scheduling

policies maximizing the expected profit rate in the long run, while satisfying the due-date

constraints of all accepted jobs.

We assume that each incoming transaction opportunity (or job) belongs to one of J job

classes (the set of all job classes is denoted J), where each class j ∈ J is characterized by
four deterministic quantities including a processing time qj, a slack time sj, a profit rj, and

an arrival rate λj:

• The processing time qj of a job from class j is the time that would be required to complete
it from start to finish if the production facility were solely dedicated to it. Note that this

definition only depends on the amount of capacity required by a given transaction, so that

our model allows for possibly many product types. Once a job i from class j is accepted

at time ti, we will refer to its remaining processing time at time t ≥ ti as xi(t), which is

initially equal to qj for t = ti, progressively decreases as the production facility dedicates

processing capacity to job i, and reaches 0 upon its completion;

• As in the scheduling literature, the slack time sj is the longest possible idle time before
starting to work on a given job and still satisfy its due-date. That is, the due-date di for

an accepted job i from class j arriving at time ti is di ≡ ti+sj+qj. Once a job i from class

j is accepted, we define its remaining slack or laxity at time t ≥ ti as ci(t) ≡ di−xi(t)− t.

Note that ci(.) is a non-increasing function with initial value ci(ti) = sj, and that a job i

is completed by its due-date if and only if its laxity ci(.) remains non-negative on [ti, di];

• The profit rj is the monetary value associated by the firm with the acceptance of a job

from class j, and would typically be obtained as revenue minus cost of goods sold and/or

other direct costs. The profit rate πj of a job is defined as the profit obtained per unit of

capacity required, that is πj = rj/qj;

• We assume that the arrivals of jobs from each class j follow a Poisson process with rate

7

λj, and that the arrivals of jobs from different classes are independent. The load ρ of

the facility can then be defined as the average total amount of potential processing time

requirement arriving to the facility per unit of time, that is ρ ≡
PJ

j=1 λjqj; note that this

definition relates to incoming as opposed to accepted jobs, so that the load may be larger

than 1 in some market environments. Finally, we denote by λ the total arrival rate across

all job classes, i.e. λ ≡
PJ

j=1 λj.

In our model, the production facility processing each accepted job is a single machine with

no setup times or setup costs. Its scheduling may at no cost be preemptive, and interrupted

jobs may be resumed at no penalty. Due-dates constraints are hard, that is an incoming job

may only be accepted if there exists a feasible production schedule, i.e. one satisfying the

due-date of this job and also that of all other jobs already accepted but not yet completed.

In addition, the production facility is constrained to always follow such a schedule. Finally,

we will refer to any incoming job that may be accepted under these conditions as being

admissible; Figure 2 contains a pictorial representation of our model.

single machine,
no setups,
preemptive
scheduling

(λj , qj , rj , sj)

service
time

profit

slack

arrivals of J job
classes follow
independent

Poisson processes
queue of

accepted jobs admission
control

arrival
rate

Reject

Accept

completed jobs

feasible
schedule?

Reject

Yes

No

Figure 2: Graphical model representation

2.2. Dynamic Programming Formulation. In this section we present a continuous-

time problem formulation in §2.2.1, then develop in §2.2.2 an alternative state representation

8

which allows us to develop an equivalent discrete-time formulation.

2.2.1. Continuous-Time Formulation Let n(t) be the number of jobs accepted but

not yet completed at time t, and assume that those jobs are indexed by i ∈ {1, .., n(t)}.
Because the job arrival process is assumed to be memoryless, the state of the system at

any time t in between successive job arrivals is entirely characterized by a vector M(t) =

{(x1(t), c1(t)), ..., (xn(t)(t), cn(t)(t))} describing the remaining processing time and laxity of
all accepted but not yet completed jobs. In the following we will refer to vectorM(t) as the

machine state.

The associated scheduling or production control can be represented as a non-negative

vector S(t) = {S1(t), ..., Sn(t)(t)} satisfying
Pn(t)

i=1 Si(t) ≤ 1, where Si(t) describes the fraction
of total processing capacity dedicated to job i at time t — note that the notion of assigning

fractional processing capacity is consistent with our assumption that the production schedule

may be preemptive-resume. More generally, a feasible production schedule associated with

stateM(t) may be formally defined as a set of n(t) non-negative right-continuous functions

S(.) = {S1(.), ..., Sn(t)(.)} on [t,+∞) such that
Pn(t)

i=1 Si(τ) ≤ 1 for τ ≥ t and
R di
t
Si(τ)dτ =

xi(t) for all i ∈ {1, .., n(t)}; we will denote the set of all such feasible production schedules
forM(t) as S[M(t)].

Considering now a time t when a job arrives, the system state immediately before the

acceptance/rejection decision is made can be characterized as the cartesian product X(t) =

(M(t), j(t)), where j(t) ∈ {1, ..., J} is the index of the class to which the incoming job
belongs. The associated admission control can be represented as a binary a(t) ∈ A[X(t)],
withA[X(t)] = {0, 1} if there exists a feasible production schedule for {M(t), (qj(t), sj(t))} and
A[X(t)] = {0} otherwise, where a(t) = 1 denotes the decicion to accept a job arriving at time
t. Regardless of whether an arrival occurs at time t, we define by extension the system state as

X(t) = (M(t), j(t)), the set of feasible controls as F[t] = S[M(t)]×A[X(t)] and the control as
U(t) = (S(t), a(t)). In these extended definitions, we assume by convention that j(t) = 0 and

A[X(t)] = {0} if no arrival occurs at time t. In the following, we will overload the notation
U = (S, a), possibly referring to either the value of the admission and scheduling controls at

time t, or to an admission control and scheduling policy U(X(t), t) = (S(X(t), t), a(X(t), t))

which could be a function of system state and, in the case of a non-stationary policy, time.

9

More generally, we will omit any dependence on time and state when no ambiguity arises.

2.2.2. Workload Functions and Discrete-Time Formulation We begin this part

by defining two concepts essential to our analysis.

Definition 1 Consider a machine stateM and feasible schedule S ∈ S[M]. The cumulative
workload function WS

M(.) associated with schedule S is defined for all τ ≥ 0 as

WS
M(τ) ≡

nX
i=1

Z τ

0

Si(v)dv. (1)

Intuitively, the cumulative workload function represents the total cumulative work (mea-

sured in time units) achieved by a schedule until a specified time. Note that from the

definition of a feasible schedule necessarily WS
M(τ) ≤ τ .

Definition 2 Consider a machine stateM and assume S[M] 6= ∅. The minimum workload
function WM(.) associated with state M is defined for all τ ≥ 0 as

WM(τ) ≡ inf
S∈S[M]

WS
M(τ). (2)

When no ambiguity arises, we will simply refer to the minimum workload function (MWF)

as W . Intuitively, this function represents the smallest amount of time that any schedule

feasible for the current set of jobs can have worked by a given date. The reader can find

an example in Figure 3, which represents the MWF corresponding to a given machine state

with two jobs {(x1, c1), (x2, c2)}.
The fact that MWF functions are non-decreasing follow from definitions (1) and (2).

In addition, the graph shown in Figure 3 suggests that MWF functions should in general

exhibit strong continuity and differentiability properties. This is confirmed by the following

proposition, which will turn out to be useful later in §3.2:

Proposition 1 Let M ={(x1, c1), ..., (xn, cn)} be a feasible machine state. Then function
WM is continuous, piecewise linear with at most 2n break points, and the slope of its linear
pieces may only be equal to either 0 or 1.

There are at least three reasons why the MWF is of particularly interest in our setting;

The first one is that it allows to characterize whether an incoming job is admissible, as shown

by the following theorem:

10

Time t (future)
now

WM(t)
y = t Minimum

Workload
Function

Machine
state M:

due-dates

remaining processing times

Figure 3: Example of a minimum workload function

Theorem 1 A job i from class j arriving at time t is admissible given an existing machine
state M (i.e. S[(M× (qj, sj)] 6= ∅) if and only if

WM(sj + qj) ≤ sj. (3)

The intuition behind Theorem 1 is straightforward: when a new incoming job i from class

j is accepted, the maximum amount of time that can be spent not working on job i by its

due-date di is now at most equal to its slack sj; condition (3) expresses that this slack time

must be sufficient to perform the minimum amount of work required by that date on all the

other jobs already accepted.

The second reason for studying the MWF is that its properties are key to a proof that

always following a non-idling earliest due-date schedule (ED∗) bears no loss of generality or

cost to optimality in the setting considered, as stated in our second theorem:

Theorem 2 Let U = (S, a) be any feasible scheduling and admission control policy (i.e. all
accepted jobs are completed by their due-dates), and let U0 = (ED∗, a0) be the policy obtained
by:

• Accepting an incoming job at t (i.e. a0(t) = 1) if and only if policy U would have accepted

that job (i.e. a(t) = 1) when confronted with the exact same arrival process realization to

date;

11

• Scheduling accepted jobs according to a non-idling earliest due-date schedule ED∗.
Then U0 is also a feasible policy, and for every arrival process realization the profit stream

obtained with U0 is the same as that obtained with U.

Theorem 2 is essential to our study, because it effectively justifies that we assume from

now on a production control policy based on ED∗ (at no cost to optimality), and solely focus

our efforts on admission control. The continuous-time stochastic optimal control problem

described initially thus reduces to a discrete-time dynamic program, where decisions (admis-

sion or rejection) need only be made upon job arrivals. In between job arrivals, the dynamics

of the MWF are entirely characterized by the following proposition (where [τ]+ ≡ max(τ , 0)):

Proposition 2 Let M be a machine state, and M[ED∗, τ] the machine state obtained ap-
plying the earliest due-date schedule ED∗ onM for τ units of time. The graph ofWM[ED∗,τ] is
the positive part of the graph of WM translated by (−τ ,−τ): for all τ ≥ 0 and t ≥ 0,

WM[ED∗,τ](t) = [WM(t+ τ)− τ]+. (4)

Furthermore, the following proposition shows that under scheduling rule ED∗ the number

of jobs in any feasible machine state is bounded. Consequently, another important implica-

tion of Theorem 2 is that the state X(t) = (M(t), j(t)) has a finite dimension:

Proposition 3 Let M ={(x1, c1), ..., (xn, cn)} be a feasible machine state. If M was gen-
erated by accepting jobs from J and following the earliest due-date schedule ED∗ then

n ≤

⎢⎢⎢⎣maxj∈J
sj

min
j∈J

qj

⎥⎥⎥⎦+ 2.
Lastly, it turns out that the MWF is a sufficient state representation for our dynamic

program; a precise statement follows:

Theorem 3 Consider two initial states X(t) = (M(t), j(t)) and X0(t) = (M0(t), j(t)) such
that WM = WM0. Let a be a feasible admission control policy, and let a0 be the admission
policy obtained by accepting an incoming job if and only if a does. Then for every arrival
process realization beyond time t, a0 is a feasible admission control policy, and the profit
stream obtained with a0 starting from X0(t) is the same as that obtained with a starting from
X(t).

Intuitively, Theorem 3 shows that any difference between two initial states with the same

MWF bears no impact on the profit stream that can be generated with an optimal policy

12

thereafter. Consequently, a system manager with only access to a "reduced" state informa-

tion Y(t) = (WM(t), j(t)) may still make admission control decisions that are just as good

as a competing decision maker with access to the full state information X(t) = (M(t), j(t)).

Note that Theorem 3 amounts in fact to the statement that Y(t) satisfies the formal def-

inition of a sufficient DP state statistics (Bertsekas 1995, Chapter 5), although we do not

formally introduce this concept here in order to simplify exposition.

In the following, we denote W [τ] the MWF function obtained when the earliest due-date

schedule ED∗ has been applied for τ units of time on a set of jobs represented by function

W . That is, the relationship between W [τ] and W is obtained by substituting WM[ED∗,τ]

with W [τ] and WM with W in (4). Also, W ∪ j will denote the MWF function obtained

by adding a new job from class j to the machine state represented by function W — notice

from our proof of Proposition 1 that the function W ∪ j may be constructed from job j and

function W alone (as opposed to the underlying machine stateM such that W =WM). We

are now ready to state the discrete-time formulation of our problem that will be considered

in §3:

State: Xk = (Wk, jk) ∈ X, where k ∈ {1, 2, ...} and jk ∈ {1, ..., J} is the class to which
the k-th arriving job belongs, and Wk is the MWF function corresponding to the jobs ac-

cepted in the past but not yet completed when that k-th job arrives (but before any re-

lated admission/rejection decision is made). Note that while the state space X is obvi-

ously not countable, Propositions 1 and 3 show that its dimension is finite and bounded by

2J (bmaxj∈J sj/minj∈J qjc+ 2).

Control: ak ∈ A[Xk], with A[Xk] = {0, 1} if Wk(sjk + qjk) ≤ sjk and A[Xk] = {0}
otherwise, where ak = 1 (resp. ak = 0) denotes the decicion to accept (resp. reject) the

incoming job. A feasible control policy a can thus be represented as a = (ak(.))k≥1, where

ak is a mapping from X to {0, 1} such that ak(X) ∈ A[X] for all X ∈ X.

State Dynamics: X0 = (0, 0) and

Xk+1 =

½
((Wk ∪ jk) [τ], ω) if ak = 1
(Wk[τ], ω) if ak = 0

for k ≥ 1, (5)

where τ is a random variable following an exponential distribution with mean λ−1, and ω

is a discrete random variable such that P (ω = j) = λj/λ. From elementary properties of

13

Poisson processes, τ and ω can be assumed to be independent of each other, and of their

own realizations at previous stages. Note that the state dynamics (5) define a probability

measure5

P (B|Xk, ak) = P (Xk+1 ∈ B|Xk, ak) (6)

associated with a σ-algebra on X, a notation we will use from now on.

Objective: Maximize

C(a) ≡ lim inf
n→+∞

E[
Pn

k=1 ak(Xk)rjk]

n
, (7)

over all feasible control policies a, which represents the long-run expected average profit per

incoming job. Note that from renewal theory, the expected long-run average profit per unit

of time can be obtained by multiplying C(a) by λ, the average job arrival rate in the long

run.

3. Optimization Analysis

In this section we first describe in §3.1 a characterization and some properties of the

optimal policy for the problem just stated, then use that characterization in §3.2 to construct

heuristic policies.

3.1. Optimal Policy Properties. We start this section with a theorem establishing

in our setting the validity of the Bellman equation and the existence of an optimal stationary

policy. As can be seen in the appendix, its proof essentially consists of showing that the

required assumptions for Theorem 2 in Ritt and Sennott (1992) are satisfied, and invoke

their result.

Theorem 4 There exists a constant C∗ ≥ 0 and a bounded real-valued function h(.) defined
on X such that for all X = (W, j) ∈ X

C∗ + h(X) = max
a∈A[X]

µ
arj +

Z
h(Y)P (dY|X, a)

¶
. (8)

If for each X ∈ X, a(X) is chosen to be the smallest action realizing the maximum on
the right of (8) then the resulting stationary admission policy a∗ = (a(·))k is optimal with
expected average profit C∗, i.e.

C(a) ≤ C(a∗) = C∗

for any feasible admission policy a.

5 The reader is referred to Ritt and Sennott (1992) for a mathematically rigorous presentation
of the relevant DP framework.

14

In accordance with accepted DP terminology, in the following we will refer to a function

h(.) associated with an optimal stationary policy as described in Theorem 4 as a differential

value function. Intuitively, h(X) represents the expected difference between total profits

obtained by the optimal policy when it starts from state X, and those obtained when it

starts in steady-state (where the profit obtained at each stage is C∗); h(Y) − h(X) thus

represents the expected difference in total profits when the optimal policy starts from state

Y and those obtained when it starts from state X. Unsurprisingly, starting with a smaller

queue and a more attractive incoming job entails greater future profits on average (because

more future incoming jobs may be accepted), which is stated more precisely by the following

proposition:

Proposition 4 Let X = (W, j) and X0 = (W 0, j0) be two states in X such that W ≤ W 0,
qj ≤ qj0, sj ≥ sj0 and rj ≥ rj0. Then for any differential value function h(.) satisfying the
Bellman equation (8),

h(X) ≥ h(X0). (9)

Under the hypotheses of Proposition 4 for jobs j and j0, a direct consequence of (9) and

the Bellman equation (8) is the intuitive fact that for any W

a(W, j) ≥ a(W, j0), (10)

where a = (a(.))k is the optimal stationary policy described in Theorem 4. In words,

whenever the optimal policy accepts a given job with some amount of capacity available,

it would also accept a more attractive job (with more profit, smaller capacity requirements

and/or a looser due-date constraint) under the same conditions. A geometric interpretation

of (10) is that the optimal admission region conceptually represented in Figure 1 and defined

as

A(W) ≡ {(qj, sj, rj)j∈J : a(W, j) = 1}
is a cone: For any (j, j0) ∈ J such that qj ≤ qj0, sj ≥ sj0 and rj ≥ rj0 then

(qj0 , sj0 , rj0) ∈ A(W)⇒ (qj, sj, rj) ∈ A(W).

From both theoretical and practical standpoints, it seems relevant to determine the sub-

optimality gap of the myopic policy consisting of accepting any feasible job. More generally,

it also seems important to investigate the performance of the best static policy, that is a

15

policy accepting any job from a given subset S ⊂ J whenever it is feasible, or equivalently
for which:

A(W) = {(qj, sj, rj)j∈S :W (sj + qj) ≤ sj}. (11)

While we later address these questions through numerical experiments in §4, the following

proposition establishes that the myopic policy is optimal when the load ρ is sufficiently low:

Proposition 5 The myopic policy is optimal in any market environment (λj, qj, sj, rj)j∈J
such that

λ ≤ 1
d̄
ln(

r
¯

−r̄ +
p
r̄2 + 2r̄r

¯

),

where as before λ ≡
P

j∈J λj and d̄ ≡ maxj∈J(sj + qj), r̄ ≡ maxj∈J rj, r¯ ≡ minj∈J rj.

Finally, we provide an upper bound on the optimal average profit per stage C∗ which only

depends on the primary problem data (λj, qj, sj, rj)j∈J:

Proposition 6 The optimal average profit per stage C∗ is bounded from above as follows:

C∗ ≤ C̄f ≡ max
(a1,...,aJ)

1
λ

P
j∈J ajλjrj

s.t.:
P

j∈J ajλjqj ≤ 1
0 ≤ aj ≤ 1

(12)

In the following, we will refer to C̄f as the fluid upper bound, because the formulation

defining C̄f in (12) would be the relevant problem to solve if the discrete and stochastic job

arrivals in our market environment were replaced instead with continuous and deterministic

arrivals having the same average incoming work and profit rates; the decision variables aj

in (12) represent the long-run fraction of jobs from class j admitted, while the objective

expresses the corresponding long-run profit rate, and the inequality constraint is analogous

to the capacity constraint in the original problem. Indeed, we find later in our numerical

experiments of §4 that the bound C̄f is relatively close to C∗ in environments with small job

granularity, where for a given load ρ all jobs j have a small ratio qj/sj. Unfortunately, the

bound C̄f seems to be much larger than the optimal profit C∗ in many other environments,

and therefore seems hardly useful in assessing the suboptimality of policies such as the ones

defined by (11).

More generally, we have so far failed to characterize the optimal admission policy much

beyond the results just presented. While disappointing in a way, this is hardly surprising

since to date most other DP problems for which an exact solution has been presented in

16

the literature have in essence a substantially lower state space dimension than ours. This

motivates shifting our goal to developing instead heuristic policies, the focus of the next

section.

3.2. Heuristic Policies. When in stateX, the optimal stationary policy a constructed

from the Bellman equation (8):½
accepts job j if rj ≥

R
h(Y)P (dY|X, a = 0)−

R
h(Y)P (dY|X, a = 1);

rejects job j otherwise. (13)

Note that the (positive) r.h.s of the acceptance condition in (13) can be interpreted as the

opportunity cost of accepting job j when in state X, that is the expected future profits that

would be specifically forgone by the immediate admission of job j. The two heuristic policies

we are to present now are based on the same idea, namely to first develop an approximation

for this opportunity cost, then consider the policy obtained by applying logic (13) with the

approximate opportunity cost replacing the exact one; the policy presented in §3.2.1 relies on

a fluid approximation, while the one presented in §3.2.2 relies on simulation and a solution

to the finite horizon offline problem.

3.2.1. Fluid Policy. For any minimum workload functionW and positive real number

T ≥ d̄, define the transient fluid problem with optimal objective FT (W) as:

FT (W) ≡ max
R T
0

PJ
j=1 aj(u)λjrjdu

s.t.: żj(t) = aj(t)λjqj − vj(t) (BE)PJ
j=0 vj(t) ≤ 1 (CP)

zj(t) ≤
R t+sj
t

vj(u)du (DA)

W (t) ≤
R t
0
v0(u)du (DE)

0 ≤ aj(t) ≤ 1 (FR)
vj(t) ≥ 0 (NG)
zj(0) = 0 and zj(t) ≥ 0, (MO)

(14)

where the control variables (aj(.), zj(.))j∈{1,...,J} and (vj(.))j∈{0,...,J} are continuous and right-

differentiable functions on [0, T + s̄], all constraints above are required to hold for all values

of t in that interval, and żj represents the right-derivative of zj. Intuitively, the quantity

FT (W) represents the maximum future profits that one could collect over the next T time

units, taking into account existing delivery commitments (captured by W), and assuming

that future job arrivals will be fluid (i.e. continuous and deterministic) instead of discrete and

stochastic. More specifically, in formulation (14) aj(t) represents the fraction of incoming

17

work from class j accepted at time t, vj(t) the fraction of machine capacity dedicated to

working on admitted work from class j at time t, and zj(t) is the amount of work from class

j outstanding at time t. While the balance equation (BE), the capacity constraint (CP),

the fraction constraint (FR) and the non-negativity constraint (NG) are straightforward,

other features of (14) deserve special notice:

• The objective assumes that profits are collected immediately upon admission;

• All work already committed to at time 0 and captured by the function W is assumed to

belong to a special class j = 0. That is, v0(t) is the fraction of machine capacity dedicated

to this existing commitment at time t, and in line with the definition of a MWF in (2),

constraint (DE) expresses that all due-dates for this existing work should be satisfied;

• Constraint (DA) expresses that all due-dates for newly admitted work from each class j ≥
1 should also be satisfied. In the fluid model, each "job" corresponds to an infinitesimal

quantity of work, so that the due-date of each job from class j admitted at t reduces to

the relative slack t+ sj. Accordingly, (DA) ensures that the sojourn time (i.e. time from

admission to completion) of any admitted work from class j is always smaller than this

due-date;

• Constraint (MO) corresponds to our assumption of a pure make-to-order system, so that

machine capacity may not be used to perform work or build inventory in anticipation of

a yet unrealized demand for any job class j, which would correspond in formulation (14)

to the case zj(t) < 0.

Returning to our original discrete and stochastic admission control problem, we now define

the fluid policy af = (af(.)) in line with (13) as:½
af(W, j) = 1 if rj ≥ FT (W)− FT (W ∪ j);
af(W, j) = 0 otherwise. (15)

A primary reason why policy af is appealing is that its associated computational cost is

relatively low: although not obvious from the continuous-time and variational formulation

(14), computing FT (W) actually reduces to computing the optimal value of a linear program

with at most 2(
¥
s̄/q
¯

¦
+3)(J +1)(2J +1) constraints and 2(

¥
s̄/q
¯

¦
+3)J(J +1) variables, as

established by the following theorem.

Theorem 5 For any minimum workload function W and number T ≥ d̄, let UT (W) be the

18

union of {0, T} and the set of points in [0, T] where W (.) is not differentiable, and for s ≥ 0
define Ts[.] as the set translation operator: Ts[A] ≡ {x+s, x ∈ A}. Let 0 = τ 0 < τ 1 < ... < τm

the distinct ordered points such that {τ i : 0 ≤ i ≤ m} ≡ UT (W) ∪
ÃS

j∈J
Tsj [UT (W)]

!
, define

I ≡ {0, ...,m}, set wi ≡W (τ i) for all i and consider the following linear program:

LPT (W) ≡ max
(Bj

i)

P
j∈J πjB

j
T+sj

s.t.: wi +
P

j∈JB
j
i ≤ τ i for all i ∈ I (CA)

0 ≤ Bj
i+1 −Bj

i ≤ λjqj(τ i+1 − τ i) for all i ∈ I and j ∈ J (AD)

Bj
i = 0 for all i ∈ I and j ∈ J such that τ i ≤ sj. (ST)

(16)

where for notational simplicity Bj
T+sj

≡ Bj
i where i is such that τ i = T + sj. Then

FT (W) = LPT (W). (17)

The LP (16) is in fact a simplified, discretized and linearized version of the transient fluid

problem (14), and the underlying reason why equality (17) still holds is that function W

is piecewise linear (see Proposition 1). Indeed, the discretization mesh (τ i)i∈I is primarily

designed so that the MWF function W is linear on [τ i, τ i+1], so that this function is entirely

characterized by (τ i, wi)i∈I. More specifically, each variable B
j
i in (16) represents the total

amount of work admitted from class j that must be completed by time τ i, or equivalently

the total amount of work from class j admitted between time 0 and time τ i − sj. The

objective function and constraints (AD) and (ST) in (16) are straightforward in light of

that interpretation, and constraint (CA) is another expression for the machine capacity

constraint (a binding (CA) constraint for some i ∈ I implies that the machine never idles
on [0, τ i]). Figure 4 is a graphical representation of an instance of the LP (16) with two job

classes.

From a practical standpoint, Theorem 5 and definition (15) imply that the fluid policy can

be implemented by keeping track of theW function over time and solving two LPs whenever

a new feasible job arrives, which seems well within the reach of modern computing power.

Another implication of Theorem 5 and the fact that any MWF W is constant on [d̄,+∞) is
that

∂FT (W)

∂T
= λC̄f for all T ≥ d̄,

where C̄f is the fluid upper bound defined in (12). Consequently, the opportunity cost

approximation FT (W)− FT (W ∪ j) in (15), and thus the fluid policy, do not depend on the

19

t
0 s1

W(t)

t

y = t minimum
workload

W

Ts2

class 1

class 2

cumulative amount of
class 2 work accepted with
due-date earlier or equal to t

increases with
rate at most

λ1 x q1

objective
contribution
π2 x B2

T+s2

T + s2

Figure 4: Graphical representation of an instance of LP (16)

choice of T ≥ d̄.

We conjecture that the fluid policy af is asymptotically optimal in the fluid limit, as

stated below:

Conjecture 1 Assume sj > 0 for all j ∈ J, and define a sequence of market environments
J(n) = (λ(n)j , q

(n)
j , s

(n)
j , r

(n)
j)n≥1 such that λ

(n)
j ≡ nλj, q

(n)
j ≡ qj/n, s

(n)
j ≡ sj and r

(n)
j ≡ rj/n. If

C(n)(a
f) (resp. C∗(n)) denote the long-run average profit per job achieved by the fluid policy

af (resp. the optimal average profit per job) in environment J(n) then

lim
n→+∞

¡
C∗(n) − C(n)(a

f)
¢
/C∗(n) = 0. (18)

In the definition of the limiting market environments J(n) above, note that the incoming

work and profit arrival rates from each class j, respectively λ
(n)
j q

(n)
j and λ

(n)
j r

(n)
j , remain

identical to those in the original environment J. Rather, the granularity q
(n)
j

.
s
(n)
j of all

job classes decreases as n grows large. Conjecture 1 thus draws on the observation that the

main assumption on which the fluid policy relies, namely that all future job arrivals will

be fluid (i.e. have infinitesimal granularity), becomes in fact closer and closer to being true

as n increases. Note however that the statement of Conjecture 1 excludes environments

where some jobs have zero slack, and for which the concept of granularity is thus undefined.

Indeed, consider the market environment J with two classes (s1, q1, r1, λ1) = (0, 1, 1, 1) and

20

(s2, q2, r2, λ2) = (0, 1, r, 1) where r < 1. Because both classes have zero slack, incoming

jobs may only be accepted when the system is empty, and a straightforward renewal process

analysis shows that the optimal policy consists then of always accepting jobs from class 1, and

accepting jobs from class 2 if r ≥ 1/2. Furthermore, independently of n ≥ 1 the condition on
r for the acceptance of jobs from class 2 to be optimal in environment J(n) (defined as in the

statement of Conjecture 1) remains r ≥ 1/2, and in that case C∗(n) = (1+r)/6n. In contrast,

for either job classes j ∈ {1, 2} the approximate opportunity cost used by the fluid policy af

in environment J(n) is F (0)−F (j) = 1/n, so that independently of n the fluid policy consists
of only accepting jobs from class 1, yielding C(n)(a

f) = 1/4n. When r > 1/2 the relative

suboptimality of the fluid policy in environment J(n) thus equals (r − 1/2)/(r + 1) > 0, so

that the limit statement in (18) does not hold.

Proving (or disproving) Conjecture 1 has so far eluded us despite some intermediary

progress, and we hope to resolve this issue in the future. Independently of its theoretical

foundations however, the fluid policy performs relatively well in many environments and lends

itself to several interesting extensions, as our numerical experiments in §4 and discussion in

§5 will show.

Next, we present another admission heuristic which, if considerably more computationally

intensive than the fluid policy, seems to perform at least as well in most environments, and

significantly better in some.

3.2.2. Lookahead Policy. LetM = {(x1, c1), ..., (xn, cn)} be a feasible machine state
and Φ = {(t1, q1, s1, r1), ..., (tH , qH , sH , rH)} a stream of H incoming jobs now assumed to be

known in advance (offline problem), where tk denote the arrival time of job k ∈ {1, ...,H}.
Let I ≡ {0, ...,m} and 0 = τ 0 < τ 1 < ... < τm the distinct ordered points such that

{τ i : i ∈ I} ≡
µ

HS
k=1

{tk, sk + qk}
¶
∪
µ

nS
u=1

{cu + xu}
¶
∪ {0}. Finally, for all k ∈ {1, ...,H} and

u ∈ {1, ..., n} let αk, δk and γu in I such that ταk = tk, τ δk = sk + qk and τγu = cu + xu.

Consider now the following mixed integer program (MIP):

21

G(Φ,M) ≡ max
(yki,zui,ak)

PH
k=1 akrk

s.t.:
PH

k=1 yki +
Pn

u=1 zui ≤ τ i − τ i−1 for all i ∈ I\{0} (CAP)

akqk ≤
Pδk

i=αk+1
yki for all k ∈ {1, ..., H} (DD)

xu ≤
Pγu

i=1 zui for all u ∈ {1, ..., n} (DD0)
yki ≥ 0 and zui ≥ 0, ak ∈ {0, 1} (V AR)

(19)

In formulation (19), the non-negative continuous variables yki and zui represent the total

amount of work performed between τ i−1 and τ i on jobs k and u respectively, and each binary

variable ak represents the decision to accept of reject job k. Function G(Φ,M) is thus the

maximum profit that can be made from job streamΦ when the set of jobs already committed

to but not yet completed is given by M, while satisfying the machine capacity constraint

(CAP) as well as the due-date contraints (DD) and (DD0) of newly accepted jobs from Φ

and existing jobs fromM, respectively.

Note that MIP formulation (19) does not exploit the fact that scheduling (described by

variables yki and zui) can be assumed with no loss of generality to follow ED∗ in our environ-

ment (see Theorem 2). Indeed, we have found the computational requirements associated

with other formulations exploiting that fact to be higher in practice than those associated

with (19). Furthermore, while Lawler (1990) describes a dynamic programming algorithm

solving optimization problem G(Φ,∅) in pseudo-polynomial time, we have not attempted to

extend that method to the problem with constrained admissions G(Φ,M), and use instead

a general MIP branch and bound algorithm in order to solve (19). In the following, for

� ∈ (0, 1) we will denote by G�(Φ,M) the approximate objective value obtained by run-

ning that branch and bound algorithm until a solution at most � suboptimal is found, i.e

(G(Φ,M)−G�(Φ,M)) /G(Φ,M) ≤ �.

Returning to our online problem, we now define the admission policy Lookahead(N,H, �)

with decisions aL(N,H,�) = (aL(N,H,�)(.)) as:½
aL(N,H,�)(M, j) = 1 if rj ≥ 1

N

PN
k=1G�(Φ

(k),M)−G�(Φ
(k),M ∪ j);

aL(N,H,�)(M, j) = 0 otherwise,
(20)

where the current state is (M, j) and Φ(1), ...,Φ(N) are N sample arrival streams of H jobs

generated through simulation according to the probabilistic arrival structure defined in §2.1.

In words, our lookahead policy approximates the opportunity cost for each incoming job in

22

the online problem by a simulation-based estimation of that opportunity cost in the offline

problem under a limited time horizon.

The lookahead policy just defined involves solving multiple instances of a MIP problem

whenever a new feasible job arrives, and is therefore very computationally intensive. Besides,

it does not involve any learning that would lessen its associated computational requirement

or improve its performance over time, in contrast with other approximate dynamic program-

ming methods (e.g. Bertsekas and Tsitsiklis 1996). It thus seems particularly important

to determine values for the parameters N , H and � resulting in a high policy performance

C(aL(N,H,�)) at a given computational cost. While solving a formal optimization model for

setting (N,H, �) seems out of reach, intuition suggests that the lookahead horizon H should

be of the same order as s̄λ. Some numerical experiments (not reported here) show indeed

that the performance C(aL) of Lookahead(N,H, �) noticably increases with H up to a point

in that vicinity, beyond which marginal performance improvements become considerably

more costly from a computational standpoint. Likewise, low values of N and high values

of � intuitively result in the same type of error, namely reduced estimation accuracy for

EΦ[G(Φ,M)]; more (unreported) numerical experiments and a heuristic analysis assuming

that G�(Φ,M) is uniformly distributed on [(1 − �)G(Φ,M), G(Φ,M)] suggest that setting

N close to 1/� is an efficient way of allocating computational resources in our problem.

As for the fluid policy, we close this subsection with a conjecture on the asymptotic

optimality of Lookahead(N,H, �):

Conjecture 2 Lookahead(N,H, �) is asymptotically optimal in any environment, i.e.:

lim
N,H→+∞
∈→0

C(aL(N,H,�)) = C∗.

We are however far less confident about Conjecture 2 than we are about Conjecture 1.

Regardless of the theoretical justification that establishing this result could provide however,

the experimental results we report in the next section indicate that the lookahead policy

performs particularly well in all environments.

4. Numerical Experiments

The primary goal of our numerical study was to assess the relative performance of the fluid

23

and lookahead policies described in §3.2 against that of other policies in various environments.

We present our methodology in §4.1 and results in §4.2.

4.1. Methodology. The market environment (λj, qj, sj, rj)j∈J we adopted as our

base case spans all combinations of qj ∈ {1, ..., 10}, sj ∈ {5, 10} and πj ∈ {0.7, 1} (where
rj = πjqj), resulting in a total of 10 × 2 × 2 = 40 job classes. The arrival rates λj are set
so that P (qj = q) ∝ 1/q2, P (sj = 5) = P (sj = 10) = 1/2, P (πj = 0.7) = P (πj = 1) = 1/2,

the load ρ ≡
PJ

j=1 λjqj equals 1.5 and P (πj = 1|sj = 5) = P (πj = 0.7|sj = 10) = 3/4

(slack and profit rate are thus negatively correlated, capturing the feature that jobs with

tighter due-date requirements tend to be more profitable). It is easy to verify that the above

conditions result in a linear system of equalities with a unique solution in (λj)j∈J.

In the experiments reported in §4.2, we measured how the relative performance of all

policies of interest changed when some of the parameters characterizing the environment

just defined were individually varied. More specifically, we explored the effects of marginal

variations in the load (see §4.2.1), granularity (see §4.2.2) and profit stretch (see §4.2.3)

of the market environment just defined. When investigating the relative performance of

the optimal static policy in §4.2.4, we assumed instead for tractability reasons a simpler

environment with only 12 classes (see that subsection for a precise definition).

We simulated the following policies in all our experiments:

Fluid: as defined in §3.2.1;

Lookahead: policy Lookahead(N,H, �) defined in §3.2.2, with (N,H, �) = (20, 20, 0.05);

Myopic: the static policy accepting every incoming job that is feasible;

Threshold: the static policy only accepting every incoming job with the higher profit rate

(i.e. for which πj = 1) that is feasible.

Specifically, we used a custom discrete-event simulation software written in the C pro-

gramming language. When appropriate, this software relied on a dynamic, two-way data

link with the solver components of CPLEX in order to generate solutions to the linear and

mixed integer programs arising in these simulations. We generated 30 different simulation

runs in each market environment, where each run consisted of a warm-up period of 50 job

arrivals, followed by a data collection period of 200 job arrivals. We computed then the

24

sample average and 95% confidence interval across all simulation runs for the total profit

generated by each policy from those 200 jobs divided by the length (in simulation time units)

of the corresponding data collection period.

In all our experiments except the granularity variation described in §4.2.2, we also report

as a comparison benchmark the estimated profit rate of the Anticipative policy, which

implements near-optimal admission/rejection decisions assuming perfect knowledge of the

job arrival stream, and starts from an empty state at the beginning of the measurement

period. That is, Anticipative is essentially the optimal offline policy in our environment

(sometimes also referred to in the computer science literature as the clairvoyant policy),

except that in order to speed up computations we only solve the associated optimization

problem within 3% of optimality. Formally, ifΦ = {(t51, q51, s51, r51), ..., (t250, q250, s250, r250)}
denote the arrival stream of jobs from the data collection period simulated in each run, we

report the average of G0.03(Φ,∅)/(t250 − t50) across all 30 simulation runs, with function

G�(Φ,M) as defined in §3.2.2.

Finally, we also report in §4.2.4 the simulated performance of the optimal static policy,

more precisely defined in that subsection.

4.2. Results and Discussion.

4.2.1. Load Variation In this first set of experiments we investigated the effects of vary-

ing the load ρ ≡
PJ

j=1 λjqj (average total amount of potential processing time requirement

arriving to the facility per unit of time), which may serve in this setting as an indicator of

the balance between supply and demand. The graph in Figure 5 represents the simulated

profit rate of the first four policies mentioned in §4.1 divided by that of the Anticipative

policy. As in all remaining graphs, error bars displayed around each data point represent

the associated 95% confidence interval.

In accordance with intuition, the performance of Myopic decreased regularly with the

load: when demand is relatively low and much capacity is available, accepting as many jobs

as possible is a good policy — this is established theoretically by our Proposition 5. When

demand is high relative to capacity however, the opportunity cost of accepting a job increases

and one should seemingly be more selective when accepting jobs. For the exact same reasons

the performance of Threshold increased regularly with the load: contrary toMyopic that

25

Figure 5: Load variation experiments

policy was too selective at low loads but became sensible at high loads.

The more complex Fluid and Lookahead did generally well, seemingly mimicking the

behavior ofMyopic (resp. Threshold) in the environments with very low (resp. high) load,

that is when it is sensible to do so. For intermediate loads ranging from approximately 1.25 to

2 however, Fluid and Lookahead significantly outperformed bothMyopic andThreshold,

achieving more than 10% improvement over the best of those two static policies for a load

slightly smaller than 2. These experiments thus suggest that the relative benefits of using

sophisticated dynamic policies such as Fluid and Lookahead versus simple static policies

such as Myopic and Threshold may be largest in intermediate load environments, which

may arguably be more prevalent in practice. Also, the performance of Fluid was virtually

identical to that of Lookahead for loads smaller than 2, a remarkable fact considering that

Lookahead is considerably more computationally intensive than Fluid. For loads around

2.25 however, Fluid started making the same decisions as Threshold (this was determined

26

by inspection of the simulation logs) and performed then noticably worse than Lookahead,

although that performance gap seemed to reduce with higher load values of 2.5 and beyond.

Unfortunately, we have not found a satisfactory explanation for this phenomenon.

Finally, the performance of Lookahead and Fluid relative to that of Anticipative as a

function of load seemed to initially decrease until the load reached about 1.5, then slightly

increase, and finally decrease again for loads larger than 2. We believe that this behavior

results from the combination of two effects. The first is the value of information, which is

relatively low for extreme loads (high or low), but high for intermediate loads; the second

is the experimental artefact of forcing Anticipative to start the data collection period

with an empty queue (this was imposed to ensure that its performance would constitute an

upper bound). Because all the other (online) policies typically start with a non-empty queue

(composed of jobs previously accepted during the warm-up period) which may restrain their

ability to accept new jobs during the beginning of the data collection period, Anticipative

derives a relative advantage from this; that advantage becomes particularly significant for

high loads, where the relative impact of starting with a non-empty queue increases since the

data collection period corresponds to a fixed number of jobs. In experiments (not reported

here) where Anticipative did start with a non-empty queue (i.e. where the second effect

just mentioned was eliminated), we indeed observed that its relative performance advantage

over Fluid and Lookahead was unimodal, and became almost negligible for high loads.

4.2.2. Granularity Variation As part of our second set of experiments we assessed the

effects of marginally varying job granularity, that is changing the ratio between processing

time and slack for all incoming jobs, while keeping the load and profit rates fixed; the

rationale was to explore the relative performance of our policies when the marginal impact

of any individual job ranged from high (large granularity, "bulky" environment) to low

(small granularity, "fluid" environment). Specifically, we simulated a serie of environments

(λ
(n)
j , q

(n)
j , s

(n)
j , r

(n)
j)j∈J indexed by a positive real number n and derived from our base-case

environment (λj, qj, sj, rj)j∈J as in the statement of Conjecture 1: λ
(n)
j ≡ nλj, q

(n)
j ≡ qj/n,

s
(n)
j ≡ sj and r

(n)
j ≡ rj/n. Parameter n, which we refer to as the granularity parameter, thus

provides a quantitative measure for the relative individual impact of each job (large values

of n imply a fluid-like environment, while small values indicate a more bulky environment).

27

The graph in Figure 6 shows for various values of that parameter the performance of the

first four policies mentioned in §4.1 divided by λC̄f , where C̄f is the fluid upper bound on

optimal average profit per job defined in the statement of Proposition 6. Note that λC̄f is

an upper bound on the optimal average profit per unit of time which does not depend on

the granularity parameter n, so that the relative performance measures shown in Figure 6

are proportional to the absolute values of the corresponding average profit rates6.

Figure 6: Job granularity variation experiments

A first observation is that the overall performance of all simulated policies improved as

job granularity decreased; our interpretation is that in the fluid limit characterized by infini-

tesimal job granularity, the arrival process becomes deterministic, which makes for an easier

market environment allowing for higher performance. On the other end, large job granularity

and the resulting increased uncertainty in the arrival process of future jobs seemed to reduce

6 We believe λC̄f to be a more meaningful upper bound in this setting than the profit rate of
Anticipative, and thus used the former as a comparison benchmark for this specific set of experiments.

28

the opportunity cost of capacity, explaining the good performance of Myopic for very small

values of n. Fluid and Lookahead both performed generally well in all environments, ex-

cept in the high granularity limit (n ≤ 1/4) where Fluid was significantly outperformed by
Myopic and Lookahead. This is hardly surprising since the main assumption on which

Fluid relies, namely that future job arrivals will be continuous and deterministic, becomes in

fact increasingly invalid as n decreases. This interpretation is confirmed by the good perfor-

mance of Fluid for small job granularity, which outperforms then all other policies including

Lookahead for n ≥ 2. Incidentally, we believe that the horizon length parameter H = 20

used for Lookahead may also become too small in the fluid limit, possibly accounting as

well for the reduced performance of that policy relative to Fluid then.

Another observation about the small job granularity regime is that the performance of

Fluid approaches the fluid upper bound as n increases; this suggests both that the fluid

bound becomes increasingly tight and that Fluid is asymptotically optimal in the fluid

limit. These results thus provide an experimental motivation for Conjecture 1, and a justi-

fication of the primary path we have been following to try and establish this result (so far

unsuccessfully), namely to prove that the performance of Fluid converges to the fluid upper

bound C̄f as n→ +∞.
The performance ofMyopic was bad for small job granularity, andThreshold performed

the worst for all values of n, although its performance seemed to improve relative to the other

policies in the fluid limit. Besides the relationship between opportunity cost of capacity and

arrival process uncertainty discussed earlier, our interpretation is that small job granularity

induces more variation in system state upon job arrivals, so that regimes approaching the

fluid limit put static policies such asMyopic and Threshold at a greater disadvantage over

dynamic policies.

Finally, we point out that another related dimension characterizing our market environ-

ment is the homogeneity in the processing time requirements of incoming jobs. In some ex-

periments (not reported here) where we simulated environments satisfying P (qj = q) ∝ 1/q
instead of P (qj = q) ∝ 1/q2, we observed that while Fluid retained some statistically signif-
icant advantage overMyopic and Threshold for intermediate loads as before, Lookahead

outperformed all three other policies more significantly than in the experiments we do report

here. Our interpretation is that the increased heterogeneity in job processing time require-

29

ments introduced by the heavier tail of the distribution 1/q reduces the validity of the fluid

arrival assumption on which Fluid relies, effectively amounting to larger job granularity; in

these more challenging environments the more sophisticated approach for calculating oppor-

tunity cost of capacity used by Lookahead seemed to yield some benefits.

4.2.3. Profit Stretch Variation In a third set of experiments we investigated variations

in profit stretch, defined as the ratio maxπj/minπj between the highest and lowest profit

rate across all job classes. In our specific market environment with only two possible different

profit rate values, we actually kept the higher profit rate maxπj at its initial value of 1 and

varied the value of the smaller profit rateminπj between 0.5 (high stretch environment where

some jobs are twice as profitable per unit of processing time as others) and 1 (environment

with no stretch where all jobs have the same profit rate). The graph representing the

simulated performance of Fluid, Lookahead, Myopic and Threshold relative to that of

Anticipative for these different values is shown in Figure 7.

Figure 7: Profit stretch variation experiments

30

Fluid and Lookahead performed best across all stretch values, and the performances

of these two policies were nearly identical overall. In the environment with no stretch

(minπj = maxπj = 1) the performances of all four policies tested were statistically in-

distinguishable (Myopic and Threshold are actually exactly identical in that case). In

all other environments with minπj < 1 however, the relative performance of Myopic (resp.

Threshold) decreased (resp. increased) almost linearly with stretch — the penalty from being

not selective enough (resp. too selective) intuitively increases when differences in job profit

rates widen (resp. diminish). While the performance of Threshold caught up with that of

Myopic for the environment with the largest profit stretch we tested (minπj = maxπj/2),

the performance of either static policy remained significantly below that of our two dy-

namic policies then. While one may extrapolate from our results that the performance of

Threshold may become closer to that of Fluid and Lookahead for very high profit stretch

(perhaps minπj < 0.2), such settings are arguably not prevalent in practice. In contrast,

the performance of Myopic became identical to that of Fluid and Lookahead in very

low stretch environments (minπj = 0.9). For moderate profit stretch values which may be

more common however, these experiments suggest that the relative benefit of using dynamic

policies such as Fluid and Lookahead over simpler static policies such as Myopic and

Threshold could be very significant.

4.2.4. Optimal Static Policy Finally, we designed a last set of experiments in order to

assess the relative performance of the Optimal Static policy, defined as in §3.1 by choosing

the best subset S∗ ⊂ J of classes in (11), that is the subset S∗ resulting in the static policy
with the highest expected average profit rate when following the non-idling earliest due-

date scheduling policy ED∗; note thatMyopic and Threshold correspond to the (a priori

suboptimal) specific choices S = J and S = {j ∈ J : πj = maxπj}, respectively.
Because we have not found to date a computationally efficient method to deriveOptimal

Static and identify set S∗ in a general market environment, our approach for this set of
experiments has been to assume a simpler market environment where it is feasible to per-

form an exhaustive search of all possible subsets S ⊂ J through simulation. Specifically,

we have investigated an environment with the same job profit rate and slack values as in

our base-case scenario defined in §4.1, but with a load ρ = 2 and only three possible values

31

Policy Profit rate
Anticipative 1.009882± 0.009264
Lookahead 0.950720± 0.013197
Fluid 0.926127± 0.009187

Optimal Static 0.915633± 0.001499
Threshold 0.895139± 0.026335
Myopic 0.80519± 0.006894

Table 1: Simulated performance of Optimal Static and other policies.

qj ∈ {1, 2, 3} for job processing time requirements, resulting in 2× 2× 3 = 12 different job
classes and 212 − 1 = 4, 095 possible static policies. The average profit rate of each static

policy tested was estimated with 30 simulation runs as before, but with 20, 000 job arrivals

instead of 200. Although our simulation-based search does not provide any theoretical guar-

antee of optimality, only three other static policies among all those tested had an estimated

performance within the confidence interval associated with the performance of the one we

selected eventually. The policy we identified thus appears very close to being optimal among

all static policies, and given our purposes we feel justified in slightly abusing terminology

when still referring to it as Optimal Static in the following.

Interestingly, that policy consists of only accepting all high-profit jobs (πj = 1), as well

as low-profit jobs (πj = 0.7) with low slack (sj = 5) and processing time requirements qj

equal to either 1 or 2. Note that Proposition 4 and equation (10), which may at first seem

to contradict this finding (high slack jobs may a priori seem more desirable), are only valid

absent the restriction to static policies. In fact, our interpretation is that Optimal Static

effectively achieves a desirable state-dependent behavior (accepting some low-profit jobs

when the queue is empty but only high-profit jobs when it is full) by selectively including

in its admission set low-profit jobs with tight due-date constraints that will thus only be

feasible to admit when the system is relatively empty.

The simulated profit rate of Optimal Static along with that of the other policies men-

tioned so far in the simpler market environment just described is displayed in Table 1.

The profit rate of Anticipative reported in Table 1 is slightly larger than one; this results

from the experimental artefact that whileAnticipative starts the measurement period with

an empty state, it frequently ends it with a full queue. Among online policies, the perfor-

32

mance of Optimal Static came within 91.5% of optimality, and the relative performance

superiority of Lookahead over Fluid (+2.6%) was larger than that of Fluid overOptimal

Static (+1.1%). This suggests that the performance achievable with Optimal Static may

in general come relatively close to that attained by more sophisticated dynamic policies.

However, because these results are based on a very specific, simple and possibly pathological

environment, they should be treated with considerably more caution than our other findings.

We note that while the optimal static policy may be computationally intensive to derive, it is

however particularly simple to implement in practice. These observations motivate our future

research goals of further validating the results presented here and finding a computationally

efficient method to derive the optimal static policy in general market environments.

5. Implementation Issues and Conclusion

In Sections §2, §3 and §4, we have investigated the dynamic admission control of jobs

with hard deadlines and deterministic processing time from a finite set of classes into a

single machine queue with preemptive scheduling. Using the concept of minimum workload

function (MWF), we have established that earliest due-date scheduling can be assumed at no

cost to optimality, and developed a discrete-time formulation for the problem of maximizing

long-run expected profit. We have exploited a characterization of the optimal policy for this

problem in order to derive two heuristic policies (fluid and lookahead) relying on different

approximations for the opportunity cost of accepting a job. While the lookahead policy is

very computationally intensive as it involves solving several mixed integer programs upon

each job arrival, the fluid policy leverages the special structure of MWFs and thus only

requires solving two LPs then. Numerical experiments under various load, stretch and gran-

ularity parameters suggest that they perform better than simple static policies in almost

all environments. Limited experiments also suggest that the optimal static policy performs

nearly as well as these two dynamic heuristics in some settings. However, while the optimal

static policy is extremely simple to implement, it does seem computationally intensive to

derive, at least using the method we have identifed so far (simulation-based optimization).

Overall, our fluid heuristic stands out for its robust performance at a relatively low com-

putational cost. That heuristic is also attractive because its extension in practice to the

case of non-stationary demand seems straightforward: assuming that the average demand

33

rate for each demand class j is now given by a (time-dependent) function λj(τ), one may

introduce a set of points (τ i)i∈I0 and values λ
j
i ≡ λj((τ i + τ i+1)/2) such that the functionP

i∈I0 λ
j
i1[ti,ti+1] constitutes an acceptable piece-wise constant approximation of λj(.), and

substitute constraint (AD) in the LP (16) defining the fluid policy with

0 ≤ Bj
i+1 −Bj

i ≤ λjiqj(τ i+1 − τ i) for all i ∈ I and j ∈ J (ADt) ,

where the time discretization mesh (τ i)i∈I is obtained by merging the one defined in the

statement of Theorem 5 with (τ i)i∈I0. Another appealing possible extension in practice con-

cerns orders with multiple staggered deliveries: denote byW ∪hk=1jk the MWF corresponding
to both the current set of jobs not yet completed with MWF W and a new order with h

deliveries ∪hk=1jk, with jk = (sk, qk) characterizing the requirements of the k-th delivery;

the opportunity cost for that new order may be approximated for practical purposes by

F (W)−F (W ∪hk=1 jk), where F (.) is the function defined by LP (16). While the theoretical
grounding of this method would undoubtedly benefit from further research, it may thus also

constitute a useful tool for the pricing of contracts (as opposed to individual transactions).

Returning to the original motivation for the admission control model investigated, namely

the development of dynamic salesforce guidelines, we observe that the structure (15) of the

fluid policy seems well suited to computing the portion of the admission surface defined

in §1 that is relevant during an interaction with a potential customer. For example, if

j = (s, q) represent the processing requirements and due-date requested by a customer when

the facility state is W , the quantity F (W)−F (W ∪ j) could suggest the lowest price that a
sales agent may consent to. More generally, active quotations and counter offers represented

by the projections in Figure 1 may be determined through mere line searches starting from

any partial information provided by the customer about the transaction of interest; for a

price-sensitive customer initially requesting an unprofitable transaction j0 = (r, s0, q), such

line search may take the form of exploring slack values (sk)k≥1defining jk = (sk, q) in order to

find sK such that F (W)−F (W ∪jK) = r. Note that the opportunity cost F (W)−F (W ∪jk)
is non-increasing in sk, and that while the first step in this line search involves solving two

LPs (to compute F (W) and F (W ∪ j0), every subsequent step only requires solving a single
one (to compute F (W ∪ jk)). Also, even when such terminating sK is determined to not

exist, the minimum value of F (W)−F (W ∪ jk) found during the search may still suggest a

34

price and lead-time combination constituting a sensible counter-offer.

As stated in §1, make-to-order transactions often involve in practice additional terms be-

yond price, lead-time and quantity such as payment delays, warranty, insurance, return pol-

icy, etc. This may clearly limit the applicability of the work presented in markets where such

additional terms are non-standard or constitute a sensitive component of the corresponding

transaction contracts. However, in situations where such additional terms are fairly stan-

dard and the range of their possible values limited (e.g. "Net 15", "Net 30" or "Net 45" for

payment terms), one may consider defining baseline values for all those additional contract

terms, use our methods to price transaction on the basis of price, lead-time and quantity un-

der the assumption that the additional terms for all future transaction opportunities would

be identical to these baseline values, and then account for any actual deviation in those

terms with pre-determined multiplicative or additive relative price corrections.

It is also sometimes feared that formal sales guidelines may hamper the ability to discrim-

inate between customers for reasons not reflected in the terms of any given transaction. In

practice, some firms will indeed offer advantageous sales condition to customers perceived

as "strategic", for example when it is believed that they could generate many other sales

in the future, or because of the publicity and/or credibility created when dealing with a

well-known "blue chip" customer. These practices are often supported by a well-thought

out rationale of market segmentation, and may be very sensible from the perspective of

maximizing long-run profits. We observe that our methods amount to establishing likewise

a market segmentation, but one based on relative price and delivery-lead time sensitivity

for individual transactions as opposed to long-run customer relationship value: we implic-

itly assume a spot market environment, and our theoretical model does not recognize that

several different transactions may originate from the same customer. Such firms may define

customer categories based on relationship value, and use our model to establish a baseline

from which relative price corrections may be applied according to these categories. In sit-

uations where such discriminations between customers constitute the norm rather than the

exception however, more suited models may be in order. Also, the possibility described

above that our method for approximating opportunity cost may also apply to contracts (in

addition to single transactions) would seem particularly worthy of further investigation in

these environments.

35

Perhaps the strongest limitation of the results presented here stems from our representa-

tion of a production facility as a single machine with preemptive scheduling and no set-ups.

While there are several examples in practice where this model does closely approximates

reality (magnetic resonance imaging, photolithography masks manufacturing7, commercial

DNA sequencing), there are many other make-to-order systems for which it is clearly unre-

alistic. In the future, we hope to study production models involving set-ups and multiple

machines, but also investigate the use of our single machine model for approximating trans-

action opportunity costs in more complex environments. Specifically, we envision combining

our algorithms with a type of ERP software component known as "Available-To-Promise"

(ATP), which essentially provides a feasibility check (or a completion date prediction) for

potential transactions given complex equipment and labor capacity constraints as well as

inventory availability restrictions and, when appropriate, raw material delivery schedules.

Our initial thought is to use such software to not only determine the feasibility of any poten-

tial transaction, but also construct through multiple queries a capacity curve for a complex

production system conceptually similar to the MWF we have introduced in this paper for a

single-machine model; one possible approximation technique could then consist of treating

that capacity curve with the algorithms presented in §3.2 as though it had been generated by

a single-machine system, and compute the corresponding opportunity cost. This prospective

approximation scheme is illustrated in Figure 8.

Finally, we hope to conduct more theoretical work allowing to resolve the conjectures

stated in Sections §3.2.1 and §3.2.2, namely that our fluid and lookahead heuristics are

asymptotically optimal in the fluid and infinite lookahead horizon limits, respectively. Also,

we intend to research better methods for deriving the optimal static admission policy, and

explore more systematically the performance gap between the optimal static policy and more

sophisticated dynamic policies such as the ones presented in this paper.

Appendix

We caution the reader that the proof of Proposition 2 is presented in this appendix before

that of Theorem 2; this is because the proof of Theorem 2 relies on Proposition 2, even

7 We thank Pr. Michael J. Harrison for bringing this example to our attention.

36

Complex process &
supply chain:
• Network structure
• Machine capacities
• Labor capacities
• Inventory availability

Transaction
opportunityATP Module

t

MWF

t

MWF

Algorithms
from this paper

Feasibility

Profitability

Negotiation:
Feasibility

Profitability

Negotiation:

Sale
Market & Customer

Information
Market & Customer

Information

Figure 8: Prospective approximation scheme for complex production systems

though we found it more natural to reverse the presentation order of these two results in the

text.

A.1. Proof of Proposition 1. Proposition 1 is actually the direct consequence of
Proposition 8, a deeper result providing a characterization of MWF functions which is stated
and proved later in this section of the appendix. We first need to prove some other interme-
diary results describing important properties of earliest due-date schedules and cumulative
workload functions:

Proposition 7 Let M = {(x1, c1), ..., (xn, cn)} be a feasible machine state (i.e. S[M] 6=
∅). Define the set E[M] of earliest due-date schedules as the set of all schedules E(.) =
{E1(.), ..., En(.)} where E1, ..., En are non-negative, right-continuous functions on [0,+∞)
satisfying the property:½

di = xi + ci < xk + ck = dk
Ek(τ) > 0

⇒
Z τ

0

Ei(v)dv = xi. (21)

Then for any feasible schedule S ∈ S[M], there exists an earliest due date schedule E ∈
E[M] such that

WE
M =WS

M.

Proof. This proof relies on an adaptation to our setting of an idea used independently by

Dertouzos (1974) and Horn (1974) to prove that the earliest due date schedule (also known

as Jackson’s rule) solves 1|pmtn; ri|Lmax. Assume S /∈ E[M] and let i, k ∈ {1, ..., n} and

37

τ < di such that di < dk, Sk(τ) > 0 and
R τ
0
Si(v)dv < xi. Because Si and Sk are right-

continuous, we can assume that Pk(τ) ≡
R τ
0
Sk(v)dv > 0 and Ri(τ) ≡

R di
τ
Si(v)dv > 0, since

S is feasible therefore
R di
0
Si(v)dv = xi = Ri(τ)+

R τ
0
Si(v)dv. Note that Pk is continuous and

non-decreasing with Pk(0) = 0, while Ri is continuous and non-increasing with Ri(0) = xi

and Ri(di) = 0. Therefore Pk(di) ≥ Pk(τ) > 0, so that the function Ri−Pk is continuous and

changes sign on [0, di], which implies the existence of τ 0 ∈ (0, di) such that Ri(τ
0) = Pk(τ

0).

Define now the schedule S0 by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S0m = Sm for m 6= i, k½
S0i(v) = Si(v) + Sk(v), ∀v ∈ [0, τ 0)
S0i(v) = 0, ∀v ∈ [τ 0, di]⎧⎨⎩ S0k(s) = 0, ∀v ∈ [0, τ 0)
S0k(s) = Si(v) + Sk(v), ∀s ∈ [τ 0, di)
S0k(s) = Sk(s), ∀s ∈ [di, dk]

(22)

The component functions of S0 are non-negative, right-continuous, and satisfy
Pn

i S
0
i(v) ≤

1 for all v ≥ 0, in addition we have by construction:

Z di

0

S0i(v)dv =

Z τ 0

0

S0i(v)dv +
Z di

τ 0
S0i(v)dv

=

Z τ 0

0

(Si(v) + Sk(v)) dv

=

Z τ 0

0

Si(v)dv + Pk(τ
0)

=

Z τ 0

0

Si(v)dv +Ri(τ
0)

=

Z di

0

Si(v)dv

= xi,

and

38

Z dk

0

S0k(v)dv =

Z τ 0

0

S0k(v)dv +
Z di

τ 0
S0k(v)dv +

Z dk

di

S0k(v)dv

=

Z di

τ 0
(Si(v) + Sk(v)) dv +

Z dk

di

Sk(v)dv

= Ri(τ
0) +

Z di

τ 0
Sk(v)dv +

Z dk

di

Sk(v)dv

= Pk(τ
0) +

Z dk

τ 0
Sk(v)dv

=

Z dk

0

Sk(v)dv

= xk,

so that S0 is feasible, i.e. S0 ∈ S[M]. In addition,
R τ 0
0
S0i(v)dv = xi and S0k = 0 on [0, τ

0],

so that condition (21) is now satisfied for indices i and k by S0. Observe that the same

construction procedure can be applied iteratively for any other pair of indices for which S0

may still violate (21), and that there can be at most a finite number of such pairs. Because

from (22) that construction also preserves the cumulative workload function, i.e. WS0
M =WS

M,

the proof is complete.

Corollary 1 Let M be a machine state, and ED∗ be as before the non-idling earliest due-
date schedule.

S[M] 6= ∅⇔ ED∗ ∈ S[M]

Proof. The "if" part of this result is trivial. For the "only if" part, note that Dertouzos

(1974) actually proves a more general result in a scheduling model with release dates. To

prove this simpler version in our setting it suffices now to notice that Proposition 7 implies

S[M] 6= ∅ ⇒ E[M] ∩ S[M] 6= ∅

⇒ ED∗ ∈ S[M],

where the second implication holds because if any (possibly idling) earliest due-date sched-

ule is feasible, then ED∗ also is.

39

Proposition 8 LetM = {(x1, c1), ..., (xn, cn)} be a feasible machine state (i.e. S[M] 6= ∅),
where we assume (with no loss of generality) that the jobs are ordered by increasing due-dates,
that is di = xi+ ci ≤ xi+1+ ci+1 = di+1. Let Σ(M) = {Σ1, ...,Σn} ∈ E[M] be the maximum-
idling earliest due date schedule of M, defined by the starting time bi and ending time ei of
work by Σ on each job i as follows:

Σi(τ) = 1[bi,ei](τ), where (bi, ei) is given by:⎧⎨⎩ en = dn
ei−1 = min (di−1, ei − xi) for i ∈ {2, ..., n}
bi = ei − xi for i ∈ {1, ..., n}

. (23)

Then Σ ∈ S[M] (i.e. Σ is feasible), and the cumulative workload function of Σ achieves
the minimum workload function of M, that is

W
Σ(M)
M =WM.

Proof. It follows from (23) that Σ ∈ S[M] if and only if b1 ≥ 0. System (23) implies

b1 = min (d1 − x1, d2 − x2 − x1, ..., dn −
Pn

i=1 xi). Let k be the index in that expression such

that b1 = dk −
Pk

i=1 xi. The strict inequality b1 < 0 would thus imply
R dk
0

ED∗
k(v)dv < xk

therefore ED∗ /∈ S[M], which from Corollary 1 would imply S[M] = ∅, a contradiction.

This proves Σ ∈ S[M].
Turning to the second statement, Proposition 7 implies that for all τ ≥ 0,

inf
S∈S[M]

WS
M(τ) = inf

E∈E[M]∩S[M]
WE
M(τ). (24)

Let E = {E1, ..., En} ∈ E[M] ∩ S[M] be a feasible earliest due-date schedule; From (21)

there exist {(b01, e01), ..., (b0n, e0n)} such that Ei = 0 on [0,+∞)\[b0i, e0i], b0i < e0i ≤ bi+1 and

e0i − b0i ≥ xi for all i ∈ {1, ..., n}. Besides, it follows from the construction (23) of Σ that

e0i ≤ ei and b0i ≤ bi for all i. We now prove by contradiction that

Z τ

0

Ei(v)dv ≥
Z τ

0

Σi(v)dv for all τ ≥ 0. (25)

Otherwise, let τ such that
R τ
0
Ei(v)dv <

R τ
0
Σi(v)dv; since E ∈ S[M] we have

R e
0
Ei(v)dv =

xi ≥
R e
0
Σi(v)dv for e ≥ e0i, therefore τ < e0i ≤ ei. Also

R τ
0
Ei(v)dv ≥ 0 implies

R τ
0
Σi(v)dv > 0

therefore τ > bi and
R τ
0
Σi(v)dv + (ei − τ) = xi. But then

40

Z e0i

τ

Ei(v)dv ≤ e0i − τ

≤ ei − τ

= xi −
Z τ

0

Σi(v)dv

< xi −
Z τ

0

Ei(v)dv,

implying
R e0i
0
Ei(v)dv < xi, which contradicts E ∈ S[M] and proves (25). Summing inequali-

ties (25) for all i yields

WE
M(τ) ≥WΣ

M(τ) for all τ ≥ 0,
which combined with (24) finally proves that WM =WΣ

M.

Proposition 1 now directly follows from Proposition 8, since this last result implies the

existence of {(b1, e1), ..., (bn, en)} such that bi < ei ≤ bi+1 < ei+1 for i ∈ {1, ..., n− 1} and

WM(τ) =
nX

k=1

Z τ

0

1[bk,ek](τ)dτ

for all τ ≥ 0.

A.2. Proof of Theorem 1. The proof of Theorem 1 relies on the following

chain of equivalent statements, in which the first "only if" follows from Proposition 8, and

the second from the construction Sn+1(τ) = 1 −
Pn

i=1 Si(τ) on [0, τ̄] where τ̄ is such thatR τ̄
0
(1−

Pn
i=1 Si(τ)) dτ = qj. All "if" statements are straightforward.

inf
S∈S[M]

WS
M(qj + sj) ≤ sj

⇔ ∃{S1(.), ..., Sn(.)} on [0,+∞) such that
½ R xi+ci

0
Si(τ)dτ = xiPn

i=1 Si(τ) ≤ 1
, and

Z qj+sj

0

nX
i=1

Si(τ)dτ ≤ sj

⇔ ∃{S1(.), ..., Sn+1(.)} on [0,+∞) such that
n+1X
i=1

Si(τ) ≤ 1 and
½ R xi+ci

0
Si(τ)dτ = xiR qj+sj

0
Sn+1(τ)dτ = qj

⇔ S[(M ∪ (qj , sj)] 6= ∅

A.3. Proof of Proposition 2. Let M = {(x1, c1), ..., (xn, cn)} and assume (with no
loss of generality) that the jobs inM are ordered by increasing due-dates. Because schedule

41

ED∗ is an earliest due-date schedule, there exists k ∈ {1, ..., n} such that M[ED∗, τ] =
{(x0k, c0k), ..., (x0n, c0n)} with½

x0j + c0j = xj + cj − τ for j ∈ {k, ..., n}
x0j = xj for j ∈ {k + 1, ..., n} . (26)

In addition, because ED∗ is non-idling necessarily

τ =
k−1X
j=1

xi + xk − x0k. (27)

Let now (bj, ej) (resp. (b0j, e
0
j)) be the beginning and end times of work by Σ(M) (resp.

Σ(M[ED∗, τ])) on job j ∈ {k, ..., n}. From the recursion (23) definingΣ(M) andΣ(M[ED∗, τ]),
we have ⎧⎨⎩ e0j = ej − τ for all j ∈ {k, ..., n}

b0j = bj − τ for all j ∈ {k + 1, ..., n}
b0k = ej − τ − x0k = bk + xk − x0k − τ

. (28)

From Proposition 8 we can now write

WM[ED∗,τ](t) =
nX

j=k

Z t

0

1[b0j ,e0j](v)dv

=
nX

j=k+1

Z t

0

1[bj−τ,ej−τ](v)dv +
Z t

0

1[ej−τ−x0k,ek−τ](v)dv

=
nX

j=k+1

Z t+τ

τ

1[bj ,ej](v)dv +
Z t+τ

τ

1[ej−x0k,ek](v)dv

=
nX

j=k+1

Z t+τ

0

1[bj ,ej](v)dv +
Z t+τ

0

1[ej−x0k,ek](v)dv

= WM(t+ τ)−
kX

j=1

Z t+τ

0

1[bj ,ej](v)dv +
Z t+τ

0

1[ej−x0k,ek](v)dv

= WM(t+ τ)−
k−1X
j=1

Z t+τ

0

1[bj ,ej](v)dv −
Z t+τ

0

1[bk,bk+xk−x0k](v)dv (29)

where the first equality follows from Proposition 8, the second from (28), the third from

the change of variable v + τ → v, the fourth from the fact that the feasibility of M implies

bj ≥ τ for j ∈ {k+1, ..., n} and ej−x0k ≥ τ , the fifth from Proposition 8, and the sixth from

combining the last term of the summation with the last integral. Define now the following

42

functions (
FM(T) =

Pk−1
j=1

R T
0
1[bj ,ej](v)dv +

R T
0
1[bk,bk+xk−x0k](v)dv

GM(T) =
R T
0
1[bk+xk−x0k,ek](v)dv +

Pn
j=k+1

R T
0
1[bj ,ej](v)dv

;

it follows from Proposition 8 that

WM(t+ τ) = FM(t+ τ) +GM(t+ τ), (30)

and from (29) that

WM[ED∗,τ](t) =WM(t+ τ)− FM(t+ τ). (31)

In addition, the construction of Σ(M) implies ej ≤ bj+1 for j ∈ {1, ..., n}, so the construction
of FM and GM, the fact that ej − bj = xj and equation (27) imply in turn:½

0 ≤ FM(t+ τ) ≤ τ
GM(t+ τ) > 0⇒ t+ τ > bk + xk − x0k ⇒ FM(t+ τ) = τ

;

it follows therefore from (30) that FM(t+τ) = min(WM(t+τ), τ), and substituting into (31)

finally yields

WM[ED∗,τ](t) = WM(t+ τ)−min(WM(t+ τ), τ)

= [WM(t+ τ)− τ]+.

A.4. Proof of Proposition 3. Define s̄ ≡ max
j∈J

sj, q
¯
≡ min

j∈J
qj, and for each

original job admission stream Γ consider a modified job admission stream Γ0 where the job

admission times remain the same but where each accepted job (qj, sj) is now replaced with

(q
¯
, s̄). Note that if Γ is feasible then Γ0 also is, because each accepted job in Γ0 requires

less work and has a looser due-date constraint than its counterpart in Γ. Consequently, the

maximum number of jobs accepted but not yet completed over all feasible policies and arrival

streams in environment J = (qj, sj)j∈{1,...,J}, if it exists, is smaller than that for environment

J0 = (q
¯
, s̄)j∈{1,...,J}. But observe that in J0 schedule ED∗ works on admitted jobs in a first-

in-first-out manner, because all jobs have the same relative due-date s̄+ q
¯
. As a result, in

any feasible machine state obtained under J0 and following ED∗, all jobs except one have a

quantity of work remaining equal to q
¯
. From Theorem 1, the number of jobs m in a machine

43

state where it is feasible to accept a new incoming job thus satisfies

(m− 1)q
¯
≤ s̄

⇒ m ≤ s̄

q
¯

+ 1

⇒ m ≤
¹
s̄

q
¯

º
+ 1, (32)

where the last inequality follows from the fact that m is integer. Combining (32) with the

last remark of the previous paragraph, we have therefore proven that the maximum number

n of jobs accepted but not yet completed in environment J does exist, and is smaller than¥
s̄/q
¯

¦
+ 2.

A.5. Proof of Theorem 2. We first need some intermediary results. In the following,
we use the notation WM1 ≤ WM2 when M1 and M2 are two machine states such that
WM1(t) ≤WM2(t) for all t. Also, ifM is a machine state and S ∈ S[M] is a feasible schedule
ofM, we noteM[S, τ] the machine state obtained after schedule S works on the jobs inM
for τ units of time. Finally, if j = (qj, sj) is an admissible job forM = {(x1, c1), ..., (xn, cn)},
we noteM∪ j = {(x1, c1), ..., (xn, cn), (qj, sj)} the machine state obtained when j is accepted.

Lemma 1 LetM = {(x1, c1), ..., (xn, cn)} be a machine state and j = (qj, sj) an admissible
job. Then WM ≤WM∪j.

Proof. From Proposition 8WM =W
Σ(M)
M andWM∪j =W

Σ(M∪j)
M∪j , whereΣ(M) andΣ(M∪j)

are the maximum-idling earliest due-date schedules forM andM ∪ j. Let:

• (bk, ek) the beginning and end times for work on job k ∈ {1, ..., n} in the construction of
Σ(M); and

• (b0k, e0k) the beginning and end times for work on job k ∈ {1, ..., n}∪{j} in the construction
of Σ(M ∪ j).
Assume (with no loss of generality) that all jobs k ∈ {1, ..., n} with the same deadline as j

(i.e. xk+ ck = qj + sj) are given lower index numbers than for job j in the construction (23)

of Σ(M ∪ j), but the relative order of jobs k ∈ {1, ..., n} in the construction of Σ(M ∪ j) is
the same as that in the construction of Σ(M) otherwise. It follows then from the recursion

44

(23) that b0k ≤ bk and e0k ≤ ek for all k ∈ {1, ..., n}, implying for all τ ≥ 0:

WM(τ) = W
Σ(M)
M (τ)

=
nX

k=1

Z τ

0

Σk(M)(τ)dτ

=
nX

k=1

Z τ

0

1[bk,ek](τ)dτ

≤
nX

k=1

Z τ

0

1[b0k,e0k](τ)dτ

≤
nX

k=1

Z τ

0

1[b0k,e0k](τ)dτ +
Z τ

0

1[b0j ,e0j](τ)dτ

= WM∪j(τ),

which concludes the proof.

Lemma 2 Let M1 and M2 be two feasible machine states such that WM1 ≤ WM2, and j
= (qj, sj) an admissible job in both states. Then WM1∪j ≤WM2∪j.

Proof. In the construction (23), note that schedule Σ will work continuously on a set

of jobs {k, k + 1, ..., k + m} ⊂ {1, ..., n} with contiguous indices when ei = bi+1 for all

i ∈ {k, k + 1, ..., k +m − 1}. We define the periods [bk, ek+m] corresponding to the largest
possible such sets of indices as the busy periods of schedule Σ.

Let now (Bj, Ej) be the beginning and end times of the busy period containing job j in

schedule Σ(M1∪ j); note that because j is assumed to be admissible necessarily sj+qj ≤ Ej.

Also, it follows from the construction of Σ in (23) that the beginning and end times of jobs

in schedule Σ(M1 ∪ j) that do not belong to [Bj, Ej] are the same as the beginning and end

times for those same jobs in schedule Σ(M1). From Proposition 8 this implies:

WM1∪j(t) =WM1(t) for all t ≤ Bj. (33)

In addition, the beginning and end times of jobs k inM1 (resp. M1) with a due-date xk+ ck

strictly larger than dj = sj+qj in schedule Σ(M1∪ j) (resp. Σ(M2∪ j)) are also the same as
the beginning and end times for those same jobs in schedule Σ(M1) (resp. Σ(M2)). From

45

Proposition 8 this implies:½
WM1∪j(t) =WM1(t) + qj
WM2∪j(t) =WM2(t) + qj

for all t ≥ dj (34)

We now show that the inequalityWM1∪j(t) ≤WM2∪j(t) holds in all three intervals [0, Bj],

[Bj, dj] and [dj,+∞):

• If t ≤ Bj,

WM1∪j(t) = WM1(t)

≤ WM2(t)

≤ WM2∪j(t),

where the first equalities follows from (33), the first inequality from the Lemma statement

assumption and the second inequality from Lemma 1.

• If t ≥ dj, it follows from the Lemma assumption and (34) that

WM1(t) ≤WM2(t)

⇔ WM1(t) + qj ≤WM2(t) + qj

⇔ WM1∪j(t) ≤WM2∪j(t). (35)

• Let t ∈ [Bj, dj], since dj ≤ Ej schedule Σ(M1 ∪ j) is non-idling on [t, dj], therefore
WM1∪j(t) > WM2∪j(t) would imply

WM1∪j(dj) = WM1∪j(t) + dj − t

> WM2∪j(t) + dj − t

≥ WM2∪j(dj),

where the second inequality follows from
P

kΣk(M2 ∪ j)(τ) ≤ 1 for all τ . But this would
contradict (35) which is valid in particular for t = dj.

Lemma 3 Let M be a feasible machine state and j = (qj, sj), j0 = (qj0 , sj0) two admissible
jobs such that qj ≤ qj0 and sj ≥ sj0. Then WM∪j ≤WM∪j0.

Proof. It follows from the construction (23) that if bi (resp. b0i) is the beginning time of

work by Σ(M ∪ j) (resp. Σ(M ∪ j0)) on any job i, then b0i ≤ bi.

46

Proposition 9 Let M be a machine state, S ∈ S[M] an arbitrary feasible schedule for M
and ED∗ the non-idling earliest due-date schedule. Then the MWF for the state obtained
following ED∗ for any time τ is no larger than that obtained following S: For all τ ≥ 0,

WM[ED∗,τ] ≤WM[S,τ].

Proof. Let M ={(x1, c1), ..., (xn, cn)} with x1 + c1 = di ≤ di+1 = xi+1 + ci+1, and let ei be

the ending time of work by schedule Σ(M[ED∗, τ]) on job i as defined in recursion (23). By

contradiction, assume that there exists t > 0 such that

WM[S,τ](t) < WM[ED∗,τ](t). (36)

If t belongs to a busy period of scheduleΣ(M[ED∗, τ]), then the contradiction hypothesis (36)

still holds at the end t̄ of that busy period, since from Proposition (1) WM[ED∗,τ] −WM[S,τ]

is non-decreasing on [t, t̄]. Likewise, if t belongs to an idle period of Σ(M[ED∗, τ]) (36)

still holds at the end t
¯
of the last busy period before t (which exists since (36) implies

WM[ED∗,τ](t) > 0), because WM[ED∗,τ]−WM[S,τ] is non-increasing on [t¯
, t]. We may therefore

assume that t is the end of a busy period for schedule Σ(M[ED∗, τ], which from (23) implies

that there exists a job j ∈ {1, ..., n} with a due-date at time τ which is equal to t, or

equivalently such that t = dj − τ . Because schedule ED∗ is non-idling, this and Proposition

(8) imply

WM[ED∗,τ](t) =

jX
i=1

qi − τ . (37)

Let now τ i be the amount of time spent by schedule S on job i ∈ {1, ..., n} up until time
τ . The capacity constraint implies

Pn
i=1 τ i ≤ τ so a fortiori

Pj
i=1 τ i ≤ τ , and necessarily

WM[S,τ](t) < WM[ED∗,τ](t)

=

jX
i=1

qi − τ

≤
jX

i=1

(qi − τ i) (38)

where the first inequality is the contradiction hypothesis, the equality is given by (37) and the

last inequality follows from the preceding remark. But notice that the r.h.s.
Pj

i=1 (qi − τ i)

of (38) is the total amount of work remaining on jobs in M[S, τ] with a due-date smaller

47

than t, which from the definition (2) implies

WM[S,τ](t) ≥
jX

i=1

(qi − τ i) ,

a contradiction; the proof of Proposition 9 is complete.

The next result follows directly from Proposition 2:

Corollary 2 LetM1 andM2 be two feasible machine states such that WM1 ≤WM2. Then
the MWF for the state obtained applying ED∗ onM1 for any time τ remains no larger than
that obtained applying ED∗ on M2: For all τ ≥ 0,

WM1[ED
∗,τ] ≤WM2[ED

∗,τ].

We are now ready to state the proof of Theorem 2, which consists of showing by induction

on the number k of jobs arrived to date that, when confronted with the same sample path

of job arrivals, the MWF obtained when following policy U is always larger than or equal

to the MWF obtained when following policy U0. From Theorem 1, this implies in particular

that policy U0 is feasible, and (by construction) that it yields the exact same revenue stream

as that obtained with U.

Specifically, let tk > 0 be the time of the k-th job arrival (we define t0 = 0 for convenience)

andM(t) (resp. M0(t)) be the machine state obtained at time t ≥ 0 when following policies
U (resp. U0). By convention, we will assume that the admission of a job jk at time tk

impacts the machine state immediately after, but not at, time tk. That is,(
WM(t−k)

≡ limt→tk
t<tk

WM(t) =WM(tk)

WM(t+k)
≡ limt→tk

t>tk
WM(t) =WM(tk)∪jk

,

and if job jk is rejected at time tk then WM(t−k)
=WM(t+k)

=WM(tk).

Our induction hypothesis is that

for all k ≥ 1 and t ∈ [tk−1, tk], WM0(t) ≤WM(t). (39)

Since the first arrival is assumed to occur at t1 > 0, the base of the induction follows

from the fact that WM0(t) = WM(t) = 0 for t ∈ [0, t1]. Assume now that (39) holds up

until a given k; from Theorem 1 it is feasible for policy U to accept job jk = (qk, sk)

arriving at time tk if and only if WM(tk)(sk + qk) ≤ sk. But the induction hypothesis implies

48

WM0(tk)(sk+ qk) ≤WM(tk)(sk+ qk), therefore if it is feasible for U to accept jk then it is also

feasible for U0 to do so. In addition, Lemma 2 implies

WM0(tk)∪jk ≤WM(tk)∪jk ,

so that we have proven

WM0(t+k)
≤WM(t+k)

(40)

when job jk is accepted, and inequality (40) follows directly from (39) when jk is rejected.

For all t ∈ (tk, tk+1] we can thus write

WM0(t) = WM0(t+k)[ED
∗,t−tk]

≤ WM(t+k)[ED
∗,t−tk]

≤ WM(t+k)[S,t−tk]

= WM(t),

where the first equality follows from the definition of U0, the first inequality from (40)

and Corollary 2, the second inequality from Proposition 9, and the last equality from the

definition of U; the proof of Theorem 2 is complete.

A.6. Proof of Theorem 3. Theorem 3 is proven by specializing the assumptions

of Theorem 2 to the particular case U = (ED∗, a) and U0 = (ED∗, a0), and adapting its

proof to show that WM0(τ) = WM(τ) for all τ ≥ t. Specifically, define now tk as the time of

the k-th arrival after time t, and let t0 = t. The arguments for the base of the induction

and for the general induction step are now identical: Applying Lemma 2 twice for the two

inequalities WM0(tk) ≤ WM(tk) and WM(tk) ≤ WM0(tk) shows that WM0(tk) = WM(tk) implies

WM0(tk)∪jk =WM(tk)∪jk or

WM0(t+k)
=WM(t+k)

. (41)

49

Furthermore for u ≥ 0 and τ ∈ (tk, tk+1],

WM0(τ)(u) = WM0(t+k)[ED
∗,τ−tk](u)

= [WM0(t+k)
(u+ τ − tk)− τ + tk]

+

= [WM(t+k)
(u+ τ − tk)− τ + tk]

+

= WM(t+k)[ED
∗,τ−tk](u)

= WM(τ)(u),

where the first and last equalities are tautological, the second and fourth equalities follow

from Proposition 2, and the third equality from (41) or, for the base of the induction, from

the Theorem statement hypothesis that WM0(t) = WM(t); the proof of Theorem 3 is now

complete.

A.7. Proof of Theorem 4. Our proof consists of showing that Assumptions 3

and 4 of Theorem 2 in Ritt and Sennott (1992) hold (its Assumptions 1 and 2 are obviously

satisfied in the present setting), and show that a slightly stronger version of their result

applies to our specific model. For any feasible control policy a = (ak(·))k≥0, state X ∈ X
and discount factor α ∈ (0, 1) define

Vα(a,X) ≡ lim
N→+∞

E

"
NX
k=0

αkak(Xk)rjk

¯̄̄̄
¯X0 = X

#
(42)

and

Vα(X) ≡ sup
a

Vα(a,X), (43)

where the sup in (43) is taken over all feasible control policies. Note that these two functions

are well-defined since the term under the expectation operator in (42) is bounded from above

by r̄/(1− α) with r̄ ≡ maxj∈J rj. Besides, Theorem 1 in Ritt and Sennott (1992) imply the

existence of an α-discount optimal policy, that is a policy achieving the supremum in (43)

for all X. That the abovementioned Assumptions 3 and 4 are satisfied now directly follows

from the inequality

|Vα(X0)− Vα(X)| ≤
r̄

exp(−2λd̄) for all (X
0,X) ∈ X, (44)

where d̄ ≡ maxj∈J (sj + qj). We now prove (44): consider an α-discount optimal control

policy a∗ = (a∗k(·))k≥0 applied to two systems Γ and Γ0 starting from initial states X0 = X

50

and X0
0 = X0 respectively, but faced with the same job arrival stream thereafter (i.e. for

k ≥ 1). Define random variable T ≥ 0 as the smallest index such that W 0
T = WT = 0; note

that the time between two consecutive job arrivals is exponential with mean λ−1 thus

P (T = k|T ≥ k) ≥ e−λd̄ for k ≥ 0,

therefore

P (T ≥ k) ≤ (1− e−λd̄)k. (45)

Also, the respective states X0
k and Xk and discounted profit streams in systems Γ and Γ0 are

identical for k ≥ T . Thus

|Vα(X0)− Vα(X)| = |Vα(a∗,X0)− Vα(a
∗,X)|

= |a∗0(X0)rj0o − a∗0(X)rjo

+
X
k≥2

P (T = k)E

"
k−1X
t=1

αtrjt(a
∗
t (X

0
t)− a∗t (Xt))

¯̄̄̄
¯T = k

#
|

≤ r̄ +
X
k≥2

P (T = k)(k − 1)r̄

≤ r̄
X
k≥0

P (T ≥ k)(k + 1)

≤ r̄
X
k≥0
(1− e−λd̄)k(k + 1)

≤ r̄

exp(−2λd̄) ,

where the penultimate inequality follows from (45); this completes the proof of (44) and

achieves to show that Theorem 2 in Ritt and Sennott applies. In particular, they show the

existence of a sequence (αn)n≥1 in (0, 1) with limn→+∞ αn = 1 such that for any state Y, the

constructs ⎧⎨⎩ h(X) ≡ lim sup
n→+∞

(Vαn(X)− Vαn(Y))

C∗ ≡ lim
n→+∞

(1− αn)Vαn(Y)
(46)

satisfy

C∗ + h(X) ≤ max
a∈A[X]

µ
arj +

Z
h(Y)P (dY|X, a)

¶
. (47)

Besides, the stationary policy obtained by maximizing the r.h.s. is optimal with expected

average long-run profit equal to C∗. Finally, it turns out that (45) is actually stronger than

Assumptions 3 and 4, so that where Ritt and Sennott apply Fatou’s lemma in their proof

51

of Theorem 2 we can apply instead the dominated convergence theorem, which allows to

replace the inequality sign in (47) with an equality.

A.8. Proof of Proposition 4. Let α ∈ (0, 1) and aα be an α-discount optimal policy.
Starting with initial state X0 = X, define policy aX through aX(Xk) = aα(X0

k) for k ≥ 0,
where X0

k is the state that would have been obtained by following policy a
α when faced with

the exact same job arrival stream to date, but starting instead from initial state X0
0 = X

0.

From Lemma 2, Lemma 3 and Corollary 2 Wk ≤ W 0
k for all k ≥ 0, so from Theorem 1 the

feasibility of policy aα implies that of policy aX. In addition the revenue obtained with aX

from the first job j when starting from X is larger than that of aα from j0 starting from X0

since rj ≥ rj0, and for every arrival stream the discounted revenue streams of aX and aα are

identical herafter, therefore

Vα(aX,X) ≥ Vα(a
α,X0) ≡ Vα(X

0).

So Vα(aX,X) ≤ Vα(X) implies

Vα(X
0) ≤ Vα(X), (48)

and it follows from (48) that for any state Y

Vα(X
0)− Vα(Y) ≤ Vα(X)− Vα(Y),

which from (46) implies h(X0) ≤ h(X), completing the proof.

A.9. Proof of Proposition 5. From the Bellman equation (8) and the state

dynamics (5), the optimal stationary policy a = (a(·))k≥0 defined in Theorem 4 accepts a

feasible job j while in state X = (W, j) ∈ X if and only if

rj >
X
ω∈J

λω
λ

Z +∞

0

[h(W [τ], ω)− h(W ∪ j[τ], ω)]λe−λτdτ

=
X
ω∈J

λω
λ

Z d̄

0

[h(W [τ], ω)− h(W ∪ j[τ], ω)]λe−λτdτ , (49)

where the equality follows from the remark that τ ≥ d̄ implies W [τ] =W ∪ j[τ] = 0 for any
W . But from (44) and (46) the differential value function satisfies for all X ∈ X

|h(X)| ≤ r̄

exp(−2λd̄)

52

so that the r.h.s of (49) can be bounded from above by

X
ω∈J

λω
λ

Z d̄

0

2r̄

exp(−2λd̄)λe
−λτdτ =

2r̄(1− exp(−λd̄))
exp(−2λd̄) . (50)

It follows therefore from (49) and (50) that a will be myopic if

r
¯
>
2r̄(1− exp(−λd̄))
exp(−2λd̄)

⇐⇒ exp(−λd̄) > −r̄ +
p
r̄2 + 2r̄r

¯
r
¯

,

where the equivalence stated follows from solving the previous quadratic inequality in exp(−λd̄),
which completes the proof.

A.10. Proof of Proposition 6. Let a = (ak(·))k≥1 be an optimal policy, and define
random variable Qj

n(a) as the total amount of work from class j accepted by a during the

first n arrivals, i.e.

Qj
n(a) ≡ qj

X
{k∈{1,...,n}:jk=j}

ak(Xk). (51)

Let now tn be the time of the n-th arrival; the feasibility of a impliesX
j∈J

Qj
n(a) ≤ tn + d̄,

so it follows from the elementary renewal theorem that

X
j∈J
lim inf
n→+∞

1

n
E[Qj

n(a)] ≤
1

λ
. (52)

For all job class j ∈ J define now

ãj ≡
λ

λjqj
lim inf
n→+∞

1

n
E[Qj

n(a)]; (53)

notice that ãj ≤ 1 since

lim inf
n→+∞

1

n
E[

Qj
n(a)

qj
] ≤ lim inf

n→+∞
1

n
E[#{k ∈ {1, ..., n} : jk = j}]

=
λj
λ
,

where the inequality follows from (51) and the equality from basic properties of Poisson

processes. In addition, substituting (53) in (52) yields

53

X
j∈J

λjqjãj ≤ 1,

so that (ãj)j∈J is a feasible solution to the problem (12) defining C̄f . Finally, observe that

the r.v. defined as

Rj
n(a) ≡

rj
qj
Qj

n(a)

represents the total profit from class j obtained by policy a during the first n job arrivals,

so that from the definition (7)

C∗ = C(a)

= lim inf
n→+∞

1

n
E[
X
j∈J

Rj
n(a)]

=
X
j∈J

rj
qj
lim inf
n→+∞

1

n
E[Qj

n(a)]

=
1

λ

X
j∈J

rjλjãj,

which implies C∗ ≤ C̄f since the r.h.s of the last equality is the objective value of (ãj)j∈J for

the optimization problem (12), and completes the proof.

A.11. Proof of Theorem 5. This proof consists of three successive problem
transformations eventually leading to the LP defining LPT (W). We describe each of these
transformations as a separate proposition:

Proposition 10 Define

GT (W) ≡ max
P

j∈J
rj
qj
bj(T + sj)

s.t.: 0 ≤ ḃj(t) ≤ λjqj (AD0)PJ
j=0 vj(t) ≤ 1 (CP)

bj(t) ≤
R t
0
vj(u)du ≤ bj(t+ sj) (DA0)

W (t) ≤
R t
0
v0(u)du (DE)

vj(t) ≥ 0 (NG)
bj(t) = 0 for t ≤ sj. (ST 0)

(54)

Then
FT (W) = GT (W).

Proof. Consider the following change of variables:

bj(t) =

½
0 if t ∈ [0, sj]
λjqj

R t−sj
0

aj(u)du if t ∈ [sj , T + sj]
. (55)

54

Note that the two objective expressions in (54) and (14) are equivalent, and that constraint

(AD0) in (54) is equivalent to constraint (FR) in (14). By integration, we see that constraint

(BE) in (14) along with the initial condition zj(0) = 0 in (MO) are equivalent to

zj(t) = bj(t+ sj)−
Z t

0

vj(u)du for all j and t ≥ 0. (56)

Substituting (56) in constraints (DA) and (MO) of (14) yields:

Z t

0

vj(u)du ≤ bj(t+ sj) ≤
Z t+sj

0

vj(u)du for all j ≥ 1 and t ≥ 0. (57)

The second inequality in (57) is equivalent to the first inequality of (DA0) in (54) because

vj(t) ≥ 0 and bj(t) = 0 for t ≤ sj, so (57) is equivalent to (DA0), which concludes the

proof.

Proposition 11 Define (τ i)i∈I as in the statement of Theorem 5 and consider

GLPT (W) ≡ max
(V j
i ,B

j
i)

PJ
j=1

rj
qj
Bj
T+sj

s.t.: 0 ≤ Bj
i+1 −Bj

i ≤ λjqj(τ i+1 − τ i) for all (i, j) (AD)PJ
j=0(V

j
i+1 − V j

i) ≤ τ i+1 − τ i for all (i, j) (CP 0)
Bj
i ≤ V j

i ≤ Bj
i+sj

for all (i, j) (DA00)
wi ≤ V 0

i for all i (DE0)
V j
i ≤ V j

i+1 for all (i, j) (NG0)
Bj
i = 0 for all i and j such that τ i ≤ sj (ST)

, (58)

where for notational simplicity Bj
i+sj
≡ Bj

i0 where i
0 ∈ I is such that τ i0 = τ i + sj — we know

that such i0 exists from the definition of (τ i)i∈I. Then

GT (W) = GLPT (W).

Proof. Let (V,B) be a feasible solution for (58), and for all j and t ∈ [τ i, τ i+1) define(
bj(t) =

τ i+1−t
τ i+1−τ iB

j
i +

t−τ i
τ i+1−τ iB

j
i+1

vj(t) =
V j
i+1−V j

i

τ i+1−τ i
. (59)

Then ḃj(t) =
Bj
i+1−Bj

i

ti+1−ti for t ∈ [τ i, τ i+1), so that constraint (AD0) of (54) is satisfied.

Bj
i ≤ V j

i and Bj
i+1 ≤ V j

i+1 from constraint (DA00) imply

55

Z t

0

vj(u)du =
i−1X
k=0

¡
V j
k+1 − V j

k

¢
+

t− τ i
τ i+1 − τ i

(V j
i+1 − V j

i)

=
τ i+1 − t

τ i+1 − τ i
V j
i +

t− τ i
τ i+1 − τ i

V j
i+1 (60)

≥ τ i+1 − t

τ i+1 − τ i
Bj
i +

t− τ i
τ i+1 − τ i

Bj
i+1

= bj(t), (61)

and using V j
i ≤ Bj

i+sj
implies likewise

R t
0
vj(u)du ≤ bj(t + sj). Constraint (CP) of (54) is

satisfied, since for t ∈ [τ i, τ i+1):

JX
j=0

vj(t) =
1

τ i+1 − τ i

JX
j=0

¡
V j
i+1 − V j

i

¢
≤ 1, (62)

where the inequality follows from constraint (CP 0) in (58). Finally,Z t

0

v0(u)du =
τ i+1 − t

τ i+1 − τ i
V 0
i +

t− τ i
τ i+1 − τ i

V 0
i+1

≥ τ i+1 − t

τ i+1 − τ i
W (τ i) +

t− τ i
τ i+1 − τ i

W (τ i+1) (63)

= W (t), (64)

where the first equality follows from the definition of v0(t), the inequality follows from con-

straint (DE0) in (58), and the second equality from the fact that W is linear on [τ i, τ i+1) by

construction of (τ i)i∈I. The last two constraints of (54) being obviously satisfied, we have

thus proven that (b, v) is feasible for (54), which implies GT (W) ≥ GLPT (W) since (B,V)

and (b, v) have the same objective value in their respective problems.

Let now (b, v) be a feasible solution for (54), and for all (i, j) define

½
Bj
i = bj(τ i)

V j
i =

R τ i
0
vj(u)du

. (65)

Constraint (AD0) in (54) implies 0 ≤ bj(τ i+1)−bj(τ i)
τ i+1−τ i ≤ λjqj for all (i, j), so that B satisfies

the first constraint (AD) in (58). Constraint (DA0) in (54) applied for t = τ i implies that

(B, V) satisfies constraint (DA00) in (58). Constraint (CP) implies
R τ i+1
τ i

PJ
j=0 vj(u)du ≤

56

τ i+1 − τ i, which in turn implies constraint (CP 0) in (58). Finally, constraint (DE) of (54)

applied for t = ti directly implies constraint (DE0). We have shown that (B,V) is feasible

for problem (58) and therefore GLPT (W) ≥ GT (W), which concludes the proof.

Proposition 12
GLPT (W) = LPT (W).

Proof. Consider the increment variables bji = Bj
i − Bj

i−1 and vji = V j
i − V j

i−1. The LPs

defining GLPT (W) and LPT (W) can be formulated instead as:

LPT (W) = max
(bji)

PJ
j=1

rj
qj

PT+sj
i=1 bji

s.t.: wi +
PJ

j=1

Pi
k=1 b

j
i ≤ ti for all i

0 ≤ bji ≤ 1{τ i>sj}λjqj(τ i − τ i−1) for all (i, j)

(66)

and
GLPT (W) = max

(bji ,v
j
i)

PJ
j=1

rj
qj

PT+sj
i=1 bji

s.t.: 0 ≤ bji ≤ 1{τ i>sj}λjqj(τ i − τ i−1) for all (i, j)Pi
k=1 b

j
k ≤

Pi
k=1 v

j
k ≤

Pi+sj
k=1 b

j
k for all (i, j)PJ

j=0 v
j
i ≤ τ i − τ i−1 for all i

wi ≤
Pi

k=1 v
0
k for all i

vji ≥ 0 for all (i, j)

. (67)

Let (bji) any admission solution feasible for (66), and consider the problem of finding a

scheduling solution (vji) such that (b
j
i , v

j
i) is feasible for (67):

V LP (W) = min
(vji)

0

s.t.:
Pi

k=1 b
j
k

(gij)

≤
iP

k=1

vjk
(eij)

≤
i+sjP
k=1

bjk for all (i, j)

JP
j=0

vji
(di)

≤ τ i − τ i−1 for all i

wi

(hi)

≤
iP

k=1

v0i for all i

vji ≥ 0 for all (i, j)

. (68)

57

The dual of problem (68) is:

V LP ∗(W) = max
(gij ,eij ,di,hi)

mP
i=1

(hiwi − di(ti − ti−1)) +
nP

j=1

mP
i=1

Ã
gij

iP
k=1

bjk − eij
i+sjP
k=1

bjk

!
s.t.:

mP
k=i

hk ≤ di for all i
mP
k=i

(gkj − ekj) ≤ di for all (i, j)

di, hi, eij, gij ≥ 0 for all (i, j)
(69)

The dual LP (69) is clearly feasible (with (d, h, e, g) = 0 as a solution) so according to duality

theory, if by contradiction (68) were infeasible then (69) would necessarily be unbounded.

This would imply the existence of an homogeneous solution with positive objective value,

that is
mP
k=i

hk = di for all i
mP
k=i

(gkj − ekj) = di for all (i, j)

di, hi, eij, gij ≥ 0 for all (i, j)

(70)

and

mP
i=1

(hiwi − di(τ i − τ i−1)) +
JP

j=1

mP
i=1

Ã
gij

iP
k=1

bjk − eij
i+sjP
k=1

bjk

!
> 0 . (71)

The two equalities in (70) imply hi = gij − eij, so that the left-hand side of (71) would be

equal to:

mX
i=1

Ã
hiwi −

mX
k=i

hk(τ i − τ i−1)

!
+

JX
j=1

mX
i=1

Ã
(gij − eij)

iX
k=1

bjk − eij

i+sjX
k=i+1

bjk

!

=
mX
i=1

Ã
hiwi −

mX
k=i

hk(τ i − τ i−1)

!
+

JX
j=1

mX
i=1

Ã
hi

iX
k=1

bjk − eij

i+sjX
k=i+1

bjk

!

=
mX
i=1

hi

Ã
wi − τ i +

JX
j=1

iX
k=1

bjk

!
−

JX
j=1

mX
i=1

eij

i+sjX
k=i+1

bjk.

Therefore (71) would imply

mX
i=1

hi

Ã
wi − τ i +

JX
j=1

iX
k=1

bjk

!
>

JX
j=1

mX
i=1

eij

i+sjX
k=i+1

bjk, (72)

58

but since the first constraint of (66) implies wi − τ i +
JP
j=1

iP
k=1

bjk ≤ 0 for all i, the left-

hand side of (72) is necessarily non-positive while its right-hand side is necessarily non-

negative, a contradiction. We have therefore proven that (68) is feasible, which implies that

GLPT (W) ≥ LPT (W). On the other hand, the second, third and fourth constraints in (67)

imply

wi ≤
Pi

k=1 v
0
k

≤
Pi

k=1

³
τk − τk−1 −

PJ
j=1 v

j
k

´
≤ τ i −

PJ
j=1

Pi
k=1 v

j
k

≤ τ i −
PJ

j=1

Pi
k=1 b

j
k

,

which imply the first constraint in (66), proves that LPT (W) ≥ GLPT (W), and completes

the proof.

Acknowledgment. We would like to thank the participants of the OM seminar at the

Stern School of Business (NYU), the joint OM/Marketing seminar at the Wharton School

(UPenn), the OM Seminar at the Sloan School of Management (MIT), Dr. Maher Chebbo

and the staff of SAP Inspire, and Dr. Timothy Kniker and the staff of Analytics Operations

Engineering Inc. for useful discussions and feedback. This research project was partly funded

by the Singapore-MIT alliance, J. Spencer Standish, Steve Graves, and the Doctoral Program

of the MIT Sloan School of Management. We are particularly grateful to Steve Graves for

both financial support and insightful remarks about this project.

References

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control, Volume 1. Belmont,

MA: Athena Scientific.

Bertsekas, D. P. and J. N. Tsitsiklis (1996). Neuro-Dynamic Programming. Belmont, Massa-

chusetts: Athena Scientific.

Dertouzos, M. L. (1974). Control robotics: The procedural control of physical processes. In

Proceedings of the IFIP Congress, pp. 807—813.

Duenyas, I. (1995). Single facility due date setting with multiple customer classes. Manage-

ment Science 41 (4), 608—619.

59

Goldman, S. A., J. Parwatikar, and S. Suri (2000). On-line scheduling with hard deadlines.

Journal of Algorithms 34 (2), 370—389.

Goldwasser, M. H. (2003). Patience is a virtue: The effect of slack on competitiveness for

admission control. Journal of Scheduling.

Kapuscinski, R. and S. Tayur (2003). Reliable due date setting in a capacitated MTO system

with two customer classes. Technical report, University of Michigan.

Koren, G. and D. Shasha (1995). Dover: An optimal on-line scheduling algorithm for over-

loaded uniprocessor real-time systems. SIAM Journal on Computing 24 (2), 318—339.

Lawler, E. L. (1990). A dynamic programming algorithm for preemptive scheduling of a

single machine to minimize the number of late jobs. Annals of Operations Research 26,

125—133.

Locke, C. D. (1986). Best-effort decision making for real-time scheduling. Technical report,

Carnegie Mellon University.

Maglaras, C. (2003). Revenue management for a multi-class single-server queue. Technical

report, Columbia University.

Mieghem, J. V. (1995). Dynamic scheduling with convex delay costs: The generalized c-mu

rule. Annals of Applied Probability 5, 809—833.

Plambeck, E. L. (2004). Optimal leadtime differentiation via diffusion approximations. Op-

erations Research 52 (2), 213—228.

Plambeck, E. L., S. Kumar, and M. J. Harrison (2001). Multiclass queue in heavy traffic

with throughput time constraints: Asymptotically optimal dynamic controls. Queueing

Systems 39, 23—54.

Ritt, R. K. and L. I. Sennott (1992). Optimal stationary policies in general state space

markov decision chains with finite action sets. Mathematics of Operations Research 17 (4),

901—909.

Talluri, K. T. and G. J. V. Ryzin (2004). The Theory and Practice of Revenue Management.

Kluwer Academic Publishers.

60

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

