
Online Appendix to:
To Wave Or Not To Wave? Order Release Policies for

Warehouses with an Automated Sorter

.

September 25, 2009

A.1. Detailed Process Description

We first provide a detailed description of the specific process in which most of our field

observations have been performed, which is typical of the generic process type described in

section §1 of the paper. Figure A.1 provides a schematic layout representation.

Figure A.1: Flow Diagram of the Pick-to-Ship Process in an Online Retailing Warehouse.

This process is used by an online retailer shipping directly to customers from its ware-

houses, so that a first key feature is the use of split-case picking and sorting, i.e., the entities

being picked and circulating through the process are individuals items, as opposed to cases.

Also, the very large selection of items included in that firm’s offering (a marketing advantage

often leveraged by online retailers, who are not limited by the page and shelf space restric-

tions of mail order catalogs and physical stores, respectively) results in a relatively large

1

picking area and long item travel times to the sorter. As in many other large warehouses,

the picking area is subdivided into several zones, each having its dedicated team of pickers.

These workers carry portable digital 2-way wireless communication devices with a bar code

scanner and an LCD screen showing the nature and location of items to be picked. Picking

an item involves scanning its bar-code and placing it into a plastic tote carried by an in-

dividual rolling cart. Totes are offloaded when full onto a conveyor belt spreading through

their pick zone, which relieves the pickers from unloading travel, as described in Owyong

and Yih (2006). Conveyor belts carrying totes coming out of all the pick zones lead after a

merge point to a recirculating buffer where selected totes may be temporarily held for the

purpose of reducing the accumulation time of orders in sorter chutes (as in Le-Duc and de

Koster 2005), or time between the arrivals of the first and last item of each order in a chute

(chute-dwell time). The induction stations have automated coordinated induction belts and

were designed using realistic throughput models of the type described in Johnson and Meller

(2002), resulting in relatively high capacity and low labor costs. In this setting, packers thus

constitute the second largest labor category of the outbound process after pickers. They are

tasked with putting the items from any completed chute into a cardboard box of appropriate

size and place it onto a conveyor leading to automated stuffing and labeling stations. Their

work is guided by a light system signaling every chute as complete (green), incomplete (or-

ange), or unassigned (no light). Finally, we point out that our partner’s warehouses use a

sophisticated data collection system involving bar-code scanners carried by pickers and pack-

ers and also placed in many locations in the conveyor system, induction stations and sorter

chutes. This system generates a database of detailed flow timing information for individual

orders which provided many insights about the actual behavior of this process, as discussed

in the next section.

A.2. Flow Data Analysis

The database of order flow event timing mentioned in the previous section enables a quanti-

tative empirical analysis of warehouse dynamics, and ultimately provided us with the distrib-

utional input data required by the quantitative models and simulation experiments discussed

in sections §4-6 of the paper. A first quantity of interest that we analyzed is the empirical

distribution of transit time, or time necessary for a given item to travel from the pick zone

where it is collected to its assigned chute in the sorter. As an illustration, Figure A.2 shows

2

the empirical p.d.f. of transit times for items picked from a given picking zone over a 24

hour period during the peak of the 2003 season, which constitutes a representative example

of the many other such distributions we have constructed.

0

0.2

0.4

0.6

0.8

1

1.2

1.4
0

:0
0

0
:0

9

0
:1

8

0
:2

7

0
:3

6

0
:4

5

0
:5

4

1
:0

3

1
:1

2

1
:2

1

1
:3

0

1
:3

9

1
:4

8

1
:5

7

E
m

pi
ric

al
 D

en
si

ty

Transit Time
(relative time units)

1 2 3 4 5 6 7 8 9 10 11 12

Figure A.2: Empirical Density of Transit Times from the Same Picking Zone Over 24 Hours

Note that the relative time units used for the x-axis in Figure A.2 to disguise some con-

fidential information show a variation from 1 to 12 of the item transit times, which was

typical across all picking zones over that time period. Another typical feature is that the

distribution shown in Figure A.2 is multi-modal, suggesting the superposition of several het-

erogeneous behavioral modes. We hypothesized that this was primarily driven by conveyor

congestion, and that the overall behavior or the pick-to-ship process could be characterized

fairly accurately using a limited number of congestion levels, each corresponding to a range

of values for the total number of items on the conveyor system between the picking area and

the sorter. To verify that hypothesis, we constructed and plotted the data series representing

the number of items on the entire conveyor system over time during the same 24h period,

and we defined a limited number of congestion levels based on the amount of data available

(indexed as in the paper as g ∈ {1, ..., ḡ}). Figure A.3 illustrates this process on a dataset
which led us to define 7 congestion levels.

3

0

2000

4000

6000

8000

10000

12000

14000

16000

0:
00

1:
35

3:
10

4:
45

6:
20

7:
55

9:
30

11
:0

5

12
:4

0

14
:1

5

15
:5

0

17
:2

5

19
:0

0

20
:3

5

22
:1

0

23
:4

5

Time of Day

C
on

ge
st

io
n:

 N
um

be
r o

f I
te

m
s

on

C
on

ve
yo

r S
ys

te
m

congestion
level 7
level 6
level 5

level 4
level 3
level 2
level 1

Figure A.3: Number of Items on Conveyor System Over 24 Hours

The next step is to construct the empirical item transit time distributions for each con-

gestion level separately. That is, instead of considering all the items picked from a given

picking zone over 24 hours as before, we only consider the items that were picked during the

times when the system was in a given congestion level. Figure A.4 shows two such transit

time distributions for the same conveyor zone as Figure A.2, and corresponding to congestion

levels g = 2 and 6 respectively. They also show the Gumbel (or CMT1) distributions with

the same first two moments as the empirical distributions just defined.

These figures illustrate the following features, which we found typical of all other picking

zones and congestion levels:

• These empirical transit time distributions seem (mostly) unimodal, seemingly validating

at a qualitative level the hypothesis formulated earlier that the heterogeneous behaviors

of transit times when observed over long periods of time can be satisfactorily explained

by the variations of the system congestion level. Observe that the modes of the distrib-

utions represented in Figures A.4 (a) and (b) correspond exactly to the peaks observed

on the distribution represented in Figure A.2 around the relative time values 2 and 4.5

respectively.

• The empirical transit time distributions seem to be very well fitted by CMT1 distribu-

4

E
m

pi
ric

al
 F

re
qu

en
cy

or
 P

ro
ba

bi
lit

y
D

en
si

ty

(a) Transit Time for
Congestion Level 2

Empirical Frequency

Fitted CMT1 Density

(b) Transit Time for
Congestion Level 6

1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 111

Figure A.4: Empirical Frequency and Fitted CMT1 Density for Transit Times from a Con-
veyor Zone Over 24 Hours for Congestion Levels g = 2 and g = 6

tions. It has already been observed (Gallien and Wein 2001) that CMT1 distributions

are suitable for modeling transportation times, as their sharp left tail represents typical

physical limitations of the transportation means (in the present setting, the conveyor belt

speed), while their heavier right tail accounts for all the potential problems encountered

along the way (here, congestion at the merge points and delays at the circulation buffer

for example).

Besides its predictive validity, the notion of congestion levels just defined also generated

interesting new insights about the behavior of the pick-to-ship process, as shown by examin-

ing the dependence of the empirical time-to-chute and chute-dwell time distributions on the

congestion levels g ∈ {1, ..., ḡ}. As illustrated by Figure A.5 (a representative example con-
structed with 5 congestion levels), the mean time-to-chute E[A(g)] follows an unsurprising

overall increasing trend with g, however the mean chute-dwell time E[B(g)] exhibits a notice-

able drop at an intermediary congestion level, and increases beyond that. This phenomenon

(which we consistently observed on several disjoint data sets and with various congestion level

definitions) can be explained by the circulating buffer (see §A.1). Specifically, this buffer in-

cludes an active tote release logic allowing to dynamically delay the arrival of selected totes

to the sorter, with the goal of reducing chute-dwell time for the orders containing items in

those totes. The proprietary tote delaying logic implemented (which is based on a dynamic

5

Ti
m

e

1 2 3 4 51 2 3 4 5

Ti
m

e

(a) Expected Time-to-Chute EAg (b) Expected Chute-Dwell Time EBg
Congestion Level gCongestion Level g

Figure A.5: Variation of Expected Time-to-Chute E[A(g)] and Chute-Dwell Time E[B(g)]
with Congestion Level g

priority ranking of totes) does not have a large impact for low congestion levels (such as 1

and 2 on Figure A.5 (b)). For medium to high congestion levels (3 and 4 on Figure A.5 (b))

however, the circulating buffer performs its function adequately and the active control logic

implemented results in a significant reduction of the average order chute-dwell time. Finally,

this buffer does have a limited capacity, so that when congestion increases further (to 5 on

Figure A.5 (b)), it becomes full and, in order to preserve throughput, loses then its ability

to increase the sojourn time of selected totes (think of Little’s law). The role played by

this buffer also explains the slight drop of E[A(g)] observed in Figure A.5 (a) at congestion

level 4, although this is not nearly as significant. In summary, this data analysis uncovered

the existence of a non-trivial nominal operating regime (congestion level 4 in Figure A.5)

resulting from the design of this process, further motivating the development of order release

control policies able to stabilize the process around it (see section §4.6 in the paper).

A.3. Statement and Discussion of Search Algorithm.

We now describe the search algorithm that we implemented in order to compute approxi-

mations of the multiplier θ and policy λθ solving both UDP [θ] and CDP [β], as described

in section §4.5 of the paper:

6

Algorithm SEARCH[] input: Input data for problem CDP [β], numbers θ, θ̄ ≥ 0

such that θ ≤ θ∗ ≤ θ̄ with θ∗ defined as in Lemma 1 in the paper.

output: A number θ and policy λθ that is near optimal for CDP [β].

1. Set k = 1, θk = θ, θ
k
= θ̄;

2. Set θk = θk+θ
k

2
; compute an optimal solution λθk to UDP [θk], and cθ

k
(x, y, z);

3. If cθ
k
(x, y, z) > β set θk+1 = θk and θ

k+1
= θ

k
; otherwise set θk+1 = θk and

θ
k+1

= θk;

4. If (θ
k+1−θk+1) < , stop, set θf = θ

k+1
, compute an optimal solution λf to UDP [θf],

and return (θf ,λf); otherwise set k = k + 1 and go to step 2.

We initialized that algorithm by setting θ to 0 and θ̄ to the first value of a geometric

sequence (θk)k∈N such that cθ
k
(x, y, z) > β. Note that, as described in the paper, we only

compute approximate solutions to the unconstrained DPs UDP [θk] stated in the algorithm

definition. While we were not able to develop a theoretical characterization of the conver-

gence properties of SEARCH[], the following Lemma provides an a posteriori bound for the

suboptimality of any policy to which it converges:

Lemma 1 Let (x, y, z) be the initial system state, let (λ, θ) be the output of algorithm
SEARCH[], and let λ∗ an optimal policy for CDP [β]. Then cλ(x, y, z) ≤ β, i.e. λ is
feasible for CDP [β], and

rλ∗(x, y, z)− θ(β − cλ(x, y, z)) ≤ rλ(x, y, z) ≤ rλ∗(x, y, z). (A.1)

Proof: Let (θ∗, λ∗) be as defined in the statement of Lemma 2 in the paper, and let

(θ, λ) be the algorithm output. Because θ > θ∗, from Lemma 3 in the paper we have

rλ(x, y, z) ≤ rλ∗(x, y, z) and cλ(x, y, z) ≤ cλ∗(x, y, z) = β, hence λ is feasible. Furthermore,

since the policy λ∗ is suboptimal for UDP [θ],

rλ∗(x, y, z)− θ.cλ∗(x, y, z) ≤ rλ(x, y, z)− θ.cλ(x, y, z).

Substitution yields (A.1), completing the proof.

The intuitive interpretation for the suboptimality gap θ(β−cλ(x, y, z)) appearing in (A.1)
is that suboptimality increases when the final policy λ does not use all the allowed risk

7

provided by the model formulation, and this effect is all the more sensitive as the penalty for

violating the constraint is high. That gap however can indeed only be evaluated a posteriori,

since neither the final value of θ nor the difference β− cλ(x, y, z) are known in advance. The

missing link in this characterization of convergence properties is a relationship showing that

(and how) θ(β − cλ(x, y, z)) decreases as goes to zero, which we have unfortunately not

been able to establish theoretically. In practice however, the final value of θ(β − cλ(x, y, z))

obtained for our choice of was always less than 2% (and in most cases, less than 1%)

of rλ∗(x, y, z). This is not surprising because from Lemma 1 in the paper, there exists an

optimal policy for CDP [β] which only randomizes between two actions in one state; given the

very high number of states, randomization in a single one has little impact, and deterministic

policies can match the desired risk value for all practical purposes.

A.4. Description of Approximate DP Algorithm.

We now describe the algorithm that we have implemented in order to solve approximately

each instance of the dynamic program UDP [θ] described in section §4.4 of the paper and

the previous section of this Appendix1; additional background on the corresponding approxi-

mate dynamic programming methods and concepts may be found in Bertsekas and Tsitsiklis

(1996).

Our first approximation consists of discretizing the state and control spaces. Specifically,

we consider increasing finite sequences x̂ = {x̂i}mi=0, ŷ = {ŷj}mj=0, ẑ = {ẑk}mk=0, λ̂ = {λ̂i}i=0
and the projection P : N3 → x̂× ŷ× ẑ defined such that P(x, y, z) minimizes within x̂×
ŷ× ẑ the rectangular distance to state (x, y, z) ∈ N3. The control space λ̂ is obtained by a
regular discretization λ̂i , iλ̄/ , but our state space discretization is denser around the states

that are more likely to be visited often. That is, x̂, ŷ and ẑ are constructed such that the

simulated steady state occupancy measure P(P−1(x̂i, ŷj, ẑk)) under the best constant solution
to the optimization problem CDP [β] defined in the paper is approximately constant over

(i, j, k), subject to a maximum value constraint for the discretization step sizes x̂i+1 − x̂i,

ŷj+1 − ŷj and ẑk+1 − ẑk.

Secondly, we implement a policy iteration algorithm relying on an approximate Robbins-

Monro stochastic approximation scheme for the evaluation step, andMonte-Carlo simulations

1 For notational simplicity, we omit any dependence on θ of the functions and variables mentioned
in this subsection.

8

for the improvement step. Starting with a policy λq : x̂× ŷ× ẑ→ λ̂ and initial value function

estimates j0q , r
0
q and c

0
q defined over x̂× ŷ× ẑ, the evaluation step implements the recursion⎧⎨⎩ rs+1q (x̂, ŷ, ẑ) = (1− γs)r

s
q(x̂, ŷ, ẑ) + γs

£
λq(x̂, ŷ, ẑ) + α.rsq(P(x0, y0, z0))

¤
cs+1q (x̂, ŷ, ẑ) = (1− γs)c

s
q(x̂, ŷ, ẑ) + γs

£
1{ŷ+ẑ>n} + α.csq(P(x0, y0, z0))

¤
js+1q (x̂, ŷ, ẑ) = rs+1q (x̂, ŷ, ẑ)− θ.cs+1q (x̂, ŷ, ẑ),

(A.2)

for all (x̂, ŷ, ẑ) ∈ x̂× ŷ× ẑ, where γs , a
b+s

is a diminishing step function (a and b are

constant), and (x0, y0, z0) denote a simulated realization under system (4) in the paper of

variables (Xt+1, Yt+1, Zt+1) given (Xt, Yt, Zt) = (x̂, ŷ, ẑ) and λt = λq(x̂, ŷ, ẑ). Termination for

recursion (A.2) is triggered by either s+ 1 = neval or

sup
(x̂,ŷ,ẑ)

|js+1(x̂, ŷ, ẑ)− js(x̂, ŷ, ẑ)| ≤ 1,

where neval is a specified maximum number of policy evaluation steps and 1 > 0 is a specificed

accuracy parameter. At that point, js+1q is considered an estimate for the value function jq

of policy λq. The ensuing policy improvement step consists of computing

λq+1(x̂, ŷ, ẑ) = argmax
λ∈λ̂

Ã
λ− θ.1{ŷ+ẑ>n} + α

1

nmc

nmcX
ω=1

jq(P(x0ω, y0ω, z0ω))
!

(A.3)

for all (x̂, ŷ, ẑ) ∈ x̂× ŷ× ẑ, where (x0ω, y0ω, z0ω)uω=1 are nmc simulated realizations under system
(1) in the paper of variables (Xt+1, Yt+1, Zt+1) given (Xt, Yt, Zt) = (x̂, ŷ, ẑ) and λt = λ. The

evaluation step (A.2) applied to policy λq+1 provides then an estimate for its value function

jq+1. At that point the main recursion loop just described is repeated (and the algorithm

proceeds to another policy improvement step), unless q + 1 = nimprov or

sup
(x̂,ŷ,ẑ)

|jq+1(x̂, ŷ, ẑ)− jq(x̂, ŷ, ẑ)| ≤ 2, (A.4)

where nimprov is a specified maximum number of policy improvement steps and 2 > 0 is a

specificed accuracy parameter.

The computational time of the algorithm just described is primarily driven by the number

of simulations of system (1) in the paper that it performs, which is bounded from above by

nimprov.m
3(nmc + neval).

In our numerical experiments, we have found that with about 22, 000 states (m3) and 100

control values (), the maximum number of improvement steps nimprov, evaluation steps neval

9

and Monte-Carlo estimations nmc could be chosen so that the final value of the l.h.s of

(A.4), also known as the Bellman error, was no larger than 2% of the average value function

upon algorithm termination. This required a computational time of about 30 minutes on

a modern computer. Longer computations did lower the Bellman error further, but we

observed that the resulting policy remained almost identical beyond that point. Finally,

when implementing the dichotomic search over the multiplier θ described in section §4.5 of

the paper and §A.3, we found that after solving 8 to 10 instances of UDP [θ] (or about 4 to 5

hours of computations) our suboptimality bound for the resulting policy relative to problem

CDP [β] was always below 2% (see Lemma 1).

References

Bertsekas, D. P. and J. N. Tsitsiklis (1996). Neuro-Dynamic Programming. Belmont, Massa-

chusetts: Athena Scientific.

10

