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Random Variables

Question: What does it mean

for something to be “random”?
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XKCD’s Answer:
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Random Variables

Wikipedia’s Answer: A random
variable is a function from a
probability space to a
measurable space, typically
the real numbers.
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Wikipedia’s Answer: “Let (Ω,F ,P) be a probability space and (E , E) a
measurable space. Then an (E , E)-valued random variable is a function
X : Ω→ E which is (F , E)-measurable.
“The expanded definition is following: a probability space is a triple consisting
of:

the sample space Ω — an arbitrary non-empty set,

the σ-algebra F ⊆ 2Ω (also called σ-field) — a set of subsets of Ω, called
events, such that:

I F contains the empty set: ∅ ∈ F ,
I F is closed under complements: if A ∈ F , then also (Ω \ A) ∈ F ,
I F is closed under countable unions: if Ai ∈ F for i = 1,2, . . ., then

also (
⋃

i Ai ) ∈ F

the probability measure P : F → [0,1] — a function on such that:

I P is countably additive: if {Ai} ⊆ F is a countable collection of
pairwise disjoint sets, then P(

⊔
Ai ) =

∑
P(Ai ), where ‘

⊔
’ denotes

the disjoint union,
I the measure of entire sample space is equal to one: P(Ω) = 1.”
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Random Variables

Yikes!
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Random Variables

Let’s try again.
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Random Variables

Question: What does it mean

for something to be “random”?

Answer:

Why do we care?
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Random Variables

Question: Why do we care?

Answer: We want to be able to
talk quantitatively about the
relationship between
measurements and theory.
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Random Variables

Question: What does it mean

for something to be “random”?
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Random Variables

Law of Large Numbers: The
average of a series of identical
statistically independent random
variables almost always
converges to the true mean.

lim
n→∞

P
(
|Xn − µ| > ε

)
= 0

(weak law)
P
(

lim
n→∞

Xn = µ
)
= 1 (strong

law)
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Random Variables

Question: Why is the law of

large numbers enough?

Answer:

Because everything is

a random variable!
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Binomial Distribution
Consider an event with two
outcomes.
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Binomial Distribution

P(x ;n,p) =
(

n
x

)
pxqn−x

=
n!

x !(n − x)!
pxqn−x
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Binomial Distribution

n � 10
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2 4 6 8 10
x

0.05

0.10

0.15

0.20

0.25

PHxL
PHxL � K n

x
O px H1 - pLn-x

Jason Gross (8.13) Poisson Statistics October 7, 2011 14 / 26



Poisson Distribution

Consider the limit of p � 1,
with µ = np fixed.

P(x ;µ) =
µx

x !
e−µ
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Poisson Distribution

Μ � 3
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Poisson Distribution

Question: Why do we care
about this limit?
Answer:

It’s everywhere!
(when we count statistically
independent events)
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Gaussian Distribution

Consider the limit for µ large.

P(x ;µ) =
1

µ
√

2π
e
−1

2

(
x−µ
µ

)2
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Gaussian Distribution
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Methodology
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Results
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Results
Poisson Normal

µ χ2 P-value χ2 P-value

µ ≈ 1 3.4 0.32 350 5.5 · 10−67

µ ≈ 4 6.0 0.65 84 6.8 · 10−13

µ ≈ 10 5.7 0.77 28 0.0052

µ ≈ 100 11 0.55 10. 0.59
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Thank You!

Any questions?
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