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ABSTRACT: Among the best known quantities obtainable from
photon correlation measurements are the g(m) correlation
functions. Here, we introduce a new procedure to evaluate these
correlation functions based on higher-order factorial cumulants
CF,m that integrate over the time dependence of the correlation
functions, that is, summarize the available information at different
time spans. In a systematic manner, the information content of
higher-order correlation functions as well as the distribution of
photon waiting times is taken into account. Our procedure greatly
enhances the sensitivity for probing correlations and, moreover, is
robust against a limited counting efficiency and time resolution in
experiment. It can be applied even in case g(m) is not accessible at
short time spans. We use the new evaluation scheme to analyze the
photon emission of a plasmonic cavity coupled to a single quantum dot. We derive criteria that must hold if the system can be
described by a generic Jaynes−Cummings model. A violation of the criteria can be explained by the presence of an additional excited
quantum dot state.
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Photon correlation functions are an important concept in
the analysis of quantum optical systems.1 The nature of

the emitted light can be characterized conveniently by the
second-order correlation function g(2)(t).2 Classical description
leads to g(2)(0) > 1 for chaotic or thermal sources emitting
photons in bunches.3−5 In contrast, quantum emitters as single
atoms or molecules6−12 can give rise to g(2)(0) < 1, indicating
nonclassical light in form of an antibunched photon stream.
Moreover, the value g(2)(0) can be used to verify the presence
of quantum coherence13 or to obtain the number of quantum
emitters.2,14−16

Higher-order correlation functions g(m) provide a more
precise characterization of photon statistics, which is a crucial
requirement in the development of quantum technologies17

and the engineering of single-photon emitters.18 The third-
order correlation function can be used to differentiate between
the conventional and unconventional photon blockade
effect.11,19,20 Higher-order antibunching (g(m)(0) < 0) can be
identified21−23 even though in second order the photon stream
is bunched.22−26 Universal relations between the different
correlation functions have also been found for certain system
classes.16,21

The analysis of correlation functions is typically focused on
the limit of vanishing time delay t = 0. Though, finite-time
correlations are measured as well, their interpretation is more
challenging2 and the complexity increases with each order. In
this paper, we introduce a new procedure to evaluate the

correlation functions systematically at finite times. The
procedure is based on factorial cumulants CF,m

27−30 and
addresses certain experimental and theoretical issues. First, the
evaluation is robust against a limited time resolution. Second,
the counting efficiency of the measurement apparatus does not
lead to systematic errors, that is, errors with a nonzero mean. A
small efficiency can be compensated by increasing the
measurement time and acquiring more data. Third, photon
emitters can be distinguished systematically even in case g(m) is
not accessible at short time delays. Fourth, we combine the
information from the correlation functions with the concept of
waiting times,31,32 which provides complementary statistical
insight.
The waiting-time distribution w between successive photon

emission events can be constructed from all orders of the
correlation functions g(m), but is also directly measurable in
experiment.33−35 The distribution characterizes photon bunch-
ing and antibunching in a more precise manner than the
second-order correlation function.5,36,37 Nevertheless, the
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difference between both quantities is small for times smaller
than the average waiting time. Waiting times have been used
frequently to study the statistics of electron currents in
nanoscale junctions38−50 and enzymatic reactions.32,51−56

However, they have been used seldom in the analysis of
single-photon emitters.36,37

In this paper, we follow the experimental work of Gupta et
al.66 and study the photon emission of a plasmonic cavity with
an embedded quantum dot sketched in Figure 1a. Details

regarding the experimental setup are given in Methods.
Plasmonic cavities have been investigated intensively in recent
years for their ability to be strongly coupled to quantum
emitters.20,57−66 Here, the plasmonic cavity is made of a silver
bowtie structure, and a single quantum dot is inserted in the
gap at the center of the bowtie. Such systems have been
described very successfully in literature by the well-known
Jaynes−Cummings model,67,68 where the dot is modeled as a
two-level system with a ground and excited state A. The
resulting waiting-time distribution w(t) and second-order
correlation function g(2)(t) are shown as dashed orange curves
in Figure 1.
We will discuss how to identify deviations from this generic

type of photon statistics due to the presence of a second
excited state B (see solid blue curves) strongly coupled to the

cavity. So the single quantum dot is modeled as three-level
system with a ground and two excited states (A and B).
The lifetime of state B is too short to be resolved in the

experiment, which gives rise to nonvanishing values in the
short-time limit t → 0. Such a feature is not reproducible if we
assume just a single excited state A. For weaker temporal
resolution, we obtain the experimental data depicted by black
dots. The shortest time resolved is t = 5 ns, where both the
dashed orange and the solid blue curve are almost identical. So,
one may assume that additional excited states can be neglected
in the experiment. We will demonstrate that the presence of
the additional state B can be inferred nevertheless by
accumulating the information contained in the photon
statistics at all available time spans. Thereby, we will also
elaborate on the required time resolution and find a
remarkable high critical value of 37 ns.

■ EXTENDED JAYNES−CUMMINGS MODEL
Full Description. We study a plasmonic cavity hosting a

single quantum dot. The system is described by the extended
Jaynes−Cummings Hamiltonian

H a a g a a( )
i

i i i i i iexJC c
A,B

∑ω ωσ σ σ σ= + [ + + ]†

=

+ − + † −

(1)

where we set ℏ = 1 as we do throughout this paper. A diagram
of the involved states is depicted in Figure 2a. The first term
describes a single-mode cavity where the operator a† (a)
creates (annihilates) a boson at energy ωc. The dot is modeled
as three-level system with a ground |g⟩ and two excited states
|eA/B⟩. The lowering and raising operator are g ei iσ = | ⟩⟨ |− and

e gi iσ = | ⟩⟨ |+ . Jaynes−Cummings constants gi characterize the
coupling strengths between the cavity and three-level system.
The form of the coupling term requires that the rotation wave
approximation holds.67,68 So, we assume that ωi + ωc is much
larger than all other system parameters, in contrast to ωi − ωc.
The dynamics of the system are determined by a master

equation

i H ,exJCρ ρ ρ ρ̇ = = − [ ] + (2)

The first term describes the unitary evolution of the system.
The dissipator

( )a
i

i i ii i i
A,B

g gi i i i i i∑κ γ γ γ γ= + + + +σ σ σ σ σ σ
=

̅
+ − + −

̅
+ −

(3)

accounts for incoherent dynamics. The Lindblad operator
reads x x x x ,x

1
2

ρ ρ ρ= − { }† † . Population transfer from the

exciton i = A, B to i B, A̅ = is modeled by i i i i
γ σ σ̅ ̅

+ − and most

Figure 1. Photon emission statistics of a plasmonic cavity coupled to a
single quantum dot. (a) Waiting-time distribution between consec-
utive photon counts. (b) Second-order correlation function. The
experimental signal is binned in time intervals Δt = 10 ns (black dots).
The parameters used for the simulation (solid blue and dashed orange
curves) are given in Methods.

Figure 2. Extended Jaynes−Cummings model: a single-mode cavity coupled to a quantum dot with a ground and two excited states A and B.
Incoherent transitions are depicted by solid arrows. (a) Full energy diagram. (b, c) Effective incoherent model applicable if the cavity field, the
excited state B, and coherences decay quickly. The state B is neglected in (b).
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likely due to phonon-mediated processes.69 Dephasing is taken
into account by ii i i

γ σ σ+ −. The term igγ σ+ describes incoherent

pumping. It accounts for pumping of the quantum-dot states
via another higher-energy state that is directly excited by an
incident monochromatic laser followed by dephasing. The
term aκ and ig i

γ σ− describe the intrinsic decay of an

excitation in the cavity and quantum dot, respectively.70 The
quantum yield of the two kinds of dot excitons outside the
cavity is quite different.66 So, we can assume a bright and a
dark exciton. The intrinsic decay of the latter one is most likely
due to heat emission.
Effective Description. In this paper, we concentrate on

the experimentally relevant parameter regime

t g g, , , , ,i i i i i iig g
1

A B cγ γ γ ω ω γ κ< ≲ Δ ≪ ≪̅
−

(4)

where the state B has only a weak impact on the waiting-time
distribution and the second-order correlation function for
times t > 5 ns, as illustrated in Figure 1. The photon stream is
sampled at the finite time resolution Δt. So, the dynamics
determined by gi, ωi, ωc, γii, and κ are too fast to be resolved in
real time. We can eliminate adiabatically the corresponding
degrees of freedom, which lead to effective corrections for the
slower dynamics. The details of the derivation are presented in
the Supporting Information, I. We use the stationary
condition71 to remove the fast degrees of freedom, that is,
coherent superpositions, the cavity field as well as the excited
state B (due to the strong coupling gB). We obtain an effective
incoherent kinetic rate equation for the states |0, g⟩ and |0, eA⟩,
where |0⟩ is the vacuum state of the cavity. Momentary
transient excitations lead to effective incoherent transitions
rates jiγ∼ between these states, where i is the initial and j the final

state.
If we neglect the state B completely, we obtain the dynamics

illustrated in Figure 2b. Pumping of the ground state leads to
the excited state A at rate γAg. The decay of state A at rate γgA is
enhanced by the cavity-induced correction gAγ∼* , which is well-

known as the Purcell effect.70

If we take the adiabatic corrections from state B into
account, we obtain the effective dynamics illustrated in Figure
2c. The excitation rate, the intrinsic decay, and the Purcell

enhancement change by Ag
(B)γ∼ , gA

(B)γ∼ , and gA
(B)γ∼* , respectively.

Moreover, the strong coupling gB leads to the formation of two
polaritonic states. However, once populated, the polaritons
decay immediately on time scales that can not be resolved in
the experiment. The total process of slow excitation and
immediate decay can be modeled by the single rate

,gg
(B)

Bgγ γ∼* ≈ as illustrated by the self-loop in Figure 2c. This

process persists even in the nonresonant case ωB ≠ ωc, if
g( ) ( )/( )B c

2
B
2

BB AB gBω ω γ κ γ γ− ≲ + + (see Supporting In-

formation, I).
In conclusion, the additional state B gives rise to Poissonian

photon statistics as long as the system is in its ground state.
Such a statistical feature can not be generated in the framework
of an ordinary Jaynes−Cummings model with just the single
excited state A. We will discuss in the following sections how
this contribution to the total photon emission can be identified
from the photon-counting statistics.

■ PHOTON STATISTICS
The photon-counting statistics can be characterized by
correlation functions1,2

g t t
a t a t a t a t

a t a t
( , )

( ) ( ) ( ) ( )

( ) ( )
m

m
m m

m
( )

1
1 1

1 1

··· =
⟨ ··· ··· ⟩

⟨ ⟩

† †

†
(5)

of order m, with t1 < t2 < ··· < tm. They can be calculated from
the Liovillian as explained in the Supporting Information, II.B.
The correlation functions at zero time delay are related to the
occupation number n of the cavity. A seminal expression used
frequently is2

n n g (0)m m m( ) ( )⟨ ⟩ = ⟨ ⟩ (6)

with the factorial power n(m) = n(n − 1) ··· (n − m + 1).
Correlation functions at nonzero time delay have previously
received less attention in literature. They are related to the
number N of counted photons during a time interval [0, t]. We
find for the corresponding factorial moments (Supporting
Information, II)

N t m I g t t t t( ) ( , )d dm m
t

t

t

t

t
m

m m
( )

ph
0

( )
1 1

m1 1

∫ ∫ ∫⟨ ⟩ = ! ··· ··· ···
−

(7)

The mean photon current Iph = ⟨N⟩/t = κ⟨n⟩ is related to the
cavity loss rate κ and the mean occupation number ⟨n⟩ of the
cavity mode. From a theory perspective, these moments can be

derived conveniently as derivatives N z t( , )m
z
m

z
( )

1⟨ ⟩ = ∂ | = of
a generating function72 (Supporting Information, II.A):

z t e( , ) Tr t
NESS

z ρ= [ ] (8)

The Liouvillian zz 0= + with the counting variable z
characterizes the system dynamics completely and, thereby,
distinguishes between a part increasing the photon counter

a aρ κ ρ= † and a part ( )0 = − leaving the counter
unchanged. The Liouvillian determining the time evolution of
the density matrix is recovered as 1= . The system is
subjected to constant pumping and we assume that counting
starts when the nonequilibrium steady state ρNESS has been
reached which fulfills 01 NESSρ = . For the extended Jaynes−
Cummings model depicted in Figure 2c, the effective
Liouvillian (derived in the Supporting Information, I) takes
the form

z z( 1) ( )
z

gg
(B)

Ag Ag
(B)

gA gA
(B)

gA gA
(B)

Ag Ag
(B)

gA gA
(B)

gA gA
(B)

γ γ γ γ γ γ γ

γ γ γ γ γ γ
=

− ∼* − − ∼ ∼* + ∼* + + ∼

+ ∼ −∼* − ∼* − − ∼

i

k

jjjjjjjjjj

y

{

zzzzzzzzzz
(9)

in the basis ( , )T
0,g 0,eA

ρ ρ| ⟩ | ⟩ .

The generating function defined in eq 8 can be simplified in
the limit of long time intervals t. It takes on the large deviation

form z t e( , ) z t( )max∝ λ .73 Here, λmax(z) is the eigenvalue of
the Liouvillian with the largest real part. This motivates the
definition of factorial cumulants C t z t( ) ln ( , )m z

m
zF, 1= ∂ | =

which are related to the moments via the recursive formula

C t N t
m
i

C t N t( ) ( )
1

1
( ) ( )m

m

i

m

i
m i

F,
( )

1

1

F,
( )∑= ⟨ ⟩ +

−
−

⟨ ⟩
=

−
−i

k
jjj

y
{
zzz

(10)
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and give access to the different derivatives of the dominating
eigenvalue

z
C t

t
( ) lim

( )
z
m

z
t

m
max 1

F,λ∂ | ==
→∞ (11)

This information can be used to reconstruct the characteristic
polynomial of an unknown Liouvillian, a scheme dubbed
inverse counting statistics.74,75 The Liouvillian of the extended
Jaynes−Cummings model given in eq 9 has a characteristic
polynomial of the form

z a a z a a z( , ) ( )2
01 11 00 10χ λ λ λ= + + + + (12)

with the coefficients related to the system parameters by

a11 gg
(B)γ= −∼*

(13a)

a01 Ag Ag
(B)

gA gA
(B)

gA gA
(B)γ γ γ γ γ γ= + ∼ + ∼* + ∼* + + ∼

(13b)

a ( ) ( )( )00 gA gA
(B)

gg
(B)

gA gA
(B)

Ag Ag
(B)

gg
(B)γ γ γ γ γ γ γ γ= + ∼ ∼* + ∼* + ∼* + ∼ + ∼* (13c)

Moreover, we have a10 = −a00 since the existence of a
nonequilibrium steady state demands that λ = 0 is an
eigenvalue for z = 1.
The coefficients can be obtained from measured cumulants.

We take advantage of eq 11, which allows us to express the
derivatives z z( , ( )) 0z

m
zmax 1χ λ∂ == as a function of the

coefficients and measured cumulants. The first three
derivatives form a set of linear equations that we solve for
the coefficients. As a result, we obtain

a
C C

C C C t

C

t
lim

3

(2 3 )t
11

F,2
2

F,1

F,3 F,1 F,2
2

F,1=
−

−
→∞

i

k
jjjjjj

y

{
zzzzzz (14)

and similar expressions for a01 and a00. The coefficients a01 and
a00 depend on the dynamics of both excited states A and B. In

contrast, a11 depends only on the rate gg
(B)γ∼* , which vanishes in

the absence of the excited state B. Setting the left-hand side of
eq 14 to zero, we find an asymptotic condition that must be
fulfilled for the third cumulant

C
C

C

3
F,3

F,2
2

F,1

∼ =
(15)

in the long-time limit.

Violation of this relation indicates the presence of the state
B. We have modified the symbol of the third cumulant by a
tilde C3

∼
to indicate that the expression holds in general only for

two state kinetics. We emphasize that the factorial cumulants
can be expressed by the g(m) correlation functions, as shown in
the Supporting Information, II.D; therefore, eq 15 is a relation
between the correlation functions. Moreover, the extended
James−Cummings model determined by the effective Liovil-
lian in eq 15 is a renewal system which is in its ground state
after a photon is detected. Thus, the third-order correlation
function takes the factorized form g(3)(t1, t2, t3) = g(2)(t2 − t1)
g(2)(t3 − t2), and only g(2) is required to evaluate eq 15.

■ WAITING-TIME DISTRIBUTION
A quantity providing complementary information to the
correlation functions is the waiting-time distribution
w(t).36−48 It is the probability density that two consecutive
photons are detected at the time difference t. The distribution
can be expressed as w t P t( ) ( )t

2
0τ= ⟨ ⟩∂ , where ⟨τ⟩ = 1/Iph is the

mean waiting time and P t(0, )0 = is the idle-time
probability that no photons have been counted during the
time span [0, t].76

The idle-time probability is related to the dominating
eigenvalue by λmax(0) = limt→∞[ln P0(t)]/t. Therefore, we have
an additional relation to obtain the coefficients of the
characteristic polynomial. We solve the set of linear equations

z z( , ( )) 0zmax 0χ λ == , z z( , ( )) 0z zmax 1χ λ∂ == , a n d

z z( , ( )) 0z z
2

max 1χ λ∂ == , which leads to

a
C P C P C

C P C P C t
lim

(ln ) 2 ln 2

( ln 2 ln 2 )t
11

F,2 0
2

F,1
2

0 F,1
3

F,2 0 F,1 0 F,1
2=

− −
+ +→∞

i

k
jjjjjj

y

{
zzzzzz (16)

If the state B is absent and a11 vanishes, we obtain the
condition

P
C

C

C

C
exp 1 1 20

F,1
2

F,2

F,2

F,1

∼ = − +

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjj
y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (17)

and for the waiting-time distribution

w P
P

t
ln

0
0

2

τ∼ = ⟨ ⟩∼
∼i

k
jjjjj

y

{
zzzzz

(18)

Figure 3. Testing for the presence of an additional state B using (a) the third factorial cumulant and (b) the waiting-time distribution at different
sampling times Δt. The criteria given in eqs 20 and 21 are evaluated. In the long-time limit, a positive sign in (a) and a negative sign in (b) indicate
the state B. A sampling time faster than 17 ns is required. Dots in (a) are measured in the experiment, whereas solid curves are simulations.
Continuous error bars in (b) are simulated assuming that the photon stream is recorded for 100 s with η = 1. Other parameters are given in
Methods.
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in the long-time limit. Detecting a violation of the relations in
eqs 15 and 18 is a sensitive way to identify the presence of the
state B. However, one must ensure that the violation is not
caused by measurement imperfections, which we discuss in
detail in the following sections.

■ PHOTON DETECTION
Single-photon detection is always subjected to experimental
limitations. Intensity losses lead to a finite probability η that an
emitted photon is detected. Moreover, the continuous photon
stream is sampled at a finite time resolution Δt, which leads to
a discrete time signal of t/Δt points. The original generating
function given in eq 8 must be adjusted accordingly

z t t
i

( , ) Tr (1 )
i

i

z z z
i

t t

0
1

/

NESSn∑ η η ρ= Δ
!

[ + − ]
=

∞

→

Δi

k

jjjjjjjjj

l
m
ooo
n
ooo

|
}
ooo
~
ooo

y

{

zzzzzzzzz (19)

During the sampling time Δt, a maximum of one photon can
be detected. If more photons reach the detector (counting
factor zn, with n > 1), the detector counter increases only by
one (counting factor z). In our experimental setup, emitted
photons pass a 50/50 beam splitter before being focused on
two single-photon detectors, each recording its own time trace.
So, two photons can be detected during each time interval [t −
Δt/2, t + Δt/2]. In our simulations (single-detector setup, eq
19), we set Δt → Δt/2 to allow for the detection of two
photons during these time intervals. Similarly, the numeric
values for Δt given in the following must be divided by a factor
of 2 to reproduce the results in experiment by a single-detector
setup.
Naturally, the relations given in eqs 15 and 18 do not hold

exactly due to the modified generating function. The relative
deviation from the predicted behavior of the third factorial
cumulant (eq 15) is illustrated in Figure 3a for the sampling
times Δt = 1, 10, and 16 ns. Simulations by means of eq 19 are
depicted by solid curves and experimental data by dots. The
parameters are given in the caption and the Methods section.
If we neglect state B, the relative deviations in the long-time

limit take the form

C C

C
t e

t t
1

3( 2 2)
2 ( 6)

0
t

F,3 F,3

F,3

2 2

2 2

− ∼
= − Δ ′ − ′ +

Δ ′ Δ ′ +
<

−Δ

(20)

with t t( )gA gAγ γΔ ′ = + ∼* Δ . In general, the relative deviation is

nonvanishing. However, its sign is fixed, irrespective of the

system or detector parameters. Therefore, an opposite sign
reveals that the dynamics can not be modeled just by a single
excited state. Unfortunately, the presence of the additional
state B does not guarantee a different sign (Supporting
Information, III). The sampling time Δt must be smaller than a
certain critical value, which for the parameters used in Figure 3
is about 17 ns. Otherwise, the state B can not be resolved
anymore.
The criterion given in eq 20 and the g(2)-correlation function

do not depend on the detection probability η of the emitted
photons, that is, no systematic error is introduced. Decreasing
the detection probability in the experiment leads only to more
statistical noise, which can be compensated by increasing the
measurement time and acquiring more data. In contrast, the
waiting-time distribution is much more affected by a finite
detection probability. We present simulations of the relative
deviation from eq 18 in Figure 3b. We assume that the photon
stream is recorded for 100 s, which yields the depicted
continuous error bars77 (Supporting Information, IV). In the
long time limit, the deviations take the form

w w
w

t
t C C

C

( 6)( )

3( )
0

2
Ag gA

3

gA gA
5

F,3 F,3

F,3

ηγ γ

γ γ
− ∼

= −
Δ ′ + ∼*

+ ∼*
− ∼

>

(21)

Again, a different sign indicates the presence of state B.
However, deviations decrease with η3. Thus, a small detection
probability makes it much more challenging to identify a
certain sign in case of statistical noise due to a limited amount
of data.
To surpass the time resolution limit, we suggest the

following procedure, which comes at the cost of low statistical
noise. First, the recorded discrete-time signal is downsampled
by a factor of 2 and 3. We obtain photon streams at sampling
time 2Δt and 3Δt. Then, we evaluate the relative error

C C C( )/F,3 F,3 F,3− ∼
for each stream separately. We assume that

the error caused by the finite time resolution can be expanded
in a Newton series around 2Δt. The expansion has the form
f x f t f t x t x t( ) (2 ) (2 )( 2 ) ( 2 )f t(2 )

2
2= Δ + ′ Δ − Δ + − Δ″ Δ , with f ′(2Δt)

= [f(3Δt) − f(Δt)]/(2Δt) and f″(2Δt) = [f(3Δt) − 2f(2Δt) +
f(Δt)]/Δt2. From this expansion we can approximate the result
that would be obtainable for vanishing sampling time. Finally,
the criterion in eq 20 takes the modified form

Figure 4. Testing for the presence of an additional state B using (a) the third and (b) fourth factorial cumulant while compensating for the finite
sampling time Δt during photon detection, that is, the limit Δt → 0 is approximated by a Newton series evaluating the data at Δt, 2Δt, and 3Δt.
Continuous error bars for the expressions given in eqs 22 and 24 are depicted. (a) The state B yields a positive sign for Δt < 37 ns. (b) A vanishing
value in the long time limit indicates state B for Δt < 5 ns, whereas background photons yield a nonvanishing value. We assumed that the photon
stream is recorded for 500 s in (a) and for 107s in (b) with η = 1. Other parameters are given in Methods.
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wi th f t f t f t f tlim ( ): 3 ( ) 3 (2 ) (3 )t 0
∼ Δ = Δ − Δ + ΔΔ → . The

maximal value of the error is 2/25, irrespective of the system
and detector parameters. This is a consequence of eq 20
depending only on the effective sampling time Δt′. The
criterion in eq 22 is illustrated in Figure 4a. The critical
sampling time has increased significantly to 37 ns.
Processing the waiting-time distribution in a similar manner

is not practical. The limit w w wlim ( )/t 0
∼ − ∼

Δ → scales with

( ) /( )Ag gA
3

gA gA
5ηγ γ γ γ∼* + ∼* and, thus, has no universal bound.

The scaling factor must be known if we want to identify the
presence of state B.

■ BACKGROUND PHOTONS
Measurements of photon statistics suffer from background
photons, which lead to false detector counts. The resulting
statistical features are similar to those generated by the case of
an additional state B. Especially, the second-order correlation
function is nonvanishing in the short-time limit.78 However,
higher-order correctors can be used to identify qualitative
differences.
We incorporate the background photons in our simulation

as state-independent contribution to the Liouvillian
z 1( 1)z noiseγ+ − . False counts are occurring at the rate

γnoise. Then, the characteristic polynomial given in eq 12
acquires the additional coefficient a20. If the state B is present
and the background can be neglected, the coefficient a20
vanishes and we find that the fourth factorial cumulant fulfills

C
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in the long-time limit. The details of the derivation are
presented in the Supporting Information, V. The relative
deviation from eq 18 does not have a universal sign for
arbitrary system parameters. Therefore, we have to inspect
deviations from zero which requires the measurement errors to
be negligible. The error induced by the finite detection
probability η is suppressed at least by a factor t( )4Δ . To
compensate for the leading orders in Δt, we suggest to analyze
the criterion

C C
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k
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y
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(24)

which holds in the absence of a photon background and for
small sampling times. We illustrate the criterion in Figure 4b.
The critical sampling time is 5 ns. For smaller sampling times,
the finite value reveals the presence of background noise.

■ CONCLUSIONS

We have proposed a new procedure to analyze the information
contained in the higher-order correlation functions g(m) at
nonzero time delay. By integrating out time dependences in
g(m), we obtain factorial cumulants, which give access to
features in the photon statistics beyond the generic
interpretation schemes of photon correlation functions at
zero time delay.
Instead of assuming a specific stochastic model and

comparing simulated with measured factorial cumulants, the
procedure deals with the opposite problem: if only a few
factorial cumulants are given, what can we learn about the
underlying stochastic model? As output of the procedure, we
obtain sign criteria whose violations exclude certain candidates
for the underlying model. The sign criteria are robust against a
limited counting efficiency and time resolution in experiment,
that is, information can be obtained even in case that g(m) is not
known at short times. Moreover, it can be used to evaluate the
waiting-time distribution, which is known to be an information
source complementary to correlation functions.
We have demonstrated the procedure for the photon

emission of a plasmonic cavity coupled to a quantum dot.
We have derived a criterion whose violation indicates that the
underlying model is not the ordinary Jaynes−Cummings
model. The violation can be explained by modeling the
quantum dot as three level system or by including background
photons. We have derived a criterion allowing one to
distinguishing between both cases.

■ METHODS

Experimental Setup. Silver bowtie cavities were prepared
as discussed in ref 66. In brief, bowtie cavities were made on
SiN grids using electron-beam lithography followed by electron
beam silver evaporation and liftoff. Semiconductor quantum
dots (CdSe/ZnS) were inserted into the cavities using the
capillary force method.66 Second-order correlation measure-
ments were performed using a MircoTime 200 (PicoQuant)
single-particle spectrometer with a 488 nm laser.

Model Parameters. The simulations presented in this
paper can be obtained either from the full or the effective
description introduced in Extended Jaynes−Cummings Model.
The model parameters for the full description are given in
Table 1 and guided by ref 66. We assume that population
transfer from state A to state B and vice versa is thermally
activated such that

f T1 ( , )AB B B A AB
0γ ω ω γ= [ + ℏ − ℏ ] (25)

f T( , )BA B B A AB
0γ ω ω γ= ℏ − ℏ (26)

where f B(E, T) is the Bose−Einstein distribution at temper-
ature T (we assume T = 300 K) and energy E.

Table 1. System Parameters Used for the Different Simulations

system
ℏγAg
(neV)

ℏγBg
(neV)

ℏγgA
(neV)

ℏγgB
(neV)

ℏγAB
0

(neV)
ℏ/Δt
(neV)

ℏgA
(μeV)

ℏgB
(eV)

ℏωc
(eV)

ℏωA
(eV)

ℏωB
(eV)

ℏγAA
(eV)

ℏγBB
(eV)

ℏκ
(eV)

ℏγnoise
(neV)

excited state A 5.0 32.5 40−
600

88.0 1.93 1.95 0.05 0.40

excited state A and B 5.0 1.1 32.5 100 100 40−
600

20.0 0.10 1.93 1.95 2.00 0.05 0.13 0.40

excited state A and
background

5.0 32.5 40−
600

47.0 1.93 1.95 0.05 0.40 0.5
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We obtain the parameters for the effective description from
Table 1 following the derivation shown in the Supporting

Information, I. We obtain 5.0 neVAg Ag
(B)γ γ+ ∼ = and

32.5 neVgA gA
(B)γ γ+ ∼ = . If state B and background photons

are neglected, we get 68.3 neVgAγ∼* = . Taking state B into

account yields 19.3 neVgA gA
(B)γ γ∼* + ∼* = and 1.1 neVgg

(B)γ∼* = .

If state B is neglected but significant background photons are
taken into account, see Figure 4b, we have 19.3 neVgAγ∼* =
and γnoise = 0.5 neV.
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