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ABSTRACT

Ninety years ago, Wigner derived the leading order expansion term in h2 for the tunneling rate through a symmetric barrier. His derivation
included two contributions: one came from the parabolic barrier, but a second term involved the fourth-order derivative of the potential
at the barrier top. He left us with a challenge, which is answered in this paper, to derive the same but for an asymmetric barrier. A crucial
element of the derivation is obtaining the h2 expansion term for the projection operator, which appears in the flux-side expression for the
rate. It is also reassuring that an analytical calculation of semiclassical transition state theory (TST) reproduces the anharmonic corrections to
the leading order of h2. The efficacy of the resulting expression is demonstrated for an Eckart barrier, leading to the conclusion that especially
when considering heavy atom tunneling, one should use the expansion derived in this paper, rather than the parabolic barrier approximation.
The rate expression derived here reveals how the classical TST limit is approached as a function of h and, thus, provides critical insights
to understand the validity of popular approximate theories, such as the classical Wigner, centroid molecular dynamics, and ring polymer
molecular dynamics methods.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0106649

I. INTRODUCTION

Ninety years ago, Wigner derived the leading order term in h2

for the thermal (β = 1
kBT ) transmission probability (κ) of a particle

of mass M at temperature T through a symmetric bell-shaped barrier
located at the position q = 0. His result is1 given by

κ = 1 +
h̵2β2ω2

24
(1 +

V4

4βV2
2
) +O(h̵4

), (1.1)

where Vn is the nth derivative of the potential at the barrier top and
ω is the (imaginary) barrier top frequency (V2 = −Mω2

). The first
term is well known, and it is the leading order expansion term for
the tunneling probability through a parabolic barrier, as also derived
by Wigner. The second term, which includes the leading order non-
linear term in the (symmetric) potential, is also not appreciated in
the literature.

In his 1932 paper, Wigner noted that in what at the present
time would be called the classical Wigner dynamics approximation,2
the non-linear term is missing. In other words, when computing the

rate using the correct thermal density of up to order h23 but using a
classical projection operator,4,5 one regains only the parabolic bar-
rier term. At present, any approximate thermal rate theory is con-
sidered to be valid, provided that in the high temperature limit, it
reduces to the parabolic barrier estimate. However, do these theo-
ries reduce to the correct high temperature limit? As may be inferred
from Eq. (1.1), the high temperature limit is linear in β, not quadratic
as for the parabolic barrier.

Wigner also left us with a challenge: What is the correct leading
order term in h 2 when the potential is not symmetric? The cen-
tral theme of this paper is to first of all derive the leading order
expansion term for any bell-shaped potential barrier. We will show
that the recent semiclassical theory developed in Refs. 6–9 recovers
the correct leading order term. However, all other popular approx-
imations do not; these include classical Wigner dynamics,10–12

centroid molecular dynamics,13 and ring polymer molecular dynam-
ics.14 They approach the parabolic barrier limit differently from the
correct dependence in the presence of nonlinearity.

Wigner himself after a remarkable and lengthy derivation notes
that he does not expect that the term that goes as V4 will be large
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or important. Why, then, should one go at the present time to the
considerable effort needed to rederive it and generalize it to the
asymmetric case? The definition of the words “large” or “important”
is vague and in the eyes of the beholder. At this point, suffice it to
say that the theory has been used by various researchers in recent
years to estimate rate constants, especially for heavy atom tunnel-
ing reactions15,16 (Wigner usually considered only H atom transfer),
where sometimes the parabolic barrier expression is employed.
However, aside from practical issues, we note that in the symmet-
ric case, as seen from Eq. (1.1), assuming as is usually the case that
V4 ≥ 0, the nonlinearity serves to increase the rate at high temper-
ature, while based on our semiclassical intuition and the knowl-
edge that the tunneling probability decreases exponentially with the
action of the appropriate instanton trajectory, we know that typically
nonlinearity increases the action and lowers the rate. Is the same
true in the asymmetric case? We also note that in a recent paper17

(which also motivated the present study), we showed how the lead-
ing order terms in h2 and h4 may be used to obtain an approximate
expression for the thermal rate constant even for temperatures below
the well-known crossover temperature between thermal activation
and deep tunneling.18,19 Development of a general high temper-
ature theory for tunneling in multidimensional systems is, thus,
also a challenge, whose solution has both theoretical and practical
implications.

The central ingredient that also enables the derivation for
asymmetric potentials is the formal h 2 expansion of the quantum
expression for the projection operator onto products, derived in
Ref. 4. It is combined with the h 2 expansion of the thermal den-
sity, obtained by Wigner in 1932,3 and the well-understood formula
for expressing the Wigner representation of a product of two opera-
tors in terms of the known Wigner representation of each operator
separately.20 The resulting expression is

κ = 1 +
h̵2β2ω2

24
[1 +

1
4
(

V4

βV2
2
−

V2
3

3βV3
2
)] +O(h̵4

). (1.2)

Noting that V2 ≤ 0, we see that both the leading order asymmetric
and symmetric anharmonic terms typically lead to an increase of the
transmission factor, as compared to the parabolic barrier rate.

The theory is presented in Sec. II. The demonstration that the
semiclassical theory also known as the VPT2 semiclassical transition
state theory (TST)7 has the correct leading order term is presented
in Sec. III. A brief analysis of the high temperature limits of other
approximate theories is also presented in Sec. III. In Sec. IV, we
present some numerical computations on the symmetric and asym-
metric Eckart barrier21 so as to give a perception for the magnitude
of the effect of the nonlinearity on the transmission coefficient. We
end with a discussion of the implications of the theory and further
possible generalizations.

II. DERIVATION OF THE LEADING ORDER TERM
FOR THE THERMAL TRANSMISSION PROBABILITY
A. Background

We consider a one-dimensional Hamiltonian operator

Ĥ =
p̂ 2

2M
+ V(q̂). (2.1)

The potential is assumed to have a barrier at the coordinate loca-
tion q = 0 with energy V(0) = 0, and (p̂, q̂) denote the momentum
and coordinate operators, respectively. The flux operator, which
measures the flux at the barrier top, is defined as

F̂(q̂) =
1

2M
[p̂δ(q̂) + δ(q̂)p̂], (2.2)

where δ(x) denotes the Dirac “delta” function. The transmission
coefficient is defined as the ratio of the exact quantum thermal flux
through the barrier to the classical thermal flux,22,23

κ = 2πh̵βRe(Tr[exp(−βĤ)F̂(q̂)P̂]). (2.3)

Here, the projection operator onto the product side is defined as23

P̂ = lim
t→∞[exp(

iĤt
h̵
)θ(q̂) exp(−

iĤt
h̵
)], (2.4)

and θ(q̂) is the unit step function.
The Wigner representation in phase space of an operator Ô is

defined as3

O(p, q) = ∫
∞

−∞
dξ exp(

ipξ
h̵
)⟨q −

ξ
2
∣Ô∣q +

ξ
2
⟩. (2.5)

We will use two well-known properties of Wigner representations.
One is that the Trace operation for the product of two operators
is just the phase space integration of the product of the separate
Wigner representations of the two operators,

Tr[ÂB̂] = ∫
∞

−∞
dpdq
2πh̵

A(p, q)B(p, q). (2.6)

The second is that the Wigner representation of a product of
operators

Ĉ = ÂB̂ (2.7)

may be expressed in terms of the representation of the separate
operators through the relation20,24

C(p, q) = A(p, q) exp[
ih̵
2

Λ̂]B(p, q), (2.8)

where the operator Λ̂ is defined as

Λ̂ =
⎛

⎝

←Ð
∂

∂q

Ð→
∂

∂p
−

←Ð
∂

∂p

Ð→
∂

∂q
⎞

⎠
. (2.9)

The right and left arrows denote derivatives of the functions to the
right and left of the operator, respectively. We will need to employ
Eq. (2.8) since the expression for the transmission coefficient is the
trace of a product of three operators.

B. h− 2 expansions
The exact Wigner representation of the flux operator has also

its classical form,

F(p, q) =
p
M

δ(q). (2.10)
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We will also assume formal expansions for the thermal density
operator,

Ω(p, q) ≡ exp(−βĤ)(p.q) =
∞
∑
n=0

h̵2nΩn(p, q), (2.11)

the projection operator,

P(p, q) =
∞
∑
n=0

h̵2nPn(p, q), (2.12)

and the product of the flux operator and the projection operator,

Re[(F̂P̂)(p, q)] ≡ FP
(p, q) =

∞
∑
n=0

h̵2nFP
n(p, q). (2.13)

With these notations, the expression for the transmission factor is
given by

κ = β
∞
∑
n=0

∞
∑
m=0

h̵2(n+m)
∫

∞

−∞
dpdqΩn(p, q)FP

m(p, q). (2.14)

Wigner showed in 19323 that for the density operator,

Ω0(p, q) = exp[−β(
p2

2M
+ V(q))] (2.15)

and

Ω1(p, q) = Ω0(p, q)(
1
8

V′′(q)[−
β2

M
+ (

β3p2

3M2 )] +
β3V′2(q)

24M
).

(2.16)

Using the Taylor expansion of the exponential function and the fact
that the Wigner representation of the flux operator is known exactly
[Eq. (2.10)] and is identical to the classical flux expression, we find
from Eqs. (2.8) and (2.9) that the leading order terms of the Wigner
representation of the product of the flux and projection operators
are given by

FP
0 (p, q) = F(p, q)P0(p, q), (2.17)

FP
1 (p, q) = F(p, q)P1(p, q) +

h̵2

8
(2

∂2F(p, q)
∂p∂q

∂2P0(p, q)
∂p∂q

−
∂2F(p, q)

∂q2
∂2P0(p, q)

∂p2 ). (2.18)

We also know that the zeroth order projection operator is just
the classical projection operator,

P0(p, q) = θ(−q)θ(p −
√
−2MV(q)) + θ(q)θ(p +

√
−2MV(q)).

(2.19)

The more challenging part is to write down the first order contribu-
tion P1(p, q) for the projection operator. The explicit expression has
been derived in Ref. 4 (see Eqs. 3.29 and 3.35–3.37 in Ref. 4) with the
result

P1(p,±q) = g±21(q)δ
′′
(p ±

√
−2MV(q)) + g±11(q)δ

′

× (p ±
√
−2MV(q)) + g±01(q)δ(p ±

√
−2MV(q)),

(2.20)

g±21(q) = ±
M
24
⋅

1
√
−2MV(q)

⎛

⎝
V′′(q) −

[V′(q)]2

2V(q)
⎞

⎠
, (2.21)

g±11(q) =
1

24V(q)
⎛

⎝
V′′(q) −

3[V′(q)]2

4V(q)
−

1
2

Mω2⎞

⎠
, (2.22)

g±01(q) = ∓
1

√
−2MV(q)

(g±11(q) − g±11(0)), (2.23)

where primes denote derivatives with respect to the argument and
δ(x) denotes the Dirac “delta” function. With these preliminaries,
we can derive the leading order contribution to transmission factor.

C. Evaluation of the transmission factor
From Eq. (2.14), we find that the transmission factor may be

written as

κ = β∫
∞

−∞
dpdqΩ0(p, q)FP

0 (p, q) + h̵2β∫
∞

−∞
dpdq

× [Ω1(p, q)FP
0 (p, q) +Ω0(p, q)FP

1 (p, q)] +O(h̵4
). (2.24)

One readily finds that

β∫
∞

−∞
dpdqΩ0(p, q)FP

0 (p, q) = 1, (2.25)

and as also shown in Ref. 1,

β∫
∞

−∞
dpdqΩ1(p, q)FP

0 (p, q) = −
β2

24M
V′′(0). (2.26)

This is just the leading order correction for the parabolic barrier
transmission coefficient.

As detailed in Appendix A, some straightforward algebra shows
that

h̵2β
8 ∫

∞

−∞
dpdqΩ0(p, q)(2

∂2F(p, q)
∂p∂q

∂2P0(p, q)
∂p∂q

−
∂2F(p, q)

∂q2
∂2P0(p, q)

∂p2 ) = 0. (2.27)

The more elaborate part is the remaining term

I ≡ h̵2β∫
∞

−∞
dpdqΩ0(p, q)F(p, q)P1(p, q). (2.28)

As already noted, the flux F(p, q) localizes everything to the barrier
location q = 0, which means that to estimate this factor, it is neces-
sary to evaluate the functions g±21(q), g±11(q), and g±01(q) in the limit
that q→ 0. For this purpose, we rewrite the potential as

V(q) = V2
q2

2
+ V3

q3

6
+ V4

q4

24
+ ⋅ ⋅ ⋅ , (2.29)
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and as a matter of notation, we have that the second order
derivative is

V2 = −Mω2. (2.30)

It is then a matter of some straightforward but tedious algebra to find
that

lim
q→0

g±21(q) =
V3

72ω
, (2.31)

lim
q→0

g±11(q) = −
1

96Mω2 (V4 +
V2

3

3Mω2 ), (2.32)

lim
q→0

g±01(q) =
2V3

3M2ω3 g±11(0). (2.33)

One, then, readily finds that

β∫ dpdqΩcl(p, q; β)
p
M

δ(q)P1(p, q) =
β

96M2ω2 (V4 +
V2

3

3Mω2 )

(2.34)

so that putting it all together, we find the expression

κ = 1 +
h̵2β2ω2

24
[1 +

1
4
(

V4

βV2
2
−

V2
3

3βV3
2
)] +O(h̵4

), (2.35)

and this is the central result of this paper. Wigner’s result for
the symmetric barrier1 has been now generalized to any (smooth)
barrier.

Note that this result has been derived without using any knowl-
edge about the asymptotic structure of the potential barrier. It is
correct as long as the reactive flux expression for the rate is valid
and includes in it only the local structure around the barrier top.

III. LEADING ORDER TERMS FOR APPROXIMATE
THEORIES
A. Semiclassical theory

The semiclassical transition state theory developed in
Refs. 6–9 is based on the WKB approximation for the energy depen-
dent transmission probability.25,26 The classical action associated
with quantum tunneling is

ϕ(E) =
1
h̵ ∫

√
E − V(q)dq. (3.1)

The integral is along the constant energy trajectory between the
turning points on the upside down potential. The corresponding
semiclassical energy-dependent transmission coefficient is given
as25,26

TSC(E) =
1

[1 + exp[2ϕ(E)]
, (3.2)

and the thermal semiclassical transmission probability (normalized
by the classical) is

κSC(β) = β exp(βV)∫ TSC(E)e−βEdE, (3.3)

where V is the potential at the barrier top. If we take the classical
limit, i.e., T(E) = θ(E − V), Eq. (3.3) reduces to unity.

To proceed, following Ref. 6, using an integration by parts, we
rewrite Eq. (3.3) as

κ(β) = β exp(βV)∫
exp(−βE)

[1 + exp[2ϕ(E)]
dE

= exp(βV)∫
1
2

sech2
(ϕ) exp[−βE(ϕ)]dϕ. (3.4)

As an example, we consider a parabolic potential specified by
Epb(ϕ) = V − h̵ω( ϕ

π ), where ω is the (imaginary) frequency at the
barrier top. Then, Eq. (3.4) leads to

κpb(b) = ∫
∞

−∞
1
2

sech2
(ϕ) exp[

2bϕ
π
]dϕ =

b
sin b

, (3.5)

where b = hωβ/2.
In general, the energy associated with the action may be

expanded for an anharmonic barrier as7

E(ϕ) = V‡
+ E0 − h̵ω

ϕ
π
− h̵2χ(

ϕ
π
)

2
+ ⋅ ⋅ ⋅ , (3.6)

where χ is expressed in terms of the anharmonicity coefficients of
Eq. (2.29) as

χ =
1

16M
(

V4

V2
−

5
3

V2
3

V2
2
) (3.7)

and E0 is a constant energy defined by

E0 =
h̵2

64M
(

V4

V2
−

7
9

V2
3

V2
2
). (3.8)

The corresponding transmission probability is given as

κSC = exp[−βE0)]∫

∞

−∞
1
2

sech2
(ϕ) exp[

2bϕ
π
+ h̵2χβ(

ϕ
π
)

2
]dϕ

≈ exp[−βE0)]κpb(b) exp
⎡
⎢
⎢
⎢
⎢
⎣

h̵χβ⟨(
ϕ
π
)

2
⟩

pb

⎤
⎥
⎥
⎥
⎥
⎦

, (3.9)

where κpb(b) is the transmission factor for the parabolic barrier,
as given in Eq. (3.5). Here, ⟨⋅ ⋅ ⋅⟩pb denotes an average using the
parabolic barrier action as a reference such that to leading order in
h̵2, the anharmonic corrections are obtained by the second moment.
Using κpb(b) as a moment generating function, we find that

⟨(
ϕ
π
)

2
⟩

pb
=

1
4κpb(b)

∂2κpb(b)
∂b2 = b

1 + cos2
(b)

sin3(b)
−

2 cos(b)
sin2(b)

. (3.10)

When h̵ → 0, this reduces to limh̵→0⟨(
ϕ
π )

2
⟩

pb
= 1

12 so that the

quantum correction becomes

κSC = exp[
b2

6
+

h̵2βχ
12
− βE0 +O(h̵4

)], (3.11)
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where the parabolic contribution from κpb(b) is also truncated to
leading order h2.

Finally, we insert the values of χ and E0 into the above
expressions to arrive at

κSC = exp[
h̵2ω2β2

24
−

h̵2ω2β
12 ⋅ 16

(
V4

V2
2
−

5
3

V2
3

V3
2
) +

h̵2ω2β
64

× (
V4

V2
2
−

7
9

V2
3

V3
2
) +O(h̵4

)]

= exp[
h̵2ω2β2

24
+

h̵2ω2β
96
(

V4

V2
2
−

1
3

V2
3

V3
2
) +O(h̵4

)], (3.12)

which when truncated to order h2 is precisely the generalized Wigner
correction term derived in Sec. II C [Eq. (2.35)]. We have, thus,
demonstrated that the Taylor expansion of the exact quantum trans-
mission probability and its semi-classical estimate are identical at
least to order h2. A similar h expansion was carried out for the vibra-
tional response in the action-angle variable representation, leading
to systematic quantum corrections to the classical response func-
tion.27 The relationship between the early work and the current
analysis is discussed in Sec. V.

B. Classical Wigner dynamics
Classical Wigner dynamics as applied to rate theory is an

approximation by which the thermal flux operator is evaluated
exactly, but the projection operator is taken to be the classical
projection operator.4 This implies that in the analysis presented
in Sec. II, the classical Wigner estimate is obtained by repeat-
ing the same computation but ignoring the quantum correction
(P1(p, q)) to the projection operator. However, as we have already
seen [Eq. (2.26)], this only leads to the parabolic barrier term, and
the nonlinear terms arise from the quantum correction to the pro-
jection operator. Clearly, then, as also noted by Wigner,1 the classical
Wigner estimate does not give the correct answer for the leading
order term in h̵2 in the presence of nonlinearity. This also means
that it does not give the correct high temperature leading order
term.

C. Path integral based approaches
1. Variational centroid TST

Instead of using the flux side correlation function, one may
also derive quantum reaction rates from what is known as the
ImF formalism,18,28 whereby one estimates the rates from the imag-
inary part of the partition function or equivalently the imagi-
nary free energy. This concept originates from the analysis of the
non-Hermitian Hamiltonian representation of the decay rate of a
quantum state in a metastable well. At high temperature, centroid
transition state theory29 can be recovered within this framework.19

Furthermore, anharmonicity corrections to the parabolic barrier
rate can be incorporated by variational determination of an opti-
mal free energy. Yet, the anharmonicity correction thus obtained is
thermodynamic in nature, while the h 2-expansion term derived in
the previous section incorporates both thermodynamic and dynamic
quantum corrections. Therefore, as we shall show, the anharmonic
corrections derived from these two approaches are not necessarily

equivalent and can be systematically examined by comparing the
cubic and quartic contributions. Below, we outline the anharmonic
corrections based on the variational ImF calculation and refer to the
details in Appendix B.

In quantum TST, the centroid degree of freedom is identified
as the unstable mode for the imaginary free energy. In the classi-
cal regime, the centroid-constrained quantum variance δ takes the
value of a free particle, i.e., ⟨δ⟩2c =

h̵2β
12m . For the anharmonic poten-

tial defined in Eq. (2.29), the centroid density can be evaluated
analytically using a cumulant expansion,

ρc(0) = ⟨exp(−β V(δ))⟩c

= exp{−β[V(0) +
V2

2!
⟨δ⟩2c +

V4

4!
⟨δ4
⟩c + ⋅ ⋅ ⋅ ]}

= exp[−βV(0)] exp(
h̵2ω2β2

24
) +O(h̵4

), (3.13)

where only the first order cumulant is kept. Evidently, the leading
order correction associated with the barrier frequency recovers the
parabolic barrier result, while any anharmonicity appears as higher
order corrections.

The TST calculation of Eq. (3.13) is based on a local expansion
of the barrier potential, which sensitively depends on the location
of the transition state. The free energy integrates all degrees of
freedom and is, therefore, a global quantity. For a better repre-
sentation of the free energy of an anharmonic potential, we adopt
a reference quadratic potential Vref centered at the as yet arbi-
trary location q̄ with frequency ω. These are then optimized by a
variational calculation of the free energy. Details can be found in
Appendix B, which closely follows the theory presented in Refs. 30
and 31. Using the optimal quadratic potential, the centroid den-
sity is again evaluated via a cumulant expansion as in Eq. (3.13),
giving

ρc(q̄) = exp[−βV(0)] exp[
h̵2ω2β2

24
(1 +

V4

2βV2
2
−

1
2

V2
3

βV3
2
)] +O(h̵4

).

(3.14)

The anharmonic corrections in the above expression have the same
functional form as Eq. (2.35) but different coefficients. The system-
atic expansion in Eq. (2.14) involves contributions from both the
thermal part Ωn and the projection operator Pn. In comparison, the
imaginary free energy approach is based on the thermal distribu-
tion and the flux operator in the imaginary time. The difference in
the coefficients may be thus traced to the projection operator in the
reactive flux.

2. Implications for path integral molecular dynamics
At high temperatures, centroid molecular dynamics32,33 and

ring polymer molecular dynamics34,35 reduce to the same path-
integral TST estimate [Eq. (3.13)] so that these theories are not pre-
cise in this limit. They do reduce to the parabolic barrier expression
without the nonlinear correction terms. Inspection of the various
numerical results obtained with these theories shows that at high
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temperatures, the resulting transmission coefficients are, indeed,
lower than the numerically exact ones.

IV. NUMERICAL OBSERVATIONS
USING ECKART BARRIERS

The purpose of this section is to obtain a perception for the
extent of the nonlinear correction. For this purpose, we study the
asymmetric Eckart barrier potential, which has the form

V(x) =
V1 − V2

1 + exp(− x
d)
+
(
√

V1 +
√

V2)
2

4 cosh2( x
2d)

. (4.1)

The potential is constructed such that when x → −∞, the potential
vanishes and when x →∞, the potential goes to V1 − V2. The poten-
tial is symmetric when V1 = V2. Here, V1 is the barrier height, which
is located at

q‡
=

x‡

d
= ln
√

V1

V2
. (4.2)

We use the reduced variables

ε =
E

V1
, α =

h̵
Md2ω

, v =
V2

V1
(4.3)

such that α is the reduced value of h and v is the asymmetry para-
meter of the potential. The barrier frequency ω is defined as (M is
the mass of the scattered particle)

d2V(x)
dx2 ∣x=x‡ = −Mω2. (4.4)

The reduced force constant at the barrier is found to be (using
Maple)

U2 =
1

V1

d2V(q)
dq2 ∣q=q‡ = −

2v

(
√
v + 1)2 , (4.5)

and we note that it varies between − 1
2 and −2 as the asymmetry para-

meter goes from 1 to∞. This implies that the barrier gets thinner as
the asymmetry is increased.

With these preliminaries, one may write the (reduced) energy
dependent transmission probability as

T(ε) = 1 −
cosh[ 2π

α

√
2
−U2
(
√

ε −
√
(ε − 1 + v))] + cosh[ π

α

√
8
−U2

√

(1 +
√
v)

2
+ αU2

8 ]

cosh[ 2π
α

√
2
−U2
(
√

ε +
√
(ε − 1 + v))] + cosh[ π

α

√
8
−U2

√

(1 +
√
v)

2
+ α2U2

8 ]

, (4.6)

and the thermal transmission probability normalized by the classical
transmission probability is given by

κ = βV1 exp(βV1)∫

∞

0
dεT(ε) exp(−βV1ε). (4.7)

One, then, notes that the thermal transmission probability is a
function of three variables only—α, v, and βV1.

With these variables, the leading order correction based on the
parabolic barrier approximation is given by

κpb = 1 +
α2
(βV1)

2U2
2

24
. (4.8)

Using Maple, one readily finds that the fourth and third derivatives
at the barrier are

FIG. 1. h2 expansion of the transmission coefficient for the Eckart barrier. In all panels, the solid line represents the numerically exact transmission factor, the dotted line
represents the parabolic barrier estimate, the dashed line represents the contribution from the analytical h2 expansion as in Eq. (1.2), and the long dashed line represents
the result for path integral TST. α is the reduced value of h , as defined in Eq. (4.3). In all three panels, the reduced barrier height is 3, while the asymmetry parameter
defined in Eq. (4.3) varies from unity (symmetric potential) to 3 to 5 as one goes from left to right.
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FIG. 2. The range of hβω as a function of the reduced h parameter α accessed
in Fig. 1. The solid, dotted, and dashed lines show the value of hβω for the three
values of the asymmetry parameter v = 1, 3, 5 considered in Fig. 1.

U42 ≡

1
V1

d4V(q)
dq4 ∣q=q‡

U2
2

=
22
√
v − 7 − 7v

2v
, (4.9)

U32 ≡

1
V1

d4V(q)
dq4 ∣q=q‡

U3
2

= −
9(1 −

√
v)

2

2v
, (4.10)

from which we deduce that the exact expansion for the transmission
factor, as in Eq. (1.2), is

κ2 = 1 + (κpb − 1)[1 +
4
√
v − v − 1
2vβV1

] +O(h̵4
), (4.11)

while the path integral TST approximate expression given in
Eq. (3.14) is

κ2,PI = 1 + (κpb − 1)
⎡
⎢
⎢
⎢
⎢
⎣

1 +
(1 +
√
v)

2

2vβV1

⎤
⎥
⎥
⎥
⎥
⎦

+O(h̵4
). (4.12)

It is, then, of interest to compare the numerically exact trans-
mission coefficient with the exact leading order correction (κ2), the
parabolic barrier estimate (κpb), and the path integral TST estimate
(κ2,PI). This is shown in Fig. 1 for a barrier height of βV1 = 3. The
panels from left to right show the results for the asymmetries v =
1, 3, 5, respectively. In all panels, the solid line represents the exact
numerical result [Eq. (4.7)], the dashed line represents the exact
second order expansion [Eq. (4.11)], the dotted line represents the
parabolic barrier estimate [Eq. (4.8)], and the long dashed line rep-
resents the path integral TST estimate [Eq. (4.12)]. Figure 2 shows
the values of h̵βω corresponding to the data presented in Fig. 1. One
notes that for the symmetric barrier (v = 1), for all values shown,
the analytical estimate is the most accurate, being essentially exact
when α, the reduced value of h, is small. The path integral TST esti-
mate is too large, however, more accurate than the parabolic barrier
estimate. As one increases the asymmetry, the path integral TST esti-
mate improves and is slightly better at larger values of α than the
exact expansion. Of course, at low values of α, the exact expansion is
superior. The values of hβω shown in Fig. 2 are in the range of 0 − 5,
demonstrating that the leading order term in the expansion pro-
vides a good approximation to the exact transmission coefficient in
the whole range and is significantly superior to the parabolic barrier
estimate.

Increasing the temperature, as shown in Fig. 3, further
improves the quality of the exact expansion, as might have been
expected. In the symmetric case, it is essentially exact in the range
0 ≤ hβω ≤ 2, as seen in Fig. 4. However, also in the asymmetric cases,

FIG. 3. h2 expansion of the transmission coefficient for the Eckart barrier. In all panels, the solid line represents the numerically exact transmission factor, the dotted line
represents the parabolic barrier estimate, the dashed line represents the contribution from the analytical h2 expansion as in Eq. (1.2), and the long dashed line represents
the result for path integral TST. α is the reduced value of h as defined in Eq. (4.3). In all three panels, the reduced barrier height is 1, while the asymmetry parameter defined
in Eq. (4.3) varies from unity (symmetric potential) to 3 to 5 as one goes from left to right.
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FIG. 4. The range of hβω as a function of the reduced h parameter α accessed
in Fig. 3. The solid, dotted, and dashed lines show the value of hβω for the three
values of the asymmetry parameter v = 1, 3, 5 considered in Fig. 3.

shown in the second and third panels of Fig. 3, the leading order
expansion term is a much better approximation to the transmission
coefficient over the whole range of values shown. The conclusion
of all of this is that when considering heavy atom scattering, where
typical tunneling factors are not greater than 4, one should use
the second order expansion derived in this paper to estimate the
rate.

On the other hand, it is also relevant to ask how much
do the nonlinear terms change the transmission probability?
From Eq. (4.11), we note that the nonlinear contribution term

X(v) = 1
2v (4
√
v − v − 1) is a monotonically decreasing function of

the asymmetry parameter, suggesting that the larger the asymmetry,
the less important the nonlinear terms. This is readily seen from
Figs. 1 and 3, where one notes that the error in the parabolic barrier
estimate decreases as the asymmetry increases.

V. DISCUSSION
A central goal of this paper was to derive the general leading

order expansion term of order h2 for the thermal transmission coef-
ficient when the potential barrier is non-quadratic. Since the flux
side expression for the exact rate is a product of three operators, this
exercise is rather lengthy, as shown in Sec. II. One may continue the
theoretical developments presented in Sec. II to also derive the next
order, except that the computation becomes increasingly involved as
it includes many terms.

This paper is limited to the one-dimensional case. In prin-
ciple, one may use the same formalism to derive correction
terms in the multidimensional case, for example, by using the
anharmonic expansions of molecular potentials, as presented in
Refs. 6–9. This would also provide a check on the accuracy
of the h̵4 terms used in the semiclassical theories developed
in Refs. 6, 8, and 9.

The theory derived in this paper presents a challenge to
many present day approximate rate theories. We have shown
that only the semiclassical based theory leads to the correct lead-
ing order term in h̵2. However, as far as other approximations
are concerned, it is not enough to show that they reduce to the
parabolic barrier result. The nonlinearity of the potential typi-
cally provides tunneling factors, which are substantially higher
than the parabolic barrier rates, even when close to the classical
limit.

This does not imply that the semiclassical estimate is always a
“good” approximation. In Fig. 5, we plot the ratio of the numerically
exact semiclassical approximation for the asymmetric Eckart bar-
rier [Eq. (3.3)] to the numerical exact transmission factor. The left
panel of Fig. 5 shows the ratio for a reduced barrier height of βV = 3,
while the right panel of Fig. 5 shows that for βV = 1. The three
lines in each panel (solid, dashed, and dotted) correspond to the

FIG. 5. Ratio of the numerically exact
semiclassical transmission factor to the
numerically exact transmission factor
plotted as a function of the reduced h
parameter α for different asymmetries
and reduced barrier heights.
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ratios V2/V1 = 1, 3, 5, respectively. Yet, one notes that in all cases,
the semiclassical theory starts to diverge from the exact theory when
the quantum parameter α ≥ ∼3. Considering the definition of the
parameter [Eq. (4.3)] and assuming a mass of a proton (∼2000 a.u.)
and a barrier length scale d ∼ 2 a.u., one finds that α ∼ 3 implies that
hω ∼ 10 cm−1, which is an unrealistically broad barrier. Increasing

the reduced barrier height would increase the value of the frequency
roughly as the square root of the reduced barrier height, which
implies that for most systems of chemical interest, unless the tem-
perature is very low, the semiclassical theory would be valid. This is
reassuring.

It is of special interest to analyze why path integral molecular
dynamics (e.g., centroid molecular dynamics, ring-polymer molec-
ular dynamics, and classical Wigner dynamics) fails in obtaining
the precise leading order term in h̵2 for the rate. The source of the
discrepancy comes from the quantum correction to the projection
operator. In a sense, a similar failure of path integral molecu-
lar dynamics has also been presented for the vibrational response
of anharmonic oscillators. Centroid molecular dynamics was orig-
inally motivated by the observation that quantum and classical
response functions (i.e., the Kubo-transformed correlation function)
are identical for harmonic oscillators or coupled oscillators (i.e.,
normal modes).36,37 The combination of this observation and the
exact quantum thermal distribution provides the intuition under-
lying the path integral-based molecular dynamics. The fundamental
frequency and beatings in harmonic systems are essentially classi-
cal coherences. A non-linear potential (i.e., anharmonic oscillator)
exhibits quantum beatings, which signal a quantum coherence,
which cannot be simply reproduced by continuous classical dynam-
ics. The beating time defines the time scale at which the path
integral-based molecular dynamics starts to deviate from the quan-
tum result. A semiclassical analysis leads to an estimation of the
beating time as

t∗ =
1
h̵
∣
∂ω(I)
∂I
∣

−1

, (5.1)

where I is the classical action of the anharmonic oscillator and
ω(I) is its frequency.27 The beating time is proportional to the
dispersion ∂ω(I)

∂I , which is determined by the anharmonicity and
diverges for harmonic systems. Therefore, both in the region of the
well and at the transition state, anharmonicity plays a crucial role
in determining the reliability of the path integral-based molecular
dynamics.

Does this invalidate the use of classical Wigner dynamics or
path integral molecular dynamics methods? Not necessarily. In real-
ity, quantum beatings or recurrences can rarely survive at long times,

except when the reactants are isolated as in well-controlled gas
phase chemistry. Usually, many-body interactions and dissipation
will suppress the beatings and, thus, partly justify the application of
the path integral molecular dynamics methods in condensed phase
systems.38 A similar argument is valid when considering the quan-
tum expansion of the projection operator. The classical projection
operator is a step function. The quantum corrections “smear” the
edges of the projection operator, and it is this smearing that affects
the rate. Introducing dissipation typically reduces the extent of such
quantum coherences. In this context, it should be of interest to
repeat the computation presented in this paper for the rate in the
presence of dissipation to see whether these speculations can be
given an analytical formulation.
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APPENDIX A: DERIVATION OF EQ. (2.27)

For this purpose, we note the explicit expression

(2
∂2F(p, q)
∂p∂q

∂2P0(p, q)
∂p∂q

−
∂2F(p, q)

∂q2
∂2P0(p, q)

∂p2 ) =
2
M

δ′(q)δ(q)[δ(p +
√
−2MV(q)) − δ(p −

√
−2MV(q))]

+ δ′(q)
2V′(q)

√
−2MV(q)

[θ(−q)δ′(p −
√
−2MV(q)) − θ(q)δ′(p +

√
−2MV(q))]

−
p
M

δ′′(q)[θ(−q)δ′(p −
√
−2MV(q)) + θ(q)δ′(p +

√
−2MV(q))]. (A1)
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It is, then, necessary to evaluate three integrals. The first is

I1 =
β

4M ∫
dpdqΩ0(p, q; β)δ′(q)δ(q)

× [δ(p +
√
−2MV(q)) − δ(p −

√
−2MV(q))] = 0, (A2)

which vanishes due to the localization at the barrier top. The second
integral is given by

I2 =
β

4M ∫
dpdqΩ0(p, q; β)

δ′(q)MV′(q)
√
−2MV(q)

⋅ [θ(−q)δ′(p −
√
−2MV(q)) − θ(q)δ′(p +

√
−2MV(q))]

=
β2

4M ∫
dqV′(q)δ′(q) = −

β2

4M
V′′(0). (A3)

The third integral is given by

I3 = −
β
8 ∫

dpdqΩ0(p, q; β)
p
M

δ′′(q)

⋅ [θ(−q)δ′(p −
√
−2MV(q)) + θ(q)δ′(p +

√
−2MV(q))]

=
β
8 ∫

dq
1
M

δ′′(q) +
β2

4M ∫
dqV(q)δ′′(q)

= −
β2

4M ∫
dqV′(q)δ′(q) =

β2

4M
V′′(0), (A4)

and one readily sees that the sum of the three integrals vanishes.

APPENDIX B: DERIVATION OF VARIATIONAL
CENTROID TST
1. General considerations

Centroid transition state theory (c-TST) accounts for quantum
corrections to TST above the crossover temperature so that the high-
temperature expansion of c-TST provides an estimation of quantum
and thermal effects. For illustration, we evaluate the leading order
quantum correction. The potential surface is expanded as

V(q) = V(0) +
1
2

V2q2
+

1
3!

V3q3
+

1
4!

V4q4
+ . . . , (B1)

where Vn is the nth expansion coefficient. The centroid potential at
the barrier top becomes

ρc(0) = ⟨exp(−βV(δ)⟩c ≈ exp(−β⟨V(δ)⟩c), (B2)

where the subscript “c” represents the centroid-constraint and δ is
the displacement from the centroid. To leading order, the quadratic
potential gives

ρc(0) ≈ exp(−βV(0)) exp(−
V2β

2
⟨δ2
⟩c)

= exp(−βV(0)) exp(−
h̵2ω2β2

24
), (B3)

and this recovers the parabolic barrier rate expression to leading
order in h2. In Eq. (B3), δ2 is the centroid-constrained fluctuation,
given as

δ2
=

h̵2β
12m

, (B4)

and the quadratic coefficient for the quadratic potential is

V2 = mω2
→ −mω2. (B5)

Perturbative evaluation of the cubic and quartic potentials will yield
h4 or higher order corrections. Alternatively, one may estimate the
effect of anharmonicity of the barrier non-perturbatively using the
variational method presented below.

2. The variational method
The derivation here closely follows the discussion in Refs. 30

and 31. To obtain an analytic expression, one fits the exact centroid
potential to a quadratic form determined by the “reference potential”

Vref =
mω 2

2
(q − q̄)2. (B6)

The parameters (ω, q̄) of the reference potential are determined
from the following conditions:

⟨V′⟩ref = 0, (B7)

⟨V”⟩ref = mω 2. (B8)

To leading order, the first condition implies

⟨V′⟩ref ≈ V2q̄ +
V3

2
⟨(q − q̄)2

⟩ref = 0, (B9)

while the second one leads to

mω 2
≈ V2 +

V4

2
⟨(q − q̄)2

⟩ref .

At high temperature, using classical thermal fluctuations, we have
that

⟨(q − q̄)2
⟩ref ≈

1
βV2

. (B10)

Thus, we obtain

q̄ ≈ −
V3

2βV2
2

, (B11)

Mω 2
≈ V2 +

V4

2V2β
, (B12)

which are, then, used to evaluate the leading order quantum
correction to the centroid-TST rate.

3. Anharmonic corrections
To proceed, we use the variational result to evaluate the cen-

troid correction. The optimal frequency can be directly applied to
Eq. (B3), giving
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ρc(0) ≈ exp(−βV(0)) exp(−
h̵2ω̄ 2β2

24
)

= exp(−βV(0)) exp(−
h̵2ω2β2

24
[1 +

V4

2V2
2 β
]), (B13)

and this accounts for the correction coming from the quartic term.
The optimal centroid location q̄ is associated with the cubic term so
that one considers the centroid density at this location,

ρc(q̄) ≈ ρc(q̄) exp[−β⟨
1
3!

V3(q̄ + δ)3
⟩

c
]. (B14)

The exponential part of the cubic correction can be evaluated
explicitly,

−β⟨
1
3!

V3(q̄ + δ)3
⟩

c
≈ −β

1
2

V3q̄⟨δ2
⟩c =

1
4

V2
3

V2
2

h̵2β
12m

, (B15)

and it is always positive. To be consistent with the parabolic barrier
notation, we rewrite the above expression as

1
2

V2
3

βV3
2

h̵2β2ω2

24
.

The corrections in Eqs. (B13) and (B15) are for a bounded potential,
which can be converted to a reaction barrier via ω2

→ −ω2. Thus,
these corrections have the same functional form as Eq. (2.35), but
the coefficients are different, giving a larger estimate.
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