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Thermal rate of transmission through a barrier: Exact expansion
of up to and including terms of order h̄4
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Nine decades after Wigner’s formulation of quantum rate theory, his celebrated result was recently generalized
to the asymmetric barrier using an exact first-order expansion of the transmission probability in terms of h̄2.
This paper extends the first-order quantum correction to second-order correction of order h̄4 for the thermally
averaged transmission probability through an arbitrary barrier. The derivation employs a systematic expansion
of the projection operator onto products and the thermal distribution which involves a Taylor expansion of
the potential about the barrier up to eighth order. The resulting exact analytical expression is calibrated
with numerical calculations of several model potentials and shows excellent agreement when the h̄4 term is
included. In comparison, the semiclassical transition state theory cannot reproduce the correct h̄4 terms when
the anharmonicity is treated on the level of VPT-4 (vibrational perturbation theory—fourth order) and will
potentially need a VPT-6 expansion. Further analysis of the quartic barrier reveals suppressed transmission due to
the dominant role of quantum reflection above the barrier. These results not only provide a conceptual framework
but can also be applied to heavy atom tunneling and machine learning.
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I. INTRODUCTION

Wigner wrote two seminal papers in 1932 [1,2]. In one of
them [1] he defined what is known today as the Wigner repre-
sentation in phase space and used it do derive a perturbation
theory expression for the thermal density exp(−βĤ ) [with
β = 1/(kBT ) the inverse temperature and Ĥ the Hamiltonian
operator]. In the second [2], Wigner used his phase-space
approach to derive a leading-order correction, of the order of
h̄2, to the thermal rate of transmission of a particle of mass M
through a barrier potential V (q). He derived the exact leading-
order expression for a smooth symmetric barrier, but, not less
important, used what is known today as classical Wigner dy-
namics [3,4], to derive a more approximate expression, which
to order h̄2 is identical to the transmission probability for
a parabolic barrier. Very recently, we generalized Wigner’s
result to include asymmetric barriers [5], the result for the
transmission factor (ratio of quantum to classical thermal flux
through the barrier) being

κ2 = h̄2β2ω2

24

[
1 + 1

4

(
V4

βV 2
2

− V 2
3

3βV 3
2

)]
(1.1)

where the potential, whose single barrier is located at q = 0,
is expanded as

V (q) =
∞∑
j=2

Vj
q j

j!
(1.2)

and the second derivative defines a barrier frequency

V2 = −Mω2. (1.3)

Wigner, in his paper [2], considered that the nonlinear
correction to the parabolic barrier estimate will be small and
so is really not too important. Furthermore, he was concerned
that his expression would diverge if the barrier frequency
ω went to zero. We note a few other points. Typically, one
expects that nonlinearity broadens the potential barrier and
this broadening would cause tunneling to be more difficult
and hence the transmission factor would be reduced, relative
to the parabolic barrier result. However, as seen from the exact
result to order h̄2 [Eq. (1.1)], if, in the symmetric case, V4 � 0
the leading-order correction increases the transmission factor.
Not less important is the fact that many of the well-known
approximations to the thermal rate, such as classical Wigner
dynamics [3,4], centroid molecular dynamics [6], and ring
polymer molecular dynamics [7], do not reduce to this correct
limit. Third, and this Wigner could not have known in his time,
the transmission probability for many heavy atom tunneling
systems [8–10] is dominated by the leading-order term of
order h̄2 and furthermore the transmission coefficients are typ-
ically in the range of 1–5. In this range, ignoring the nonlinear
contributions can cause a serious error in the estimation of the
rate.

There is another aspect of recent interest in the expansion
in terms of h̄2n. To date, except for the parabolic barrier, no
attempt has been made, even in one dimension, to derive an
exact analytic expression for the transmission factor, valid for
all orders of h̄2n and all temperatures. The parabolic barrier re-
sult becomes inapplicable in the deep tunneling regime since
it diverges at the well-known and understood crossover tem-
perature (h̄βcω = 2π ) [11–13]. The analytic expression for
the energy dependent transmission coefficient for an Eckart
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barrier is known [14], but its thermal average is not, even in
the symmetric case. Especially in view of machine learning
algorithms for reaction rates [15], such an expression would
be valuable, as it could be used to “teach” the algorithm the
correct answer for a broad range of physically significant
properties such as the barrier height, exoergicity, and other
parameters of the potential. In this context, an approximate
analytic expression for the thermal rate, valid (but not exact)
for all temperatures, has been derived recently [16]. The exact
expression for the expansion of the rate in terms of h̄2n for
n = 1, 2, . . . can be incorporated within the analytic theory,
to give a result which is rather accurate over a wide range
of conditions and which may then be used within a machine
learning context.

An important development of the past decade or so has
been the development of a semiclassical thermal rate theory
for the transmission coefficient [17–20]. In contrast to all other
approximations in use, it is exact up to order h̄2, but it remains
an open question whether the semiclassical approach can be
accurately extended to higher order.

The goal of the present paper is to answer some of these
challenges. In Sec. II we derive the exact correction term of
order h̄4; we do this for a “normal” barrier potential in which
the second-order derivative at the barrier is finite. We find
that the semiclassical theory of Ref. [19] is not sufficient to
this order and that, in principle, this fourth-order-in-h̄ term
needs as input the first eight derivatives of the potential at
the barrier and not only the first six derivatives as in the
theory of Ref. [19]. We then study a purely quartic barrier,
where we find that its h̄2 term vanishes, but the term of
order h̄4 is negative, indicating that there are cases where
quantum mechanics through quantum reflection may reduce
the transmission coefficient, as compared to its classical limit.
Finally, out of curiosity, we also study the case of a purely
hexic barrier and find that for such a broad barrier the leading
correction term is at least of order h̄6.

In Sec. III we apply these results to two classes of po-
tential barriers. One is the Eckart barrier, where as already
mentioned the energy dependent transmission coefficient is
known analytically [14], so that the thermal transmission co-
efficient may be obtained numerically accurately to provide
a numerical test of the validity of our analytic expression.
We then use the known exact coefficients of order h̄2 and h̄4

within the context of the analytic semiclassical rate theory of
Ref. [16] to show that they allow extension of the analytic
rate theory to rather low temperatures, both for the symmetric
and asymmetric Eckart barriers. The second potential to be
studied is what we will refer to as a “tanh barrier” where the
second derivative is always negative but the fourth deriva-
tive may change sign when the distance parameter of the
potential is increased, making its form similar to a square
barrier potential. In this case, the negativity of the fourth
derivative leads to a negative contribution to the transmission
coefficient, indicating that, as for a purely quartic potential,
quantum reflection above the barrier can be a dominant con-
tribution. This observation should be of special interest when
considering for example tunneling through quantum dots. We
end with a discussion, paying attention to the possibility of
extension of the present derivation also to multidimensional
systems.

II. DERIVATION OF THE h̄4 CONTRIBUTION
TO THE THERMAL TRANSMISSION COEFFICIENT

A. Preliminaries

We assume a one-dimensional Hamiltonian operator

Ĥ = p̂2

2M
+ V (q̂) (2.1)

where the potential has a barrier at the coordinate location
q = 0 with energy V (0) = 0, and ( p̂, q̂) denotes the momen-
tum and coordinate operators, respectively. The flux operator
is defined as

F̂ (q̂) = 1

2M
[ p̂δ(q̂) + δ(q̂) p̂] (2.2)

where δ(x) denotes the Dirac “delta” function. The transmis-
sion coefficient is defined as the ratio of the exact quantum
thermal flux through the barrier to the classical thermal flux:

κ = 2π h̄βRe(Tr[exp(−βĤ )F̂ (q̂)P̂]) (2.3)

where the projection operator onto the product side is defined
as

P̂ = lim
t→∞

[
exp

(
iĤt

h̄

)
θ (q̂) exp

(
− iĤt

h̄

)]
(2.4)

and θ (q̂) is the unit step function.
The Wigner representation in one-dimensional phase space

of an operator Ô is defined as

O(p, q) =
∫ ∞

−∞
dξ exp

(
ipξ

h̄

)〈
q − ξ

2

∣∣∣∣Ô
∣∣∣∣q + ξ

2

〉
. (2.5)

Two properties of Wigner functions of operators will be used
to derive the h̄4 term: (i) the trace operation of two operators
is just the phase-space integration of the separate Wigner
representation of the two operators

Tr[ÂB̂] =
∫ ∞

−∞

d pdq

2π h̄
A(p, q)B(p, q) (2.6)

and (ii) the Wigner representation of a product of operators

Ĉ = ÂB̂ (2.7)

in terms of the representation of the separate operators is given
by [21]

C(p, q) = A(p, q) exp

[
ih̄

2
	̂

]
B(p, q) (2.8)

where the Janus operator 	̂ is defined as

	̂ =
(←−

∂

∂q

−→
∂

∂ p
−

←−
∂

∂ p

−→
∂

∂q

)
(2.9)

and the right and left arrows denote derivative of the functions
to the right and left of the operator, respectively. We will need
to employ Eq. (2.8) since the expression for the transmission
coefficient [Eq. (2.3)] involves a product of three operators.

The exact Wigner representation of the flux operator is

F (p, q) = p

M
δ(q). (2.10)
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We will also assume the following formal expansion:

�(p, q) ≡ exp(−βĤ )(p, q) =
∞∑

n=0

h̄2n�n(p, q). (2.11)

Wigner, in his 1932 paper [1], provided explicit expressions for the first three terms:

�0(p, q) = exp

[
−β

(
p2

2M
+ V (q)

)]
, (2.12)

�1(p, q) = �0(p, q)

(
1

8
V ′′(q)

[
−β2

M
+

(
β3 p2

3M2

)]
+ β3V ′2(q)

24M

)
, (2.13)

and

�2(p, q) = β2�0(p, q)

16M2

{
4
β2 p4

4M2
− 12

βp2

2M
+ 3

}(
β2V ′′2(q)

72
− βV (4)(q)

120

)

+ β2�0(p, q)

64M2

{
4
βp2

2M
− 2

}(
β3V ′′(q)V ′2(q)

18
− 2

β2V ′′2(q)

15
− β2V ′(q)V (3)(q)

15
+ βV (4)(q)

15

)

+ β3�0(p, q)

64M2

(
β3V ′4(q)

18
− 22β2V ′′(q)V ′2(q)

45
+ 2βV ′′2(q)

5
+ 8βV ′(q)V (3)(q)

15
− 4V (4)(q)

15

)
. (2.14)

Similarly, the projection operator may be expanded as

P(p, q) =
∞∑

n=0

h̄2nPn(p, q) (2.15)

and we know that the zeroth-order classical projection operator is

P0(p, q) = θ (−q)θ (p −
√

−2MV (q)) + θ (q)θ (p +
√

−2MV (q)). (2.16)

Henceforth to keep the notation as simple as possible we will always assume that q � 0 so that only the second term will be of
importance. We also know from Ref. [22] that

P1(p, q) = g21(q)δ′′(p +
√

−2MV (q)) + g11(q)δ′(p +
√

−2MV (q)) + g01(q)δ(p +
√

−2MV (q)) (2.17)

where the functions gj1, j = 0, 1, 2 are

g21(q) = M

24
√−2MV (q)

(
V ′′(q) − [V ′(q)]2

2V (q)

)
, (2.18)

g11(q) = 1

24V (q)

(
V ′′(q) − 3[V ′(q)]2

4V (q)
− 1

2
Mω2

)
, (2.19)

g01(q) = − 1√−2MV (q)
(g11(q) − g11(0)). (2.20)

For future use we note that

g21(0) ≡ lim
q→0

g21(q) = V3

72ω
, (2.21)

g11(0) ≡ lim
q→0

g11(q) = − 1

96V2

(
V4 − V 2

3

3V2

)
, (2.22)

g01(0) ≡ lim
q→0

g01(q) = 2V3

3V 2
2

ωg11(0), (2.23)

and

g′′
11(0) = −3V 3

2 V6 + 5V 2
2 V3V5 − 3V 2

2 V 2
4 − 7V2V 2

3 V4 − 2V 4
3

864V 4
2

= −2Mωg′
01(0). (2.24)

To obtain the expression for the transmission factor up to order h̄4 we rewrite the exact expression

κ = β

∫ ∞

−∞
d pdq

[
p

M
δ(q) exp

[
ih̄

2
	̂

]
�(p, q; β )

]
P(p, q) = 1 + κ2 + κ4 + O(h̄6). (2.25)
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The term of order h̄2 has in principle three contributions

κ2 = h̄2β

∫ ∞

−∞
d pdq

p

M
δ(q)[�0(p, q; β )P1(p, q) + �1(p, q; β )P0(p, q)] − h̄2β

4

∫ ∞

−∞
d pdq

[ p

4M
δ(q)	̂2�0(p, q; β )

]
P0(p, q)

(2.26)

and the result is given in Eq. (1.1). The h̄4 contribution to the transmission coefficient consists of six terms:

κ4 = h̄4β

16 × 24

∫ ∞

−∞
d pdq

[ p

M
δ(q)	̂4�0(p, q; β )

]
P0(p, q) + h̄4β

∫ ∞

−∞
d pdq

p

M
δ(q)�0(p, q; β )P2(p, q)

+ β h̄4
∫ ∞

−∞
d pdq

[ p

M
δ(q)�2(p, q; β )

]
P0(p, q) − h̄4β

8

∫ ∞

−∞
d pdq

[ p

M
δ(q)	̂2�0(p, q; β )

]
P1(p, q)

− β h̄4

8

∫ ∞

−∞
d pdq

[ p

M
δ(q)	̂2�1(p, q; β )

]
P0(p, q) + β h̄4

∫ ∞

−∞
d pdq

p

M
δ(q)�1(p, q; β )P1(p, q)

≡ κ41 + κ42 + κ43 + κ44 + κ45 + κ46. (2.27)

B. The h̄4 contribution to the transmission factor

1. κ41

We will consider the contributions term by term, as defined in Eq. (2.27). Since the flux operator is linear in the momentum,
it is a matter of some straightforward algebra to see that[ p

M
δ(q)	̂4�0(p, q; β )

]
= − 4

M

∂4�0(p, q)

∂ p3∂q
δ(3)(q) + ∂4�0(p, q)

∂ p4

p

M
δ(4)(q). (2.28)

It is then a matter of carrying out systematic integrations by parts, to remove the derivatives of the spatial delta function. One
finds

κ41 = 0. (2.29)

2. κ42

Here, the missing ingredient is the h̄4 contribution to the projection operator P2(p, q). This is arguably the most involved part
of the derivation. Here we bring the main results, and details are given in Appendix A. One finds that the h̄4 contribution may be
written as

P2(p, q) =
5∑

j=0

g j2(q)δ( j)(psx ) (2.30)

where the jth-order derivative denoted as a superscript in parentheses is with respect to the argument and

psx = p +
√

−2MV (q) (2.31)

is the analytic expression for the separatrix between reactive and unreactive trajectories in phase space. The solution for P2(p, q)
given in Eq. (2.30) when inserted into the definition of κ42 given in Eq. (2.27), assuming that the spatial coefficients do not
diverge when q → 0, gives

κ42 = h̄4β4ω4

[
−Mg12(0)

β3V 2
2

+ 3g32(0)

β2V 2
2

− 15g52(0)

MβV 2
2

]
≡ κ421 + κ423 + κ425. (2.32)

As shown in Appendix A,

g52(0) = − MV 2
3

18 × 242V2
, (2.33)

g32(0) = 216V 3
2 V6 + 552V 2

2 V3V5 + 405V 2
2 V 2

4 + 870V2V 2
3 V4 + 245V 4

3

2 488 320V 4
2

, (2.34)

g12(0) = 135V 5
2 V8 + 420V 4

2 V3V7 + 810V 4
2 V4V6 + 597V 4

2 V 2
5

4 147 200MV 7
2

+ 1020V 3
2 V 2

3 V6 + 3570V 3
2 V3V4V5 + 675V 3

2 V 3
4

4 147 200MV 7
2

−−2140V 2
2 V 3

3 V5 − 4125V 2
2 V 2

3 V 2
4 − 3400V2V 4

3 V4 − 700V 6
3

4 147 200MV 7
2

. (2.35)
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For a symmetric barrier the expression simplifies signifi-
cantly to

κ42,sym = −h̄4β4ω4 V 2
2 V8 + 6V2V4V6 + 5V 3

4

30 720β3V 6
2

+ h̄4β4ω4 15V 2
4 + 8V2V6

30 720β2V 4
2

. (2.36)

3. κ43

The expression for �2(p, q) has already been given in
Eq. (2.14) so that it is straightforward to find that

κ43 = 7h̄4β4ω4

60 × 96
− h̄4β4ω4

640

V4

βV 2
2

. (2.37)

The first term on the right-hand side is the parabolic barrier
contribution, and the second term is a correction due to the
anharmonicity. Any asymmetry in the potential does not con-
tribute to this term.

4. κ44

Obtaining the expression for this term is rather lengthy,
and the details are given in Appendix B. The result is rather
simple:

κ44 = h̄4β4ω4

64

V4

βV 2
2

. (2.38)

5. κ45

Derivation of the expression for κ45 is detailed in Ap-
pendix C and one finds

κ45 = −β4h̄4ω4

64

(
V4

βV 2
2

)
. (2.39)

6. κ46

The last term involves only the h̄2 contribution to the
thermal distribution and the projection operator, and the in-
tegration is straightforward, giving

κ46 = h̄4β4ω4

8 × 96

(
V4

βV 2
2

+ V 2
3

3βV 3
2

)
. (2.40)

7. κ4

Putting it all together we find that

κ4 = κ421 + κ423 + 7h̄4β4ω4

60 × 96
− h̄4β4ω4

3840

V4

βV 2
2

− 7h̄4β4ω4

6912

V 2
3

βV 3
2

(2.41)

where the expressions for κ421 and κ423 are given in
Eqs. (2.32), (2.34), and (2.35). Equation (2.41) is a central
result of this paper. For symmetric barriers it reduces to

κ4,sym = 7h̄4β4ω4

60 × 96
− h̄4β4ω4

3840

V4

βV 2
2

+ h̄4β4ω4

6 × 242

[
405V 2

4 + 216V2V6

240β2V 4
2

]

− h̄4β4ω4 V 2
2 V8 + 6V2V4V6 + 5V 3

4

5 × 6144β3V 6
2

. (2.42)

One notes that the h̄4 correction, in principle, calls for knowl-
edge of up to the eighth derivative of the potential at the
barrier top and that moreover the term with V8 may become
dominant at high temperatures, since it is linear in the inverse
temperature β. The high-order derivatives are associated with
the h̄4 term of the projection operator, demonstrating the need
to treat the projection operator correctly; this is not done in
all approximate methods that use the flux side formalism to
estimate the rate.

C. Semiclassical rate theory with VPT-4

The semiclassical method of Refs. [17–20] is different, as
the semiclassical approximation is based on an energy depen-
dent estimate of the transmission probability

TSC(E ) = 1

1 + exp [2φ(E )]
(2.43)

where φ is the classical (imaginary) action across the barrier.
Using the VPT-4 (vibrational perturbation theory—fourth or-
der) version of the theory as given in Ref. [19] one finds that
the h̄4 correction is

κ4(SC)

h̄4β4ω4
= 7

96 × 60
− 1

3840

V4

βV 2
2

+ 7

6912

V 2
3

βV 3
2

− 1

3840

V6

β2V 3
2

+ 9V 2
4

288 × 64β2V 4
2

− 49

30 × 8 × 288

V3V5

β2V 4
2

+ 95V 2
3 V4

288 × 24 × 8β2V 5
2

− 287V 4
3

144 × 288 × 8β2V 6
2

(2.44)

and this should be compared with the exact result, as given in
Eq. (2.41), which may be rewritten for the sake of comparison
as

κ4

h̄4β4ω4
= 7

60 × 96
− 1

3840

V4

βV 2
2

+ 7

6912

V 2
3

βV 3
2

− 1

3840

V6

β2V 3
2

+ 1

64 × 288

9V 2
4

β2V 4
2

+ 46

288 × 8 × 30

V3V5

β2V 4
2

− 58

8 × 288 × 24

V 2
3 V4

β2V 5
2

+ 98

144 × 8 × 288

V 4
3

β2V 6
2

+ κ421

h̄4β4ω4
. (2.45)

One notes that the κ421 term is missing in the VPT-4 theory.
Second, although the upper two lines in Eq. (2.44) are the
same as the upper two lines in the exact result as given in
Eq. (2.45), the coefficients of the rest of the terms are incor-
rect. The semiclassical VPT-4 theory is based on expanding
the energy to third order in the action; this is insufficient and
is the source of the error. To obtain the correct h̄4 result for
the transmission factor it must be expanded to fourth order in
the action and this would be a VPT-6 semiclassical theory. We
also note, as described in Appendix D, that the VPT4 results
for the transmission coefficient can lead to situations where
the action at high energies goes to minus infinity, leading
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to a vanishing transmission coefficient, and this is of course
incorrect. This too would be corrected if the energy is ex-
panded to fourth order in the action, i.e., using what would
be appropriately called a VPT-6 theory.

D. The quartic barrier

As mentioned in the Introduction, some of the expressions
derived thus far will seemingly diverge if the second-order
derivative vanishes. As shown in Appendix E, this case must
be dealt with separately and one then obtains expressions
which are finite, with all divergences removed. For the quartic
barrier, the second-order h̄2 contribution to the transmission
coefficient vanishes, while the fourth-order h̄4 correction is
finite:

κ2(quartic barrier) = 0, (2.46)

κ4(quartic barrier) = − 8h̄4β3V4

5 × 242M2
. (2.47)

This result is instructive. The quartic barrier is thicker than
the parabolic barrier, hence it is more classical in nature.
One must go to fourth order in h̄ before finding any quantum
correction to the classical transmission factor. Moreover, here
for the first time we see that the leading-order term is nega-
tive as a result of the dominance of quantum reflection. This
also implies an inverse isotope effect as the term is inversely
proportional to the mass squared. Increasing the mass will
make the system more classical and will reduce the effect of
quantum reflection.

E. The hexic barrier

As might be expected, based on the results for the quartic
barrier, for a purely hexic barrier the h̄4 contribution vanishes.
However, the derivation is not trivial, since the individual
g j1(q) and g j2(q) functions may diverge at the barrier. To
eliminate the divergence, one must first sum over all terms
and only then integrate over the coordinate. As shown in Ap-
pendix F, this then leads to the result that up to and including
fourth-order terms in h̄ one finds a vanishing contribution to
the transmission factor. This is perhaps not surprising, as the
hexic barrier is broader than the quartic barrier so that it can
be considered as being more classical.

III. NUMERICAL IMPLEMENTATIONS

A. Eckart barrier

To get a better feeling for the h̄4 term we consider the
asymmetric Eckart barrier whose form is

V (q) = v1 − v2

1 + exp
(− q

d

) + (
√

v1 + √
v2)2

4 cosh2( q
d )

(3.1)

where v1 is the barrier height, v2 defines the exoergicity of the
potential, and d is a length scale. For the symmetric Eckart
barrier (with d = 1) one finds that

V2 = −v1

2
,V4 = v1,V6 = −17

4
v1,V8 = 31v1 (3.2)

so that for the symmetric barrier the coefficient κ4 reduces to
the relatively simple expression

κ4,sym(Eckart barrier)= 7h̄4β4ω4

60 × 96
− h̄4β4ω4

960

1

βv1
− h̄4β4ω4

960β2v2
1

.

(3.3)

Comparing this to the result obtained by Yasumori [23] [Eq.
(3.23) of Ref. [16]] which is

κ4,sym(Eckart barrier, Yasumori)

= 7h̄4β4ω4

60 × 96
− h̄4β4ω4

960

1

βv1
+ h̄4β4ω4

640

1

β2v2
1

(3.4)

we note that the last term is incorrect. Yasumori used an ap-
proximate expression for the energy dependent transmission
coefficient which leads to the correct κ2 but not κ4. The dif-
ference however is not necessarily large as the erroneous term
goes as 1

β2v2
1

and under normal circumstances this will give
only a small contribution. For the symmetric Eckart barrier,
the VPT-4 expression for the rate [Eq. (2.44)] leads to the
correct result for κ4, indicating that the Eckart barrier has
special symmetries in its structure, which are not necessarily
there in a realistic potential.

Since the energy dependent transmission coefficient is
known, one may obtain the numerically exact thermal trans-
mission coefficient with a single quadrature. This then serves
as a check on the correctness of our result for κ4 as well as
getting a feeling for the magnitude of the coefficient and under
what circumstances the first two terms are sufficient to obtain
the overall transmission coefficient.

In Fig. 1, we plot the exact transmission factor (solid line),
the second-order transmission factor (dashed line), and the
fourth-order result (dotted line) for a reduced barrier height
of βv1 = 3 and various asymmetries v2

v1
= 1, 3, 5 as one goes

from left to right as a function of the reduced value α = h̄
Mωd2 .

One notices that adding the h̄4 term significantly improves the
accuracy as compared to the theory with only the h̄2 term. The
same is shown in Fig. 2 but for a reduced barrier height of
βv1 = 1. Note that the range of α2 values is four times larger
in Fig. 2 than in Fig. 1.

A different numerical test of the analytic h̄4 correction term
is to consider the following quantity:

�κ4 ≡ κ − 1 − κ2 (3.5)

which for small enough values of h̄ should scale linearly with
h̄4 or equivalently with the reduced h̄4 parameter α4. In Figs. 3
and 4 we plot �κ4 for the cases studied in Figs. 1 and 2. One
notes that in all cases, the initial slope is correctly predicted
by the h̄4 term. Furthermore, the best results are found for the
symmetric barrier. It would seem that asymmetry in the barrier
magnifies the dependence of the transmission coefficient on
higher-order terms in h̄. An even more stringent test of
the correctness of the h̄4 term is to consider limα→0

�κ
α4 and

compare this with κ4
α4 . The results are given in tabular form in

Table I and provide numerical evidence for the accuracy of the
h̄4 term.
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FIG. 1. h̄4 expansion of the transmission coefficient for the Eckart barrier. In all panels, the solid line is the numerically exact transmission
factor, the dotted line is the analytical result including terms up to h̄4, and the dashed line is the contribution from the analytical result but
only including terms up to h̄2. In all three panels the reduced barrier height is 3 while the asymmetry parameter v = v2/v1 varies from unity
(symmetric potential) to 3 to 5 as one goes from left to right.

B. Application to thawed Gaussian rate theory

As shown in Ref. [16], using the coherent-state representation of the flux side expression for the transmission factor and
approximating the thermal distribution and the real time propagator with thawed Gaussians, one finds that the transmission
coefficient for such a theory is

PR =
√

(h̄2�τ + M )

4M
exp

(
h̄2�βV ‡τ

h̄2�τ + M

)⎡
⎣exp

[
h̄2�τ (β�V )

(h̄2�τ + M )

]
erf

⎛
⎝

√
2M2(V ‡ + �V )

h̄2�(h̄2�τ + M )

⎞
⎠

⎤
⎦

+
√

(h̄2�τ + M )

4M
exp

(
h̄2�τβV ‡

h̄2�τ + M

)⎡
⎣erf

⎛
⎝

√
2M2V ‡

h̄2�(h̄2�τ + M )

⎞
⎠ + exp

(
h̄2�τ (β�V )

(h̄2�τ + M )

)
− 1

⎤
⎦

+ exp(βV ‡)

2

⎡
⎣1 − erf

⎛
⎝

√
2MV ‡

h̄2�

⎞
⎠

⎤
⎦ + 1

2
exp[β(V ‡ + �V )]

⎡
⎣1 − erf

⎛
⎝

√
2M(V‡ + �V)

h̄2�

⎞
⎠

⎤
⎦. (3.6)

FIG. 2. h̄4 expansion of the transmission coefficient for the Eckart barrier. In all panels, the solid line is the numerically exact transmission
factor, the dotted line is the analytical result including terms up to h̄4, and the dashed line is the contribution from the analytical result but
only including terms up to h̄2. In all three panels the reduced barrier height is 1 while the asymmetry parameter v = v2/v1 varies from unity
(symmetric potential) to 3 to 5 as one goes from left to right.
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FIG. 3. h̄4 dependence of the residue of the numerically exact transmission factor when the zeroth-order and h̄2 terms are subtracted from
it. In all panels, the solid line is the numerically exact residue �κ4 while the dotted line is the analytical result for κ4. In all three panels the
reduced barrier height is 3 while the asymmetry parameter v = v2

v1
varies from unity (symmetric potential) to 3 to 5 as one goes from left to

right.

In this expression, τ = β/2 and �V is the exoergicity of the
potential. The challenge is to determine the width parameter �

whose origin is in the coherent-state basis set used in the flux
side expression. It was this challenge that motivated in part
the present derivation of κ2 and κ4. The expression PR may be
expanded as a series in h̄2 and one finds [16]

PR = 1 + h̄2�β

2M

(
1

2
+ β(V ‡ + �V )

)

+ h̄4�2β2

8M2

[
(β(V ‡ + �V ))2 − (β(V ‡ + �V )) − 1

4

]

+ O(h̄6). (3.7)

One may then also expand the width parameter in terms of h̄2

as

� = �0 + h̄2�1 (3.8)

and derive the relevant expressions for the coefficients �0

and �1 from the known expressions for κ2 and κ4 given in

Eqs. (1.1) and (2.41):

�0 = 2Mκ2

h̄2β
(

1
2 + β(V ‡ + �V )

) , (3.9)

�1 = 2Mκ4

h̄4β
(

1
2 + β(V ‡ + �V )

)
− Mκ2

2

[
(β(V ‡ + �V ))2 − (β(V ‡ + �V )) − 1

4

]
h̄4β

(
1
2 + β(V ‡ + �V )

)3 .

(3.10)

These are then inserted into Eq. (3.6) to obtain an approximate
expression for the transmission coefficient which is exact to
order h̄4.

To see how good this estimate is, we applied it to the
two “standard” Eckart models used as benchmarks for many
approximate theories. The symmetric Eckart barrier case is
defined by α = π/3 and d = 2. The results are shown in
Fig. 5 where we plot in the right panel the ratio of the ex-

FIG. 4. h̄4 dependence of the residue of the numerically exact transmission factor when the zeroth-order and h̄2 terms are subtracted from
it. In all panels, the solid line is the numerically exact residue �κ4 while the dotted line is the analytical result for κ4. In all three panels the
reduced barrier height is 1 while the asymmetry parameter v = v2

v1
varies from unity (symmetric potential) to 3 to 5 as one goes from left to

right.
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g

FIG. 5. Ratio of the exact transmission factor to the thawed Gaussian estimate for a symmetric Eckart barrier. The left panel (a) shows the
numerically exact transmission factor as a function of the reduced inverse temperature (h̄βω) while the right panel (b) shows the ratio. One
notes that the thawed Gaussian expression significantly extends the range of low temperatures for which the approximate theory is within a
factor of 2 of the exact result. The ordinate shows the logarithm base 10 of the transmission factor.

act transmission factor to the approximate one as a function
of the inverse temperature and compare with the exact rate
which is shown on the left panel. Note that the approximate
result is within a factor of 2 as compared to the exact one
for h̄βω � 12 and that the transmission factor varies over
four orders of magnitude in this range. The asymmetric case
(α = 3π/16, d = 1) is shown in Fig. 6. In this case, the
approximate expression is within a factor of 2 of the exact
result for h̄βω � 10 and the transmission factor varies over
a range of two orders of magnitude. As is well known, the
asymmetric case is more difficult to fit with an approximate
theory. These results may be further improved by using a log-
arithmic combination of the width parameters as in Eq. (3.27)
of Ref. [16]. The fitting of the temperature dependence of the
width parameter then becomes a prime candidate for machine
learning. The width parameter would become a function of
the potential parameters and the inverse temperature, fitted to
give the exact transmission probability over the whole range
of temperatures.

C. The tanh barrier

We assume the following potential barrier:

V (x; x0,V0)= V0

2 tanh
( x0

d

)[tanh

(
x + x0

d

)
− tanh

(
x − x0

d

)]
(3.11)

TABLE I. Numerical verification of the accuracy of the h̄4 term.

βV1 v α �κ

α4
κ4
α4

3 1 0.04 0.0038084 0.0038086
3 3 0.04 0.023171 0.023175
3 5 0.04 0.038793 0.038805
1 1 0.04 −0.00005423 −0.00005425
1 3 0.04 −0.00052474 −0.00052465
1 5 0.04 −0.0013222 −0.0013213

where V0 is the barrier height and d is a length scale. As shown
in Fig. 7 (using d = 1) the form of the potential depends
critically on the length parameter x0. In the limit that x0 → 0
the potential reduces to a symmetric Eckart barrier. In the
limit that x0 is sufficiently large the potential tends to a step
potential whose width is 2x0. The derivatives of the potential
at the barrier top (x = 0) are found to be

V2(x0,V0) ≡ ∂2V (x; x0,V0)

∂x2

∣∣∣∣
x=0

= − 2V0

d2 cosh2
( x0

d

) ,

(3.12)

V4(x0,V0) ≡ ∂4V (x; x0,V0)

∂x4

∣∣∣∣
x=0

= 8V0
[
3 − cosh2

( x0
d

)]
d4 cosh4

( x0
d

) .

(3.13)

This implies that the second derivative is always negative but
the fourth derivative turns from positive to negative when 3 =
cosh2( x0

d ). Furthermore, the ratio of the fourth to the second
derivative

V4(x0,V0)

V2(x0,V0)
= − 4

d2 cosh2
( x0

d

)[3 − cosh2

(
x0

d

)]
(3.14)

remains finite for any value of x0 even though the second
derivative vanishes when x0 → ∞. One finds that

κ2(x0,V0, β, d ) = h̄2β
[
3 + 2βV0 − cosh2

( x0
d

)]
24d2M cosh2

( x0
d

) (3.15)

and

lim
x0→∞ κ2(x0,V0, β, d ) = − h̄2β

24d2M
(3.16)

while

lim
x0→0

κ2(x0,V0, β, d ) = h̄2β2ω2

24

(
1 + 1

βV0

)
(3.17)

and, as expected, this is identical to the Eckart barrier result.
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FIG. 6. Ratio of the exact transmission factor to the thawed Gaussian estimate for an asymmetric Eckart barrier. The left panel (a) shows
the numerically exact transmission factor as a function of the reduced inverse temperature (h̄βω) while the right panel (b) shows the ratio. One
notes that the thawed Gaussian expression significantly extends the range of low temperatures for which the approximate theory is within a
factor of 2 of the exact result. The ordinate shows the logarithm base 10 of the transmission factor.

Similarly one finds that

κ4(x0,V0, β, d ) = h̄4β2
[
21βV0 cosh4

( x0
d

) + 6
(
2β2V 2

0 + 15βV0 + 45
)

sinh2
( x0

d

) + βV0
(
28β2V 2

0 − 24βV0 − 45
)]

10 × 242M2d4βV0 cosh4
( x0

d

) (3.18)

so that in the limit of a thick barrier

lim
x0→∞ κ4(x0,V0, β, d ) = 7h̄4β2

30 × 64M2d4
(3.19)

and the h̄4 contribution is positive. We also note that in the
limit that x0 → 0 Eq. (3.18) reduces to the result of the Eckart
barrier.

FIG. 7. The tanh potential given in Eq. (3.11). Note that the
barrier height is the same for all values of the scale parameter x0.
Both length scales are in atomic units. The ordinate is also in atomic
units, denoted as (a.u.).

As an example we consider an approximate hydrogen atom
mass ( M = 2000 a.u.), a range of unity (d = 1 a.u.), and a
barrier height V0 = 1/300 a.u. We choose the range of tem-
perature going from T = 200 to 1000 K which in atomic units
leads to ≈300 � β � 1500 so that 1 � βV0 � 5. In Fig. 7 we
first plot the potential as a function of x and x0. For small x0

the potential is parabolic in nature while for large x0 it goes
to a broad square barrier. In Fig. 8(a) we plot the second-
order (κ2) contributions to the rate for three different inverse
temperatures (βV0 = 1, 5/3, 5) as a function of x0, and the
same is shown in Fig. 8(b) for the fourth-order contribution
(κ4). We note that in all cases the fourth-order contribu-
tion is substantially smaller than the second-order contri-
bution, implying that the sum of the two would give
a true reflection of the rate for the chosen parameter
region.

Second, we notice that for x0 � 1.5 the h̄2 contribution is
positive; in this region, the second derivative gives the domi-
nant effect, and tunneling increases the rate as for the Eckart
barrier. However, for larger values, the fourth-order derivative
changes sign and the contribution turns negative implying that
above barrier reflection is the dominant contribution, and it
decreases the rate. In contrast the h̄4 contribution is negative
only for small values of x0 and only at low temperature.
However, due to the fact that the contribution is small it does
not significantly change the overall rate. In Fig. 9 we plot the
full transmission coefficient (1 + κ2 + κ4) as a function of x0

and the same three temperatures as in the previous figures.
One notices that if the barrier is broad enough the transmission
coefficient is less than unity, exemplifying the importance of
quantum reflection even when considering thermal rates. The
negative contribution for large values of x0 reflects the fact
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FIG. 8. Second- (left panel) and fourth-order (right panel) contributions to the transmission coefficient of the tanh potential given in
Eqs. (3.15) and (3.18), respectively.

that for the quartic barrier the transmission coefficient is, up
to fourth order in h̄, less than unity.

IV. DISCUSSION

The main theme of this paper was the derivation of the ex-
act fourth-order-in-h̄ correction to the transmission coefficient
of a particle scattered on a one-dimensional barrier potential.
The methodology used to derive the expression was based on
the Wigner phase-space representation of the exact flux-side
expression for the rate. It may be readily extended to higher
orders beyond h̄4 although it is clear that this would involve
expanding the potential at the barrier to even higher order than
the eighth derivative needed for the h̄4 term. Obtaining the
exact expansion serves as a benchmark for approximate the-
ories. Here, we found out that the semiclassical fourth-order

FIG. 9. The transmission coefficient (κ = 1 + κ2 + κ4) for the
tanh potential given in Eq. (3.11) is plotted as a function of the
distance x0 which determines the shape of the potential.

vibrational perturbation theory (VPT-4) of Ref. [19] cannot
reproduce the correct h̄4 expansion. This is also a failure of all
other approximate theories such as Wigner dynamics, centroid
molecular dynamics (CMD), and ring polymer molecular dy-
namics.

Furthermore, the methodology sheds light on the intriguing
case when the second derivative vanishes, a difficulty that
already bothered Wigner in 1932 [1]. We showed that the
h̄2 term of the transmission coefficient vanishes while the h̄4

term is negative, implying that here the dominant quantum
effect is quantum above barrier reflection rather than quantum
tunneling. This is a result of the increasing width of the bar-
rier, which leads to above barrier reflection. We exemplified
this also for a tanh barrier with varying width. When suffi-
ciently large, even though the second derivative at the barrier
is always negative, the leading-order contribution to the ther-
mal rate becomes negative, exemplifying the importance of
quantum reflection in such cases. Furthermore, in this case,
the ratio of the fourth-order derivative at the barrier to the
second-order derivative remains finite even in the limit that
the second-order derivative vanishes. The same occurs for the
Eckart barrier, indicating that for normal potential functions
there is no real difficulty in this limit.

Perhaps the most important next challenge is to repeat
the derivations presented here for multidimensional systems.
The main difficulty is that in such cases the classical pro-
jection operator is strictly speaking not known analytically,
as coupling between the reaction coordinate and additional
degrees of freedom leads to recrossing of the barrier dividing
surface. The same would happen when considering the rate
for dissipative systems, where the coupling to the bath will
lead to recrossing. However, one could carry out at least in
principle a perturbation theory where the small term would
be the coupling between the reaction coordinate and other
degrees of freedom since in the separable case the projection
operator is known exactly. A theory for the h̄2 expansions of
the projection operator has been presented in Ref. [22] and
should then be applicable in a straightforward but perhaps
not trivial way to obtain the leading orders in the expansion
of the transmission coefficient in powers of h̄2. Apart from
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the intellectual challenge of deriving such an expansion, it
would be especially timely in view of recent applications of
machine learning toward the prediction of thermal rate con-
stants [15,24–27]. The exact expansion would serve as critical
input for such an approach.

An alternative route for deriving quantum corrections in
open quantum systems [28] is the cumulant expansion of the
semiclassical transition state theory rate calculation which
has been shown in Ref. [5] to agree with the exact quantum
calculation to order h̄2. A similar h̄ expansion was carried out
for vibrational response theory in the action angle variable
representation, leading to competition between anharmonic-
ity and dissipation [29]. Along the same line, the effect of
this competition on quantum transmission will be explored in
future work.

ACKNOWLEDGMENTS

This work was generously supported by a joint grant
from the Israel Science Foundation and the National Natural
Science Foundation of China (Grant No. 2965/19). J.C. ac-
knowledges support from the NSF (Grants No. CHE 1800301
and No. CHE 1836913) and from the MIT Sloan Fund. J.C.
also acknowledges the sponsorship of the Rosi and Max Varon
Visiting Professorship at the Weizmann Institute of Science
and the support of the Maria Curie FRIAS COFUND Fellow-
ship Programme (FCFP) during his sabbatical.

APPENDIX A: DERIVATION OF THE EXPRESSION
FOR κ42

To obtain an expression for the h̄4 correction to the projec-
tion operator we follow the same route as in Ref. [5]. First we
note that for any function f (p, q) which multiplies a derivative
of the Dirac delta function δ[p − g(q)] we have the following
relations:

δ′ f = f [g(q), q]δ′ − f ′[g(q), q]δ, (A1)

δ′′ f = f [g(q), q]δ′′ − 2 f ′[g(q), q]δ′ + f ′′[g(q), q]δ, (A2)

δ(3) f = f [g(q), q]δ(3) − 3 f ′[g(q), q]δ′′ + 3 f ′′[g(q), q]δ′

− f (3)[g(q), q]δ, (A3)

δ(4) f = f (g(q), q)δ(4) − 4 f ′[g(q), q]δ(3) + 6 f ′′[g(q), q]δ′′

−4 f (3)[g(q), q]δ′ + f (4)(g(q), q)δ, (A4)

δ(5) f = f (g(q), q)δ(5) − 5 f ′[g(q), q]δ(4)

+ 10 f ′′[g(q), q]δ(3) − 10 f (3)[g(q), q]δ′′

+ 5 f (4)(g(q), q)δ′ − f (5)(g(q), q)δ. (A5)

The primes and superscripts in parentheses denote partial
differentiation with respect to the momentum.

The equation which determines P2(p, q) is derived from
Eq. (3.27) of Ref. [22] as adapted to the h̄4 term:

dP2(pt , qt )

dt
= ṗsx(t )

∂P2(pqt , qt )

∂ pqt

+ pqt

M

∂P2(pqt , qt )

∂qt

= dV1(qt )

dqt

∂P2
(
pqt , qt

)
∂ pqt

− 1

24

d3V1(qt )

dq3
t

∂3P1(pqt , qt )

∂ p3
qt

+ 1

16 × 120

d5V1(qt )

dq5
t

∂5P0(pqt , qt )

∂ p5
qt

(A6)

with psx as defined in Eq. (2.31) and V1(qt ) the nonlinear part
of the potential:

V1(q) = V (q) − 1
2V2q2. (A7)

Notice that by definition [Eq. (3.21) of [22]]

ṗsx(t ) − dV1(xt )

dxt
= Mω2xt − px(t )V ′(xt )√−2MV (xt )

− dV1(xt )

dxt

= − psx(t )V ′(xt )√−2MV (xt )
. (A8)

We then notice from Eqs. (2.16) and (2.17) that the second
and third terms on the right-hand side of Eq. (A6) involve the
delta function derivatives δ( j)(psx ) with j going from 3 to 5,
that is,

∂3P1(pt , qt )

∂ p3
t

=
2∑

j=0

g j1(qt )δ
( j+3)[psx(t )] (A9)

and

∂5P0(pt , qt )

∂ p5
t

= δ(4)[psx(t )]. (A10)

Using Eq. (A9) we rewrite Eq. (A6) as

− psx(t )V ′(qt )√−2MV (qt )

∂P2(pt , qt )

∂ pt

= − pqt

M

∂P2(pqt , qt )

∂qt
− 1

24

d3V1(qt )

dq3
t

∂3P1(pqt , qt )

∂ p3
qt

+ 1

16 × 120

d5V1(qt )

dq5
t

∂5P0(pqt , qt )

∂ p5
qt

. (A11)

From the identities given in Eqs. (A1)–(A5) and (2.30) this
may be rewritten as

V ′(q)√−2MV (q)

∞∑
j=0

( j + 1)g j2(q)δ( j)(psx ) =
√−2MV (qt )

M

∞∑
j=0

g′
j2(q)δ( j)(psx ) + 1

M

∞∑
j=0

jg′
j2(q)δ( j−1)(psx )

− 1

24

d3V (q)

dq3

2∑
j=0

g j1(q)δ( j+3)(psx ) + 1

16 × 120

d5V (q)

dq5
δ(4)(psx ). (A12)
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Demanding that the coefficients of the derivatives of δ(n)(psx ) with n = 0, 1, . . . , 5 vanish gives the six differential equations

dg52(q)

dq
= −3

V ′(q)

V (q)
g52(q) − M

2 × 242
V (3)(q)

(
V ′′(q)

V (q)
− [V ′(q)]2

2[V (q)]2

)
, (A13)

dg42(q)

dq
= −5V ′(q)

2V (q)
g42(q) + M

24
√−2MV (q)

V (3)(q)g11(q) − M

16 × 120
√−2MV (q)

V (5)(q) − 5√−2MV (q)

dg52(q)

dq
, (A14)

dg32(q)

dq
= −2V ′(q)

V (q)
g32(q) + M

24
√−2MV (q)

V (3)(q)g01(q) − 4√−2MV (q)

dg42(q)

dq
, (A15)

dg22(q)

dq
= −3V ′(q)

2V (q)
g22(q) − 3√−2MV (q)

g′
32(q), (A16)

dg12(q)

dq
= −V ′(q)

V (q)
g12(q) − 2√−2MV (q)

g′
22(q), (A17)

dg02(q)

dq
= − V ′(q)

2V (q)
g02(q) − g′

12(q)√−2MV (q)
. (A18)

These equations have to be solved, such that there are no divergences and each of the functions is finite when q → 0. With
some straightforward algebra we find the following solutions:

g52(q) = − M

4 × 242V (q)

(
[V ′(q)]2

2V (q)
− V ′′(q)

)2

, (A19)

g42(q) = −
√

M

242
√−2V (q)

{
13V ′2(q)V ′′(q)

5V 2(q)
− 29V ′′2(q)

20V (q)
− V2

2

[
V ′′(q)

V (q)
− V ′2(q)

2V 2(q)

]}

+
√

M

242
√−2V (q)

{
15V ′4(q)

16V 3(q)
− 3

10

[
V (4)(q) − 2V (3)(q)V ′(q)

V (q)

]}
, (A20)

g32(q) = − g11(0)

24 × 2

[
V (q)V ′′(q)

V 2(q)
− V ′2(q)

2V 2(q)

]
− 1

242V 2(q)

{
59V ′2(q)V ′′(q)

8V (q)
− 27V ′′2(q)

10
− 5V2

4

(
V ′′(q) − V ′2(q)

V (q)

)}

+ 1

242V 2(q)

{
105V ′4(q)

32V 2(q)
− 3V (q)V (4)(q)

5
+ 21V ′(q)V (3)(q)

10

}
, (A21)

g22(q) = − 3√−2MV (q)

[
g32(q) + g11(0)

24 × 2V (q)

(
V ′2(q)

2V (q)
− V2

)
+ K2(q) − K2(0)

242V (q)

]
, (A22)

where we used the notation

K2(q) = 1

V (q)

(
35V ′4(q)

32V 2(q)
− V ′2(q)(12V ′′(q) + 5V2)

8V (q)
− 3V ′′2(q)

10
+ 7V 2

2

40
+ 3V ′(q)V (3)(q)

5

)
(A23)

and note that

K2(0) ≡ lim
q→0

K2(q) = 25V 2
3 − 27V2V4

180V2
. (A24)

Also

g12(q) = 9

48MV (q)

[
g11(0)

4

(
2V2

V (q)
− V ′2(q)

V 2(q)

)
+ K2(0) − K2(q)

24V (q)

]
− 1

V (q)

(
3

M
g32(q) − K1

)
(A25)

with

K1 ≡ 216V 3
2 V6 − 552V 2

2 V3V5 − 405V 2
2 V 2

4 + 870V2V 2
3 V4 − 245V 4

3

1 658 880V 4
2

. (A26)

The q = 0 limits of Eqs. (A19), (A21), and (A25) are then given as in Eqs. (2.33)–(2.35), respectively. There is no need to solve
for g02(q) since it does not contribute to the rate.
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APPENDIX B: DERIVATION OF THE EXPRESSION
FOR κ44

Obtaining this term is quite tedious, so we give it in some
detail. In addition to Eqs. (2.22) and (2.24) we note the
following limits for the spatial coefficients appearing in the
expression for P1(p, q):

g′
21(0) = 9V2V4 − V 2

3

864ωV2
, (B1)

V3

3ω
= lim

q→0

d

dq

[
MV ′(q)√−2MV (q)

]
= lim

q→0

1

ωq

(
V ′′(q) − V ′2 (q)

2V (q)

)
,

(B2)

−Mω = lim
q→0

[
MV ′(q)√−2MV (q)

]
, (B3)

as well as the following momentum integrals:∫ ∞

−∞
d p

p

M
δ′′′(p)

[
1 − βp2

M

]
exp

(
−βp2

2M

)
= 9β

M2
, (B4)∫ ∞

−∞
d p

p

M
δ′(p)

[
1 − βp2

M

]
exp

(
−βp2

2M

)
= − 1

M
. (B5)

The definition of κ44 as obtained from Eq. (2.27) is such
that it can be separated into two terms:

κ44 = − h̄4β

8

∫ ∞

−∞
d pdq

[ p

M
δ(q)	̂2�0(p, q; β )

]
P1(p, q)

= − h̄4β2

8M

∫ ∞

−∞
d pdq

p

M
δ(q)

(
3 − βp2

M

)
× βV ′′(q)�0(p, q; β )P1(p, q)

+ h̄4β2

8M

∫ ∞

−∞
d pdq

p

M
δ(q)

(
1 − βp2

M

)
�0(p, q; β )

× ∂2P1(p, q)

∂q2

≡ κ441 + κ442. (B6)

The first integral is relatively straightforward involving two
integrations by parts over the momentum variable:

κ441 = h̄4β4ω4

16 × 16

(
V4

βV 2
2

− V 2
3

3βV 3
2

)
. (B7)

The second integral is more involved due to the differentiation
of the coefficients g j1(q) but is also rather straightforward and
one finds

κ442 = 9h̄4β3

8M2
[2ωg′

21(0) + Mω2g11(0)]

= h̄4β3

256M2

(
3V4 + V 2

3

3V2

)
. (B8)

Summing the two terms leads to Eq. (2.38).

APPENDIX C: DERIVATION OF THE EXPRESSION
FOR κ45

As in the case of the expression for κ44 detailed in the
previous Appendix, the expression for κ45 may be divided into

two parts:

κ45 = β h̄4

4

∫ ∞

−∞
d pdq

[
1

M
δ′(q)

∂2

∂ p∂q
�1(p, q; β )

]
P0(p, q)

−β h̄4

8

∫ ∞

−∞
d pdq

[
p

M
δ′′(q)

∂2

∂ p2
�1(p, q; β )

]
P0(p, q)

= κ451 + κ452. (C1)

Using the explicit expression for the first-order-in-h̄2 expres-
sion for the thermal density [Eq. (2.13)] one readily finds that

κ451 = 5β4h̄4ω4

96
− 3β4h̄4ω4

96

V4

βV 2
2

. (C2)

The second term is slightly more involved due to the second
derivative of the spatial delta function which implies an addi-
tional integration by parts, however it too is straightforward
and one finds

κ451 = β4h̄4ω4

64

(
V4

βV 2
2

)
− 5β4h̄4ω4

96
(C3)

so that as given in Eq. (2.39) one obtains

κ45 = κ451 + κ452 = −β4h̄4ω4

64

(
V4

βV 2
2

)
= −κ44. (C4)

APPENDIX D: AN ERROR IN THE SEMICLASSICAL
VPT4 THEORY

In the VPT4 version of the semiclassical theory the energy
is expanded in terms of the action as

E (φ) = V0 + G − W
φ

π
− X

φ2

π2
+ Y

φ3

π3
. (D1)

At high energy, if Y < 0 the action φ goes to minus infinity
and the transmission coefficient goes to unity. However, if
Y > 0, the action would have to go to plus infinity in the high-
energy limit and considering Eq. (2.43) this would lead to a
vanishing transmission coefficient at high energy. In Ref. [19]
the expression given for the coefficient Y is

Y = ω3(288 sinh2 μ − 5670 sinh4 μ)

576V ‡2
(D2)

where μ is an asymmetry parameter describing the potential,
which vanishes when the potential is symmetric. For small
asymmetry, the sinh2 μ term will dominate, the parameter Y
will be positive, and the wrong limit is obtained.

The error comes from truncating the expansion in Eq. (D1)
to third order in the action. Extending to fourth order, i.e.,
VPT-6, would not only prevent the possibility of obtaining
the wrong high-energy limit, but would also contribute to the
h̄4 term in the expansion, most probably leading to the exact
result derived here. Of course, the price to be paid for such
an extension is not only in the extension of the perturbation
theory to one higher order, but also to the need of computing
at least the sixth and seventh derivatives of the potential at
the barrier and this would be computationally costly when
considering realistic molecular systems.
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APPENDIX E: THE QUARTIC BARRIER

1. Order h̄2

We assume that the potential has the form

V (q) = −V4

24
q4 (E1)

and V4 � 0. The h̄2 correction to the thermal density for the
quartic barrier is

�1(p, q) = �0(p, q)

(
V4q2

16

[
β2

M
− β3 p2

3M2

]
+ β3

24M

V 2
4

36
q6

)
.

(E2)
The contribution of the term to κ2 is zero, due to the coordinate
dependence of at least order q2 of the h̄2 contribution to the
density. Similarly, the contribution coming from the Janus
operator term vanishes, since the derivatives with respect to
the coordinate create a q3 dependence. The remaining term is
the contribution coming from the projection operator. From
Eq. (2.17) we know that

κ2,P = β

∫
d pdq

p

M
δ(q)�0(p, q)

×
[

g21(q)δ′′
(

p +
√

MV4

12
q2

)

+ g11(q)δ′
(

p +
√

MV4

12
q2

)

+ g01(q)δ

(
p +

√
MV4

12
q2

)]
. (E3)

From Eqs. (3.32)– (3.34) of Ref. [22] we know that the
equation defining the function g21(q) as applied to the purely
quartic barrier is

g′
21(q) = −6

g21(q)

q
−

√
MV4

q
√

48
. (E4)

This has the solution that g21(q) is a constant and one readily
finds

g21(q) = −
√

MV4

24
√

3
. (E5)

The equation for g11 is

−4g11(q)
1

q
= g′

11(q) (E6)

so that

g11(q) = 0 (E7)

and similarly one finds that

g01(q) = 0 (E8)

so that

κ2,P = 0. (E9)

The second-order-in-h̄ contribution vanishes.

2. Order h̄4

The derivation of the fourth-order term is a bit lengthier,
but remains straightforward.

a. κ41

From Eqs. (2.28) and using the explicit form of the quartic
potential [Eq. (E1)] we have that the fourth-order Janus term
is

κ41 = h̄4β

16 × 24M

∫ ∞

−∞
d pdq

[
pδ(4)(q)

∂4�0(p, q; β )

∂ p4

−2βV4

3
δ(3)(q)q3 ∂3�0(p, q; β )

∂ p3

]
P0(p, q)

= κ411 + κ412. (E10)

We then note the identities∫ ∞

−∞
dqδ(4)(q) exp

(
βV4q4

24

)
θ

(
p +

√
MV4

12
q2

)

= βV4θ (p) + MV4δ
′(p), (E11)∫ ∞

−∞
dqδ(3)(q)q3�0(p, q; β )P0(p, q) = −6θ (p)�0(p, 0; β ),

(E12)

to find that

κ411 = − h̄4

4 × 24

β3V4

M2
(E13)

and

κ412 = h̄4

4 × 24

β3V4

M2
(E14)

so that

κ41 = 0 (E15)

and the term does not contribute just as in the case where there
is a parabolic term.

b. κ42

The first differential equation in this case is

dg52(q)

dq
= −12

q
g52(q) + 2M

242

V4

q
. (E16)

The solution is that g52(q) is a constant:

g52(q) = MV4

6 × 242
(E17)

and this would also be the result for the quartic barrier as
derived from Eq. (A19). One then finds that all the rest of the
functions vanish, for example,

dg42(q)

dq
= −5V ′(q)

2V (q)
g42(q) (E18)

so that

g42(q) = 0. (E19)

The contribution to the rate from the h̄4 term of the projec-
tion operator is then obtained from Eq. (2.32) adapted to the
quartic barrier, to find

κ42 = − 5h̄4β4

2 × 242

V4

βM2
. (E20)
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c. κ43

The h̄4 contribution to the thermal density at the barrier is
given in Eq. (2.14). Adapting it to the quartic barrier potential
of Eq. (E1) at q = 0 gives

�2(p, 0) = β3V4

15 × 64M2
�0(p, 0)

(
β2 p4

2M2
− 5

βp2

M
+ 15

2

)
.

(E21)
Its contribution to the transmission coefficient is

κ43 = 1

10

h̄4β3V4

64M2
= 9

10

h̄4β3V4

242M2
. (E22)

d. κ44 and κ45

The contribution to this case comes from the combination
of the Janus operator squared and the h̄2 term for the projec-
tion operator as in Eq. (B6). Adapting it to the quartic barrier
gives

κ44 = − h̄4β3V4

64M2
. (E23)

For the quartic barrier we also note that[
βp

M
δ(q)	̂2�1(p, q; β )

]

= β3V4

16M2
pδ′′(q)

∂2

∂ p2

[
q2�0(p, q)

(
1 − βp2

3M
+ βV4q4

18 × 3

)]

−β3V4

8M2
δ′(q)

∂2

∂q∂ p

[
q2�0(p, q)

(
1 − βp2

3M
+ βV4q4

18 × 3

)]
(E24)

so that

κ45 = h̄4β3V4

64M2
(E25)

and, as in the general case, the sum of the two terms (κ44 +
κ45) vanishes.

e. κ46

This expression involves a product of the h̄2 correction to
the density with the h̄2 correction to the projection operator.
Due to the fact that the first-order-in-h̄4 contribution to the
density vanishes at the barrier, the term κ46 also vanishes.

f. Summing it all up

The net result is then that the h̄4 term for the quartic
barrier is

κ4 = κ42 + κ43 = − 8h̄4β3V4

5 × 242M2

(E26)

as given also in Eq. (2.47).

APPENDIX F: HEXIC POTENTIAL BARRIER

1. Order h̄2

We assume that the potential has the form

V (q) = − V6

720
q6 (F1)

and V6 � 0. The h̄2 correction to the thermal density for the
hexic barrier is then

�1(p, q) = �0(p, q)

(
− 1

8

V6

24
q4

[
−β2

M
+

(
β3 p2

3M2

)]

+ β3

24M

V 2
6

1202
q10

)
(F2)

and its contribution to κ2 vanishes, due to the dependence of at
least q4 which vanishes at the barrier. The second contribution
comes from the Janus operator term, but it also vanishes, for
the same reason, that is, the coordinate derivatives bring down
terms of order q2 and higher and these vanish at the barrier.
The third contribution comes from the projection operator.
One readily finds from Eqs. (3.32)– (3.34) of Ref. [22] that

g21(q) = −
√

10MV6

24 × 10
q, (F3)

g11(q) = 1

8q2
, (F4)

g01(q) = − 3
√

10

4
√

MV6

1

q5
. (F5)

These seemingly divergent results cancel out. When evaluat-
ing the relevant term, one must first add up all the terms and
only at the end perform the integration over q to find that this
contribution also vanishes:

β

∫
d pdq

p

M
δ(q)�0(p, q)P1(p, q)

= β

∫
d pdq

p

M
δ(q)�0(p, q)g21(q)δ′′(p +

√
−2MV (q))

− β

M

∫
dqδ(q)g11(q) − β2

∫
dq

2MV (q)

M2
δ(q)g11(q)

+ β

M

∫
d pdqδ(q)

1

8

1

q2
= 0. (F6)

The second-order-in-h̄ term does not contribute to the trans-
mission coefficient of the hexic barrier.

2. Order h̄4

a. κ41

Using Eq. (2.28) and the explicit form of the hexic potential
[Eq. (F1)] we have that the fourth-order Janus term is

κ41 = h̄4β

16 × 24M

∫ ∞

−∞
d pdqpδ(4)(q)

∂4�0(p, q; β )

∂ p4
P0(p, q).

(F7)
We then note that∫ ∞

−∞
dqδ(4)(q) exp

(
βV6q6

720

)
θ

(
p +

√
MV6

720
q3

)
= 0 (F8)

since the integration by parts brings down powers of q that
vanish at the barrier so that

κ41 = 0. (F9)
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b. κ42

Showing that this term also vanishes is more involved. The
expression is

κ42 =
∫

dqδ(q)
5∑

j=0

g j2(q)I j (q) (F10)

where

I j (q) = β�0(0, q)
∫

d p
[ p

M
�0(p, 0)

]
δ(5)(p +

√
−2MV (q))

= (−1) j β

M
�0(0, q)

∫
d pδ(p +

√
−2MV (q))

× ∂ j

∂ pj
[p�0(p, 0)]. (F11)

The functions gj2(q) are readily found to be

g52(q) = MV6

242

q2

20
, (F12)

g42(q) = −
√

10MV6

2 × 960

1

q
, (F13)

g32(q) = 3

128 × q4
, (F14)

g22(q) = 1√
10MV6

5 × 27

16q7
, (F15)

g12(q) = −3 × 5 × 7 × 27

16MV6q10
, (F16)

g02(q) = 225 × 35 × 27

2(10MV6)3/2q13
. (F17)

We then find that

S(q) ≡
5∑

j=0

g j2(q)I j (q)

= MV6

242

q2I5(q)

20
−

√
10MV6

2 × 960

I4(q)

q
+ 3I3(q)

128 × q4

+ I2(q)√
10MV6

5 × 27

16q7
− 3 × 5 × 7 × 27I1(q)

16MV6q10

+225 × 35 × 27I0(q)

2(10MV6)3/2q13

= MV6

242

q2I5(q)

20
−

√
10MV6

2 × 960

I4(q)

q

+q2 β4V 2
6

5120 × 1080M2
q8 − 1

32

β3

M2

V6

40
q2 (F18)

and all these terms go as qn with n > 0 so they vanish when
integrating over the coordinate. We thus conclude that

κ42 = 0. (F19)

c. κ43

The h̄4 contribution to the thermal density at the barrier is
given in Eq. (2.14). Adapting it to the hexic barrier potential of
Eq. (F1) gives at most fourth-order derivatives of the potential,
so that at q = 0 this term too vanishes:

κ43 = 0. (F20)

d. κ44

To evaluate this contribution one first sums over all terms
and then integrates over the coordinate to find that it vanishes:

κ44 = − h̄4

8

∫ ∞

−∞
d pdq

[
βp

M
δ(q)	̂2�0(p, q; β )

]
P1(p, q)

= − h̄4

64

β

M

β

M

∫ ∞

−∞
dqδ′′(q)

1

q2
�0(p, q; β )

+ h̄4

64

β2

M2

∫ ∞

−∞
dqδ′′(q)

1

q2
�0(p, q; β ) = 0. (F21)

e. κ45, κ46, and κ4

As already noted when considering κ2, for the hexic barrier
the first-order-in-h̄2 contribution to the thermal density goes at
least as q4 and therefore this term also vanishes. For the same
reason also κ46 vanishes, so that summing it all up we remain
with

κ4 = 0. (F22)

The hexic potential barrier transmission coefficient differs
from the classical only for terms going as h̄6 and higher
powers.
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