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Experiments have demonstrated that the strong light-matter coupling in polaritonic microcavities
significantly enhances transport. Motivated by these experiments, we have solved the disordered
multimode Tavis-Cummings model in the thermodynamic limit and used this solution to analyze its
dispersion and localization properties. The solution implies that wave-vector-resolved spectroscopic
quantities can be described by single-mode models, but spatially resolved quantities require the
multimode solution. Nondiagonal elements of the Green’s function decay exponentially with distance,
which defines the coherence length. The coherent length is strongly correlated with the photon weight and
exhibits inverse scaling with respect to the Rabi frequency and an unusual dependence on disorder. For
energies away from the average molecular energy EM and above the confinement energy EC, the
coherence length rapidly diverges such that it exceeds the photon resonance wavelength λ0. The rapid
divergence allows us to differentiate the localized and delocalized regimes and identify the transition from
diffusive to ballistic transport.
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Introduction.—The spatial confinement of the light field
in microcavities gives rise to dispersive polaritons with
outstanding spectroscopic properties [1] and establishes an
alternative channel for charge and energy transport different
from the short-range hopping. Recent experimental mea-
surements of microcavities have found that transport can be
enhanced by orders of magnitude [2–7]. A thorough
description is challenging because of the large number
of light modes in the cavity and the energetic, spatial, and
orientational disorder.
Many theoretical models describe the light field

by a single cavity mode, which is coupled to a macro-
scopic number of quantum emitters [8–27]. Recent inves-
tigations have predicted an intriguing turnover of the
transport, relaxation, and the linewidth as a function of
disorder [8,9]. However, due to the all-to-all coupling
structure in single-mode models, excitons can travel
instantaneously between distant emitters and thus exceed
the speed of light, potentially leading to an unphysical
prediction for the transport efficiency.
Since the photonic dispersion relation ensures the speed

of light, the light fields should be described as a continuum
of cavity modes. For example, the impact of disorder on
polaritons was investigated perturbatively [28–31]. Exact
diagonalization and integration [32,33], mean-field based
approaches [34–37], Monte-Carlo methods [38], and

density-functional theory [39] have been used to numeri-
cally investigate multimode models. Yet, a fully micro-
scopic and analytical solution of the light-matter dynamics
for disordered quantum emitters is still lacking.
In this Letter, we analytically and numerically solve the

multimode disordered Tavis-Cumming model nonpertur-
batively. Our closed-form solution predicts a finite coher-
ence length for all polariton energies. Away from the
average molecular energy EM, the coherence length rapidly
diverges and exceeds by far the typical length of realistic
microcavities. This defines two transport regimes in the
energy spectrum: one regime of strongly localized polar-
itons, where transport is diffusive, and one regime of
delocalized polaritons, where the large coherence length
can support ballistic transport. The coherence length
exhibits a turnover as a function of disorder, which has
no analog in the Anderson localization [40–42], but is
reminiscent of noise-assisted transport [43,44].
Multimode disordered Tavis-Cummings model.—As

shown in Figs. 1(a) and 1(b), we consider a one-dimen-
sional microcavity of length L which contains N quantum
emitters representing atoms, molecules, NV centers, or
particle-hole pairs in semiconductors. For concreteness, we
focus on molecules in the following. We adopt a multimode
disordered Tavis-Cummings model, whose Hamiltonian is
given as Ĥ ¼ ĤM þ ĤL þ ĤLM, where
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ĤM ¼
XN
j¼1

EjB̂
†
j B̂j; ĤL ¼

X
k

ωkâ
†
kâk;

ĤLM ¼
XN
j¼1

X
k

gj;κB̂
†
j âk þ H:c: ð1Þ

The molecules j are described by bosonic operators B̂j.
Here, the excitation energies Ej are distributed according to

a Gaussian function PðEÞ ¼ ð1= ffiffiffi
π

p
σÞe−ðE−EMÞ2=ð2σ2Þ, with

center EM and disorder width σ. Yet, our findings also hold
for arbitrary disorder distributions. The light field is
quantized by the photonic operators âk labeled by k. The

photonic dispersion relation is ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2q2k þ E2

C

q
, where c

is the speed of light, qk is the wave vector (specified below),
and EC is the confinement energy depending on the
geometry of the microcavity. As the total excitation number
n̂ ¼ P

j B̂
†
j B̂j þ

P
k â

†
kâk is conserved, we can restrict our

analysis to the single-excitation manifold. The light-matter
interaction in Eq. (1) is given by gj;k ¼ gkφkðrjÞ, where
rj ¼ jL=N is the position of molecule j, gk is the wave
vector dependent light-matter interaction, and φkðrÞ are the
photonic mode functions in one-dimensional space. We
restrict the current investigation to energetic disorder, while
spatial and orientational disorder will be considered else-
where later.
For the numerical calculations we use an open boundary

condition, such that the photonic modes are φkðrÞ ¼
sin ðqkrÞ=

ffiffiffiffiffiffiffiffi
L=2

p
for the wave vectors qk ¼ πk=L with

integer k > 0 [45]. In the analytical calculation, we assume
a periodic boundary condition such that the photonic modes
are φkðrÞ ¼ exp ðiqkrÞ=

ffiffiffiffi
L

p
, where qk ¼ 2πk=L with inte-

ger k. We note that in the L → ∞ limit, the boundary
condition has a negligible effect.
Analytical solution.—The Heisenberg equations of B̂j

and âk are transformed into the Laplace space defined by
f̂ðzÞ ¼ R

∞
0 dte−ztf̂ðtÞ for arbitrary operators f̂ðtÞ. We find

that the coupling between different cavity modes k1, k2
scales as âk1ðzÞ ∝ ρN−1=2âk2ðzÞ and thus vanishes in the
thermodynamic limit N;L → ∞ with constant density ρ ¼
N=L [45]. In other words, one can treat the system as a
superposition of uncoupled single-mode systems, which
have been investigated in detail in Refs. [9,46,47]. The
solution of the Heisenberg operators in this limit is

âkðzÞ ¼
âð0Þk

zþ iωkðzÞ
− i

X
j

gj;kB̂
ð0Þ
j

½zþ iωkðzÞ�ðzþ iEjÞ
;

B̂jðzÞ ¼
B̂ð0Þ
j

zþ iEj
− i

X
k

gj;kâ
ð0Þ
k

ðzþ iEjÞ½zþ iωkðzÞ�

−
X
k

X
j1

gj;kg�j1;kB̂
ð0Þ
j1

ðzþ iEjÞ½zþ iωkðzÞ�ðzþ iEj1Þ
; ð2Þ

where âð0Þk and B̂ð0Þ
j denote the initial conditions of the

time evolution. We have defined the renormalized photon
energy by

FIG. 1. (a) One-dimensional microcavity of length L containing N molecules. (b) Sketch of the energy configuration of the cavity
modes (red sine functions) and the molecules (blue circles, Ej distributed around EM with Gaussian width σ). The molecules are coupled
with strength gj;k to the photonic modes, such that excitations can be transported via photons. (c) Wave-vector-resolved photon and
molecule LDOSs for EC ¼ 0.4 eV. (d),(e),(f) Average photon weight of the polaritons as a function of energy for EC ¼ 0.4, 1.0, 1.3 eV.
(g),(h),(i) Coherence length of the polaritons for the same EC values as in (d),(e),(f). Overall parameters are L ¼ 125 μm, N ¼ 5000,
EM ¼ 1, σ ¼ 0.05, and g

ffiffiffi
ρ

p ¼ 0.14 eV. The photonic cutoff energy is ωcutoff ¼ 50 eV, such that 5000 photonic modes are included in
the simulations.
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ωkðzÞ ¼ ωk − i
X
j

jgj;kj2
zþ iEj

→ ωk þ g2kρΓðzÞ; ð3Þ

where the z dependence reflects a retardation effect. We
have expressed the disorder average in terms of the density
ρ and the disorder-averaged Green’s function of the
unperturbed molecules ΓðzÞ ¼ −i

R
dE½PðEÞ=ðzþ iEÞ�.

Using Eq. (2), we can construct arbitrary retarded

Green’s functions such as GðLÞ
k;k0 ðzÞ≡ −i

��
âkðzÞ; âð0Þ†k0

��
or GðMÞ

j;j0 ðzÞ≡ −i
��
B̂jðzÞ; B̂ð0Þ†

j0
��
. Performing the disorder

average, the Green’s function for N;L → ∞ reads as

GðLÞ
k;k0 ðzÞ ¼ −i

δk;k0

zþ iωkðzÞ
;

GðMÞ
j;j0 ðzÞ ¼ ΓðzÞδj;j0 − i

X
k

gj;kg�j1;k
zþ iωkðzÞ

ρΓðzÞ2: ð4Þ

These Green’s functions are equivalent to the single-mode
system when the sum over k is neglected. The simple
superposition of all k modes reflects the mode decoupling
in the thermodynamic limit, for which the matter system
becomes homogeneous in a statistical sense.
Spectroscopy.—The wave-vector-resolved photon and

molecule local density of states (LDOSs) are given as

νX;kðωÞ≡ −limδ↓0ð1=πÞImGðXÞ
k;k ð−iωþ δÞ with X ¼ L and

X ¼ M, respectively, and can be measured spectroscopi-
cally [9].
In Fig. 1(c), we investigate the LDOSs for EC ¼ 0.4 eV.

The LDOSs for EC ¼ 1.0 and EC ¼ 1.3 eV can be found in
the Supplemental Material [45]. The dashed lines depict the
lower and upper polaritons for a vanishing disorder σ ¼ 0.
Close to ωk ¼ EM, where both dispersions would cross for
g ¼ 0, the lower and upper polaritons exhibit a Rabi
splitting of Ω ≈ 2g

ffiffiffi
ρ

p
. The photon and molecule LDOSs

closely follow the photonic dispersion curves of the
disorder-free systems (dashed). The photon LDOS accu-
mulates close to the photon dispersion ωk, but also around
EM close to the polariton anticrossing, where light and
matter are strongly mixed. The molecule LDOS accumu-
lates around EM, where it resembles the original disorder
distribution. Along ωk and away from EM, the molecule
LDOS is one order of magnitude smaller than the photon
LDOS. Because of level repulsion, the molecule LDOS is
suppressed for energies ωk at the anticrossing (purple
arrow), which resembles the electromagnetically induced
transparency and related effects [9,48–50]. As each photon
mode interacts with a disordered ensemble, the level
repulsion is smeared out in the photon LDOS.
The photon and molecule weights of a specific eigenstate

jαi with energy ω is given as WðXÞðωÞ≡ hαjP̂ðXÞjαi ¼P
k νX;kðωÞ=νðωÞ, where νðωÞ ¼ P

X¼L;M;k νX;kðωÞ, and

P̂ðXÞ is the photon (molecule) projection operator. The

numerical calculation in Figs. 1(d)–1(f) verifies the ana-
lytical solution for various EC. (i) For EC ¼ 0.4 eV < EM,
the photon weight vanishes around the resonance condition
ω ≈ 1 eV, as the molecules by far outnumber the photon
modes in this energy region. The photon weight increases
monotonically with increasing distance from the resonance
condition. (ii) For EC ¼ 1.0 eV ¼ EM, the photon weight
does not monotonically increase with distance from EM.
The peak around ω ≈ 0.9 eV is a consequence of the
polariton formation, causing the light field to be pushed
down energetically. (iii) For EC ¼ 1.3 eV > EM, light and
matter are energetically separated such that the mutual
influence is rather weak. Motivated by Ref. [32], we define
dark (bright) states as eigenstates with a photonic weight
WðLÞ < 10% (WðLÞ > 10%), which accumulate in the dip
of the photon weight in Fig. 1(d).
Polariton localization.—Figure 2(a) depicts the imagi-

nary part of the Green’s function in position space,

ηX;rðωÞ≡ −lim
δ↓0

1

π
ImGðXÞ

j;j0 ð−iωþ δÞ ∝ e−
r

2ζcoh ; ð5Þ

where r ¼ jrj − rj0 j, for EC ¼ 0.4 eV and three different
energies ω. In this definition we have used the translational

FIG. 2. (a) Imaginary part of the Green’s function as a function
of the relative position coordinate r ¼ rj − rj0 as defined in
Eq. (5). The results are shown in red (photon contribution, r > 0)
and blue (molecule contribution, r < 0). The black lines depict
the amplitude decay predicted by the coherence length in Eq. (7).
(b) Imaginary part of the Green’s function as a function of wave
vector (i.e., the LDOS). The solid and dashed black lines depict
the analytical predictions using Eq. (4). Parameters are the same
as in Fig. 1(d). Each Green’s function has been averaged over an
interval of width δ ¼ 0.005 ½eV�.
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invariance of the Green’s function in the N → ∞ limit. The
photon (molecule) Green’s function is depicted for r > 0
(r < 0). Clearly, the amplitude of the Green’s function
shows an exponential decay with increasing r, where the
coherence length ζcoh depends on energy.
Figure 2(b) depicts the imaginary part of the Green’s

function in wave vector space, i.e., νX;kðωÞ for X ¼ L;M.
Overall, we observe that the widths of the Green’s
functions in position and wave vector space are related
by the Heisenberg uncertainty principle. In contrast to the
photon contribution, which converges to zero for large
wave vectors q, the molecule Green’s function converges
to a finite value. This is reflected by strong spatial
fluctuations of the molecule Green’s function in position
space in Fig. 2(a), which are absent in the photon
Green’s function.
From Eq. (4) we can determine the coherence length ζcoh

using functional analysis, which characterizes the locali-
zation of the polaritons [45,51]: In the L → ∞ limit,
we find

ηL;rðωÞ ∝ GðLÞ
j;j0 ð−iωÞ ¼

Z
dqGqðωÞeiqr; ð6Þ

where r ¼ jrj − rj0 j ≠ 0 and GqðωÞ ¼ ð−iÞ=½−iωþ
iωqL=2πð−iωÞ�. Specifically, the Green’s function decays
as ∝ e−αr, where α is the largest value such that Gq−iα0

is analytic for all jα0j < α. Gq has two types of non-
analyticities, namely the roots of the denominator and the
branch cuts along the imaginary axis �q ∈ ½iEC=c; i∞�
due to the root in ωk. As explained later, the branch cut has
minor influence on ηX;r, such that the coherence length is
effectively determined by the root of Gq, i.e.,

ζ−1coh ¼
2

c
Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ω − g2ρΓð−iωÞ�2 − E2

C

q
; ð7Þ

where gk ¼ g is assumed for simplicity. Interestingly, the
coherence length depends via the product g

ffiffiffi
ρ

p ¼ Ω=2 (i.e.,
the Rabi frequency) on the light-matter coupling g.
In Figs. 1(g)–1(i), we compare the analytical expression

for ζcoh with the numerical evaluation [45], which confirms
the validity of the analytical solution. For large energies ω,
we observe that the coherence length diverges. For realistic
parameters and energies ω ≈ EM, the branch cuts starting at
�iðEC=cÞ have a minor influence on the coherence length,
as for a large EC, 2c=EC is significantly smaller than ζcoh,
while for small EC, the influence of the branch cut in the
Fourier transformation in Eq. (6) is negligible and the
Green’s function is still mainly determined by the pole of
the Green’s function [45].
Analysis.—In Fig. 1 we demonstrate a correlation

between the photon weight and the coherence length. As
the interaction between the molecules is mediated via
photons, the coherence length increases when photons

can travel further without being scattered by molecules.
The relation of coherence length and photon scattering can
be understood by expanding the Green’s function in orders
of g, where destructive interference of distinct photon
scattering paths decrease the coherence length for increas-
ing g [45]. A low scattering probability is reflected by a
large photon weight in the Green’s function. The coherence
length of the Green’s function can thus be identified with
the absorption length for light traveling along the extended
direction of the cavity according to Beer’s absorption
law [45]. Dark states have a detrimental impact on the
coherence length. In general, we find a clear relation of
dark states with a localized Green’s function, and bright
states with a delocalized Green’s function. The localized
(delocalized) regimes are thereby described by ζcoh < λ0
(ζcoh > λ0), where λ0 ¼ hc=EM is the resonance wave-
length of the molecular excitations.
In Fig. 3, we analyze the coherence length ζcoh as a

function of Ω ¼ 2g
ffiffiffi
ρ

p
and σ for EC ¼ 0.4 and

EC ¼ 1.0 eV. In Fig. 3(a) for small Ω, we observe a clear
linear dependence with slope −2 for all energies ω. This
can be explained by photon scattering, which consists of
absorption (∝ gρ) and reemission (∝ g). Interestingly, the
coherence length for ω ¼ 1.2 eV exhibits a dip for large Ω,
as the matter LDOS is strongly deformed and accumulates
around ω ¼ 1.2 eV, causing enhanced photon scattering.
The observations in Fig. 3(c) for EC ¼ 1.0 eV and large

ω ¼ 1.0, 1.1, 1.2 eV are qualitatively similar to panel (a).
The coherence length behaves very differently for small ω,
where the photonic modes are absent for g ¼ 0 as ωk > EC.
As for these energies eigenstates can be only formed with
non-resonant photon modes, the coherence length for small
Ω is very small and almost independent of Ω [45].
Interestingly, the coherence length increases over more
than 1 order of magnitude for Ω ≈ 0.3 and ω ¼ 0.8 eV

FIG. 3. Coherence length as a function of Rabi splitting [(a),(c)]
and disorder [(b),(d)]. Parameters are the same as in Fig. 1.
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because of the peak in the photon weight for small energies
ω ≈ 0.8 eV in Fig. 1(e).
Analyzing the coherence length as a function of disorder

in Fig. 3(b), we observe a turnover as a function of σ. This is
in contrast to the Anderson localization, where the coher-
ence length monotonically decreases with disorder. Recent
work has revealed a turnover of the steady-state flux as a
function of disorder in the single-mode Tavis-Cummings
model [8,9,15], which can be explained by the overlap of
the photon LDOS and the molecule energy disorder dis-
tribution PðEÞ [9]. This interpretation can also be employed
here. For small σ, the disorder distribution is strongly
centered around EM. With increasing σ, the disorder
distribution increases for ω ≠ EM, such that more molecules
can resonantly scatter the photons with energy ω, which
reduces the coherence length. For a large disorder, the
molecule energies spread over a large energy regime, such
that there are only few molecules in resonance with the
photon modes close to ω, which enhances the coherence
length. As the Gauss distribution becomes very flat close to
the center for large σ, the coherence length becomes
independent of ω for large σ. For ω ¼ 1.0 eV, we do not
observe a turnover, as the disorder distribution Pðω ≈ EMÞ
decreases monotonically for increasing σ. The turnovers can
be also observed for EC ¼ 1.0 eV in Fig. 3(d) for large
ω ¼ 1.1, 1.2 eV, while overall the dependence on σ is more
complicated because of the significant influence of the
square root dispersion relation of ωk close to q ¼ 0.
Conclusions.—We have analytically and numerically

solved the multimode disordered Tavis-Cummings model
and predict its dispersion and localization properties.
(i) The analytical solution is built on the mode decoupling
and statistical self-averaging and is exact in the thermo-
dynamic limit. Based on the solution, wave-vector-resolved
properties such as broadened spectral line shape and
dispersion can be predicted effectively within the single-
mode treatment, whereas spatial-dependent properties such
as transport and coherence length involve a wave vector
summation and thus require the multimode formalism.
(ii) A coherence length is introduced to characterize the
finite size of the eigenstates as a function of the excitation
energy and shows transitions from localized states around
the molecular energy (EM) to delocalized states away from
EM. These transitions are strongly correlated with the
photon weight and define a ballistic and a localized
transport regime. (iii) Intriguingly, the coherence length
is inversely proportional to the square of the Rabi frequency
and can exhibit a turnover as a function of disorder.
(iv) Both the dispersion and coherence length depend
strongly on the cavity confinement energy EC: the number
of available resonant photon modes and thus the light-
matter coupling regime increase as the cavity changes from
blueshifted (EC > EM), resonance (EC ¼ EM), to red-
shifted (EC < EM). The current investigation focuses on
the one-dimensional system with energetic disorder, while

higher-dimensional systems with spatial and orientational
disorder will be considered elsewhere.
The coherence length crucially depends on the light-

matter coupling and the disorder. For example, it can be
enhanced by more than one order of magnitude with a
slight increase of the light-matter interaction [cf. Fig. 3(c)].
Moreover, it can exhibit a turnover as a function of disorder,
which contrasts the monotonically decreasing coherence
length known from the Anderson localization, but is
reminiscent of noise-assisted quantum transport [52–55].
Arising from the overlap of the light LDOS and the disorder
distribution, this turnover is induced by the same mecha-
nism as the transport turnover previously predicted in the
single-mode disordered Tavis-Cummings model [9].
Experimentally, this turnover can be investigated using a
mixture of two molecular ensembles as in [18].
Noteworthy, the experiment in Ref. [7] has identified a

transition from diffusive transport for small photonic
weight to ballistic transport for large photonic weight.
This observation is in perfect agreement with our analytical
calculation, which predicts localized (i.e., diffusive) and
delocalized (i.e., ballistic) eigenstates and a sharp transition
as a function of excitation energy, as shown in Fig. 1. These
findings reveal that the photonic weight explains the
enhanced transport efficiency. In general, dark states with
low photon weight correspond to localized states, while
bright states with high photon weight correspond to
delocalized states.
The experiment in Ref. [38] indicates that phonon-

assisted coupling of diffusive eigenstates and ballistic
eigenstates helps to overcome the localization. Extending
our current model in Eq. (1) to incorporate phonon modes
will quantitatively demonstrate this mechanism. Moreover,
as experimentally shown in [56], the detrimental impact of
the cavity quality on transport properties can be modeled by
a complex dispersion relation ωk → ωk − iκ with κ > 0.
This will result in a complex energy shiftω → ωþ iκ in the
coherence length in Eq. (7), leading to a suppression of
transport. These and other experimental implications will
be studied in future works.
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[20] R. Houdré, R. P. Stanley, andM. Ilegems, Vacuum-field Rabi
splitting in the presence of inhomogeneous broadening:
Resolution of a homogeneous linewidth in an inhomoge-
neously broadened system, Phys. Rev. A 53, 2711 (1996).

[21] B. Xiang, R. F. Ribeiro, L. Chen, J. Wang, M. Du, J. Yuen-
Zhou, and W. Xiong, State-selective polariton to dark state
relaxation dynamics, J. Phys. Chem. A 123, 5918 (2019).

[22] M. Reitz, F. Mineo, and C. Genes, Energy transfer and
correlations in cavity-embedded donor-acceptor configura-
tions, Sci. Rep. 8, 9050 (2018).

[23] C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio,
Modification of excitation and charge transfer in cavity
quantum-electrodynamical chemistry, Proc. Natl. Acad. Sci.
U.S.A. 116, 4883 (2019).

[24] J. Cao, Generalized resonance energy transfer theory:
Applications to vibrational energy flow in optical cavities,
J. Phys. Chem. Lett. 13, 10943 (2022).

[25] B. Cui and A. Nitzan, Collective response in light-matter
interactions: The interplay between strong coupling and
local dynamics, J. Chem. Phys. 157, 114108 (2022).

[26] D. Finkelstein-Shapiro, P.-A. Mante, S. Balci, D.
Zigmantas, and T. Pullerits, Non-Hermitian Hamiltonians
for linear and nonlinear optical response: A model for
plexcitons, J. Chem. Phys. 158, 104104 (2023).

[27] Z. Zhang, X. Nie, D. Lei, and S. Mukamel, Multidimen-
sional Coherent Spectroscopy of Molecular Polaritons:
Langevin Approach, Phys. Rev. Lett. 130, 103001 (2023).

[28] F. M. Izrailev, S. Ruffo, and L. Tessieri, Classical repre-
sentation of the one-dimensional Anderson model, J. Phys.
A 31, 5263 (1998).

[29] V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, Cavity
polaritons in microcavities containing disordered organic
semiconductors, Phys. Rev. B 67, 085311 (2003).

[30] M. Litinskaya and P. Reineker, Loss of coherence of exciton
polaritons in inhomogeneous organic microcavities, Phys.
Rev. B 74, 165320 (2006).

[31] M. Litinskaya, P. Reineker, and V. Agranovich, Fast polar-
iton relaxation in strongly coupled organic microcavities, J.
Lumin. 110, 364 (2004).

[32] R. F. Ribeiro, Multimode polariton effects on molecular
energy transport and spectral fluctuations, Commun. Chem.
5, 48 (2022).

[33] T. F. Allard and G. Weick, Disorder-enhanced transport in a
chain of lossy dipoles strongly coupled to cavity photons,
Phys. Rev. B 106, 245424 (2022).

[34] J. Patton, V. Norman, R. Scalettar, and M. Radulaski, All-
photonic quantum simulators with spectrally disordered
emitters, arXiv:2112.15469.

[35] J. A. Ćwik, S. Reja, P. B. Littlewood, and J. Keeling,
Polariton condensation with saturable molecules dressed
by vibrational modes, Europhys. Lett. 105, 47009 (2014).

[36] A. Strashko, P. Kirton, and J. Keeling, Organic Polariton
Lasing and the Weak to Strong Coupling Crossover, Phys.
Rev. Lett. 121, 193601 (2018).

PHYSICAL REVIEW LETTERS 130, 213602 (2023)

213602-6

https://doi.org/10.1038/lsa.2016.212
https://doi.org/10.1038/lsa.2016.212
https://doi.org/10.1038/nmat4392
https://doi.org/10.1038/nmat4392
https://doi.org/10.1021/acsphotonics.7b01332
https://doi.org/10.1002/adma.202002127
https://doi.org/10.1002/adma.202002127
https://doi.org/10.1103/PhysRevLett.124.177401
https://doi.org/10.1103/PhysRevLett.124.177401
https://doi.org/10.1038/s41563-022-01463-3
https://doi.org/10.1103/PhysRevLett.126.153201
https://doi.org/10.1103/PhysRevB.105.064205
https://doi.org/10.1103/PhysRevB.105.064205
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevResearch.3.033141
https://doi.org/10.1063/1.4919348
https://doi.org/10.1103/PhysRevA.96.023863
https://doi.org/10.1103/PhysRevA.96.023863
https://doi.org/10.1103/PhysRevB.102.144202
https://doi.org/10.1103/PhysRevB.102.144202
https://doi.org/10.1103/PhysRevA.105.023714
https://doi.org/10.1103/PhysRevA.105.023714
https://doi.org/10.1088/1361-6455/ac0afa
https://doi.org/10.1021/acs.jpca.2c02359
https://doi.org/10.1021/acs.jpclett.2c02341
https://doi.org/10.1021/acs.jpclett.2c02341
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevA.53.2711
https://doi.org/10.1021/acs.jpca.9b04601
https://doi.org/10.1038/s41598-018-27396-z
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1073/pnas.1814178116
https://doi.org/10.1021/acs.jpclett.2c02707
https://doi.org/10.1063/5.0101528
https://doi.org/10.1063/5.0130287
https://doi.org/10.1103/PhysRevLett.130.103001
https://doi.org/10.1088/0305-4470/31/23/008
https://doi.org/10.1088/0305-4470/31/23/008
https://doi.org/10.1103/PhysRevB.67.085311
https://doi.org/10.1103/PhysRevB.74.165320
https://doi.org/10.1103/PhysRevB.74.165320
https://doi.org/10.1016/j.jlumin.2004.08.033
https://doi.org/10.1016/j.jlumin.2004.08.033
https://doi.org/10.1038/s42004-022-00660-0
https://doi.org/10.1038/s42004-022-00660-0
https://doi.org/10.1103/PhysRevB.106.245424
https://arXiv.org/abs/2112.15469
https://doi.org/10.1209/0295-5075/105/47009
https://doi.org/10.1103/PhysRevLett.121.193601
https://doi.org/10.1103/PhysRevLett.121.193601


[37] I. Sokolovskii, R. H. Tichauer, J. Feist, and G. Groenhof,
Enhanced excitation energy transfer under strong light-
matter coupling: Insights from multi-scale molecular dy-
namics simulations, arXiv:2209.07309.

[38] D. Xu, A. Mandal, J. M. Baxter, S. W. Cheng, I. Lee, H. Su,
S. Liu, D. R. Reichman, and M. Delor, Ultrafast imaging
of coherent polariton propagation and interactions,
arXiv:2205.01176.

[39] A. M. Alvertis, R. Pandya, C. Quarti, L. Legrand, T.
Barisien, B. Monserrat, A. J. Musser, A. Rao, A. W.
Chin, and D. Beljonne, First principles modeling of ex-
citon-polaritons in polydiacetylene chains, J. Chem. Phys.
153, 084103 (2020).

[40] P. W. Anderson, Absence of diffusion in certain random
lattices, Phys. Rev. 109, 1492 (1958).

[41] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling Theory of Localization: Absence of
Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42,
673 (1979).

[42] Y. Wang, X. Xia, L. Zhang, H. Yao, S. Chen, J. You, Q.
Zhou, and X.-J. Liu, One-Dimensional Quasiperiodic Mo-
saic Lattice with Exact Mobility Edges, Phys. Rev. Lett.
125, 196604 (2020).

[43] J. Cao and R. J. Silbey, Optimization of exciton trapping in
energy transfer processes, J. Phys. Chem. A 113, 13825
(2009).

[44] C. Chuang, C. K. Lee, J. M. Moix, J. Knoester, and J. Cao,
QuantumDiffusion onMolecular Tubes: Universal Scaling of
the 1D to 2DTransition, Phys. Rev. Lett. 116, 196803 (2016).

[45] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.213602 for more
information about the solution of the TC model and the
numerical calculations.

[46] G. Engelhardt, G. Schaller, and T. Brandes, Bosonic
Josephson effect in the Fano-Anderson model, Phys. Rev.
A 94, 013608 (2016).

[47] G. E. Topp, G. Schaller, and T. Brandes, Steady-state
thermodynamics of non-interacting transport beyond weak
coupling, Europhys. Lett. 110, 67003 (2015).

[48] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent
media, Rev. Mod. Phys. 77, 633 (2005).

[49] G. Engelhardt and J. Cao, Dynamical Symmetries and
Symmetry-Protected Selection Rules in Periodically Driven
Quantum Systems, Phys. Rev. Lett. 126, 090601 (2021).

[50] F. Herrera and M. Litinskaya, Disordered ensembles of
strongly coupled single-molecule plasmonic picocavities as
nonlinear optical metamaterials, J. Chem. Phys. 156,
114702 (2022).

[51] M. Reed and S. Barry, Methods of Modern Mathematical
Physics. II. Fourier Analysis, Self-Adjointness (Academic
Press, New-York-London, 1975), Section IX.3; Theo-
rem IX.13.

[52] J. Wu, R. J. Silbey, and J. Cao, Generic Mechanism of
Optimal Energy Transfer Efficiency: A Scaling Theory of
the Mean First-Passage Time in Exciton Systems, Phys.
Rev. Lett. 110, 200402 (2013).

[53] C. K. Lee, J. Moix, and J. Cao, Coherent quantum transport
in disordered systems: A unified polaron treatment of
hopping and band-like transport, J. Chem. Phys. 142,
164103 (2015).

[54] G. Engelhardt and J. Cao, Tuning the Aharonov-Bohm
effect with dephasing in nonequilibrium transport, Phys.
Rev. B 99, 075436 (2019).

[55] A. Chenu and J. Cao, Construction of Multichromophoric
Spectra from Monomer Data: Applications to Resonant
Energy Transfer, Phys. Rev. Lett. 118, 013001 (2017).

[56] R. Pandya, A. Ashoka, K. Georgiou, J. Sung, R.
Jayaprakash, S. Renken, L. Gai, Z. Shen, A. Rao, and
A. J. Musser, Tuning the coherent propagation of organic
exciton-polaritons through dark state delocalization, Adv.
Sci. 9, 2105569 (2022).

PHYSICAL REVIEW LETTERS 130, 213602 (2023)

213602-7

https://arXiv.org/abs/2209.07309
https://arXiv.org/abs/2205.01176
https://doi.org/10.1063/5.0019009
https://doi.org/10.1063/5.0019009
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.125.196604
https://doi.org/10.1103/PhysRevLett.125.196604
https://doi.org/10.1021/jp9032589
https://doi.org/10.1021/jp9032589
https://doi.org/10.1103/PhysRevLett.116.196803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.213602
https://doi.org/10.1103/PhysRevA.94.013608
https://doi.org/10.1103/PhysRevA.94.013608
https://doi.org/10.1209/0295-5075/110/67003
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/PhysRevLett.126.090601
https://doi.org/10.1063/5.0080063
https://doi.org/10.1063/5.0080063
https://doi.org/10.1103/PhysRevLett.110.200402
https://doi.org/10.1103/PhysRevLett.110.200402
https://doi.org/10.1063/1.4918736
https://doi.org/10.1063/1.4918736
https://doi.org/10.1103/PhysRevB.99.075436
https://doi.org/10.1103/PhysRevB.99.075436
https://doi.org/10.1103/PhysRevLett.118.013001
https://doi.org/10.1002/advs.202105569
https://doi.org/10.1002/advs.202105569

