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ABSTRACT Fluctuating turnover times of a single enzyme become observable with the advent of modern cutting-edge, single
enzyme experimental techniques. Although the conventional chemical kinetics and its modern generalizations could provide
a good quantitative description for the mean of the enzymatic turnover times, to our knowledge there has not yet been a success-
ful quantitative interpretation for the variance or the randomness of the enzymatic turnover times. In this review, we briefly review
several theories in this field, and compare predictions of these theories to the randomness parameter data reported for
b-galactosidase enzyme. We find the recently proposed kinetics for renewal reaction processes could provide an excellent
quantitative interpretation of the randomness parameter data. From the analysis of the randomness parameter data of the single
enzyme reaction, one can extract quantitative information about the mean lifetime of enzyme-substrate complex; the success or
the failure probability of the catalytic reaction per each formation of ES complex; and the non-Poisson character of the reaction
dynamics of the ES complex (which is beyond reach of the long-standing paradigm of the conventional chemical kinetics).
INTRODUCTION
Reactivity fluctuations of individual enzymes are ubiqui-
tous, and their effects on a series of single enzyme turnover
times become observable with advances in single molecule
experimental techniques (1–8). Recently, English et al. (3)
performed a state-of-the-art single-molecule measurement
of catalytic turnover times for individual b-galactosidase
enzymes catalyzing the hydrolysis of resorufin-b-D-galacto-
pyranoside (RGP), and reported the statistical distribution of
the catalytic turnover times of the individual enzyme at
several different concentrations of substrate RGP. The
authors found that the dependence of the mean enzymatic
turnover time hti on the substrate concentration can be
well explained by the Michaelis-Menten relation, which
provides the same information as that extracted from the
conventional analysis for the macroscopic enzyme reaction
system (9).

In the single enzyme experiment, fluctuation of the enzy-
matic turnover times is an important observable, carrying
valuable information that cannot be obtained from conven-
tional experimental analysis (10–17). In English et al. (3),
the authors also reported the randomness parameter, or the
relative variance of enzymatic turnover time fluctuations,
for the single enzyme system for various substrate concen-
trations. However, to our knowledge, there has not yet
been any quantitative interpretation of the randomness
parameter data reported in English et al. (3). In this review,
we present some of the previous theories given for a quanti-
tative interpretation of the fluctuation of enzymatic turnover
times (15–19), and compare predictions of these theories to
the randomness parameter data reported in English et al. (3).
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We find that, for a successful quantitative analysis of the
randomness parameter data of the enzyme reaction, it is
necessary to go beyond the conventional enzyme kinetics
in which each and every elementary reaction process
composing the Michaelis-Menten enzyme reaction scheme,
Eþ S%ES/Eþ P (with E, S, and P being the enzyme, the
substrate, and the product molecule), is a simple rate process
or a Poisson process. The randomness parameter data could
not be explained with the assumption that the reaction
processes of enzyme-substrate (ES) complex are Poisson
processes (15,16). Previously, a generalization of the
conventional enzyme kinetics was proposed for a quantita-
tive description of the statistical distribution of the enzy-
matic turnover times, in which the catalytic reaction rate
of the ES complex is assumed to be statically heterogeneous
and distributed according to a certain probability distribu-
tion (3,17). However, we find that the behavior of the
randomness parameter predicted by the latter approach is
qualitatively different from that of the experimental
randomness parameter data.

The randomness parameter data of the enzyme reaction
could be quantitatively explained by the recently proposed
kinetics for renewal reaction processes that are possibly
non-Poisson stochastic processes (18,19). The generalization
of the conventional chemical kinetics into the kinetics for
renewal reaction processes is reminiscent of the generaliza-
tion of the usual random walk model into the continuous-
time random walk model for a general description of
molecular transport in a dynamically heterogeneous environ-
ment (20,21). The mean enzymatic turnover time predicted
by the renewal chemical kinetics is equivalent to that pre-
dicted by the conventional chemical kinetics (14,18).
However, the prediction of the renewal chemical kinetics
for the fluctuation of the single enzyme reaction times is
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much different from that of the conventional chemical
kineticswhenever the stochastic properties of enzyme’s reac-
tion processes deviate from those of Poisson processes (19).

To begin, we present a review of the straightforward
application of the conventional chemical kinetics for
description of statistical distribution, j(t), of enzymatic
turnover times for the Michaelis-Menten scheme (15,16),
which is then followed by reviews of a couple of modern
theories that aim for quantitative description of the single
enzyme turnover-time distribution (3,17–19). After the
review of the theories, direct comparison is made between
the predictions of these theories and the experimental data
for the dependence of the randomness parameter on the
substrate concentration.
CONVENTIONAL CHEMICAL KINETICS

A straightforward application of the conventional chemical
kinetics to the single enzyme catalytic reaction,

Eþ S%
k1

k�1

ES/
k2

Eþ P, yields

dPEþSðtÞ
dt

¼ �k1½S�PEþSðtÞ þ k�1PESðtÞ; (1a)

dPESðtÞ

dt

¼ k1½S�PEþSðtÞ � k�1PESðtÞ � k2PESðtÞ; (1b)

dPEþPðtÞ

dt

¼ k2PESðtÞ; (1c)

where PJ(t) denotes the probability that the single enzyme

system is in chemical state J at time t (15,16,22). The
initial condition associated with Eq. 1 is PEþS(0) ¼ 1,
PES(0) ¼ PEþP(0) ¼ 0. The values k1, k�1, and k2, respec-
tively, denote the rate constant for the association reaction
E þ S / ES of substrate molecules to the enzyme, that
for the dissociation reaction E þ S ) ES, and that for the
catalytic reaction ES / E þ P of ES complex. The value
[S] denotes the number density of substrate molecules in
the system. We assume that the number of substrate mole-
cules in the system is so large that [S] does not change in
time appreciably during the repeated measurements of fluc-
tuating turnover times of a single enzyme. The solution of
Eq. 1 can be easily obtained and is well known (23).

The statistical distribution j(t) of the time elapsed for
completion of a single enzyme catalytic reaction is related
to PEþP(t) by PEþP(t) ¼

R t
0
dt jðtÞ. Therefore, the enzy-

matic turnover-time distribution jC(t) in the conventional
chemical kinetics is given by

jCðtÞ ¼ d

dt
PEþPðtÞ ¼ k2PESðtÞ: (2)

Substituting the solution of Eq. 1 into Eq. 2, one gets the

analytic expression for jC(t) as
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jCðtÞ ¼ ab

b� a

�
e�at � e�bt

�
: (3)

Here a and b are time-independent constants given by

a ¼ 2�1ðl�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4x

p
Þand b ¼ 2�1ðlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4x

p
Þ, with

l and x being l ¼ k1[S] þ k�1 þ k2 and x ¼ k2k1[S],

respectively.

The mean, htiCðh
RN
0

dt tjCðtÞÞ, of the enzymatic turn-
over-time distribution jC(t) in Eq. 3 is

htiC ¼ htimin

�
1þ KM

½S�
�
; (4)

where htimin and KM are the mean turnover time in the high

substrate concentration limit and the Michaelis-Menten
constant given by htimin ¼ k2

�1 and KM ¼ k�1 þ k2/k1.
The randomness parameter Q for an enzymatic turnover-
time distribution j(t) is defined by

Q ¼ hti2�hti2
hti2 � 1; (5)

where htni is the nth moment of the enzymatic turnover-time
n

RN n
distribution j(t), i.e., ht i ¼
0

t jðtÞdt. The expression for
the randomness parameter for the enzymatic turnover-time
distribution jC(t) given in Eq. 3 can be obtained as (15,17)

QC ¼ � 2p02x

ð1þ xÞ2; (6)

where p02 and x are given by p02 ¼ k2/(k�1 þ k2) and x ¼
[S]/KM, respectively. Note that the randomness parameter
predicted by the conventional chemical kinetics assumes
a negative value for the whole range of substrate concentra-
tions, which is inconsistent with the positive randomness
parameter data for b-galactosidase reported in English
et al. (3).
STATICALLY HETEROGENEOUS ENZYME
REACTION KINETICS

A generalization of the conventional chemical kinetics that
predicts a positive randomness parameter is made in English
et al. (3) and Kou et al. (17) in which a probability distribu-
tion w(k2) of the rate coefficient k2 of the catalytic reaction
of the ES complex is assumed, and the following form of
enzymatic turnover-time distribution is suggested:

jGCðtÞ ¼
Z

dk2wðk2ÞjCðtÞ: (7)

Noting that the nth moment htniGCðh
RN
0

tnjGCðtÞdtÞ of
jGC(t) is given by htniGC ¼ R dk2wðk2ÞhtniC, with htniC
being the nth moment of jC(t) given in Eq. 3, one can
recover Eq. 4 for the mean htiGC of the enzymatic turnover
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distribution jGC(t) with KM in Eq. 4 being replaced by
KM

GC ¼ (k�1 þ hk2�1i�1
w)/k1. Hereafter, hk2�niw is given

by hk2�niw ¼R dk2wðk2Þk�n
2 . We obtain the expression of

the randomness parameter QGC associated with jGC(t) as

QGC ¼ 2

"
s2
k�1
2�

k�1
2

�2
�
1þ pGC�1x

�2
ð1þ xÞ2 � pGC2 x

ð1þ xÞ2
#
: (8)

Here, s2
k�1
2

and x, respectively, denote the variance of k2
�1

and the substrate concentration in unit of KM
GC, i.e.,

s2
k�1
2

¼ hk�2
2 i � hk�1

2 i2 and x ¼ ½S�=KGC
M . pGC�1 and pGC2

in Eq. 8 are defined by pGC�1hk�1=ðk�1 þ hk�1
2 i�1Þ and

pGC2 hhk�1
2 i�1=ðk�1 þ hk�1

2 i�1Þ. The parameter QGC in
Eq. 8 correctly reduces to QC in Eq. 6 in the absence of fluc-
tuation of k2, or in the small s2

k�1
2

limit. However, for any
distribution w(k2) of k2 with a finite variance, QGC deviates
from QC. Note that QGC can assume a positive value
whereas QC cannot; in this sense, QGC provides a better
description for the positive randomness parameter data of
the b-galactosidase enzyme investigated in English et al.
(3). However, the behavior of QGC given in Eq. 8 is qualita-
tively different from the experimental data, which will be
discussed in more detail shortly.
KINETICS FOR A RENEWAL REACTION PROCESS

Recently, a new type of chemical kinetics is developed for
description of a single molecule reaction composed of
possibly non-Poisson elementary reaction processes
(18,19). In this approach, the turnover-time distribution
j(t) of the single enzyme reaction is represented in terms
of the reaction time distributions, f1

0(t), f�1(t), and f2(t)

for the three elementary reaction processes, Eþ S/
f0
1ðtÞ

ES,

Eþ S)
f�1ðtÞ

ES, and ES/
f2ðtÞ

Eþ P. The reaction time
distribution (RTD) for each of the elementary reactions
represents the probability density of the time elapsed for
a completion of the elementary reaction process. The
precise definition of f1

0(t)dt is the probability that the
enzyme-substrate association reaction, E þ S / ES, is
completed in time interval (t,t þ dt), given that the reaction
begins at time 0. Here, the superscript 0 in f1

0(t) signifies
that the RTD of the enzyme-substrate encounter process is
normalized, i.e.,

RN
0

dt f0
1ðtÞ ¼ 1.

On the other hand, f�1(2) (t)dt denotes the probability that
the dissociation (catalytic) reaction of ES complex is
completed in time interval (t,t þ dt), given that the ES
complex is prepared at time 0. In contrast to f1

0(t), the terms
f�1(t) or f2(t) for the dissociation or catalytic reaction of
the ES complex do not satisfy the normalization condition;
instead,

RN
0

f�1ðtÞdt and
RN
0

dtf2ðtÞ are the probability p�1

of dissociation and the probability p2 of catalytic reaction of
the ES complex, respectively, so that their sum is normal-
ized, i.e.,

RN
0

dt½f�1ðtÞ þ f2ðtÞ� ¼ 1. The relation of the
enzymatic turnover-time distribution j to the reaction
time distributions, f1

0, f�1, and f2, of the elementary reac-
tion processes is given in Laplace domain as

bjðuÞ ¼
bf0

1ðuÞbf2ðuÞ
1� bf0

1ðuÞbf�1ðuÞ
: (9)

In Eq. 9, bf ðuÞ denotes the Laplace transform of f(t), definedb RN

by f ðuÞ ¼

0
dt expð�utÞf ðtÞ.

When the elementary reaction processes composing
the enzyme reaction are Poisson processes, j(t), the
Laplace transform of which is given in Eq. 9, reduces to
jC(t). The RTD, f1

0(t), of the Poisson enzyme-substrate
encounter process (Eþ S/

k1
ES) is given by

f0
1ðtÞ ¼ k1½S�expð�k1½S�tÞ. The RTD, f�1(t) and f2(t) for

the dissociation (E þ S ) ES) and the
catalytic reaction (ES / E þ P) of the ES complex,
are given by f�1ðtÞ ¼ f0

�1ðtÞ
RN
t dtf0

2ðtÞ and f2ðtÞ ¼
f0
2ðtÞ

RN
t dtf0

�1ðtÞ, respectively (21), where f0
�1/(2)(t)

denotes the normalized one-channel reaction-time distribu-
tion for the dissociation (catalytic reaction) of the ES com-
plex in the absence of the competing catalytic reaction
(dissociation). When both the dissociation and the catalytic
reaction of the ES complex are Poisson processes, f0

�1(t)
and f0

2(t) are given by k�1 exp(�k�1t) and k2 exp(�k2t),
respectively; therefore, f�1(t) and f2(t) become f�1(t) ¼
k�1 exp[�(k�1 þ k2)t] and f2(t) ¼ k2 exp[�(k�1 þ k2)t].

Substituting bf0

1ðuÞ ¼ k1½S�=ðuþ k1½S�Þ, bf�1ðuÞ ¼ k�1=

ðuþ k�1 þ k2Þ, and bf2ðuÞ ¼ k2=ðuþ k�1 þ k2Þ into Eq. 9,
one gets

bjðuÞ ¼ x

u2 þ luþ x
; (10)

where l and x are given by l ¼ k1[S] þ k�1 þ k2 and x ¼

k2k1[S]. The inverse Laplace transform of bjðuÞ given in
Eq. 10, j(t), is equal to jC(t) predicted by the conventional
chemical kinetics.

In the single enzyme reaction, the enzyme-substrate
encounter process may be approximated as a simple Poisson
process in the steady state. However, the dissociation or the
catalytic reaction of the ES complex may not be a Poisson
process, as the reactivity of the ES complex is dynamically
fluctuating in line with the conformational dynamics of the
ES complex (24). For a given conformation of the ES
complex, the reaction of the ES complex can still be a
non-Poisson process when the substrate or product escape
process out of the enzyme molecule is a complex one
involving a number of different intermediate states and
multiple reaction channels (19). Depending on the micro-
scopic reaction dynamics of the ES complex, the functional
form for f�1(t) and f2(t) can be various. However, it is
possible to obtain the expression for the mean hti and the
randomness parameter Q of enzymatic turnover-time distri-
bution j(t) without assuming a particular functional form
Biophysical Journal 101(3) 519–524
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for f�1(t) and f2(t). The expression for the mean of enzy-
matic turnover-time distribution j(t) conforms to the
conventional MM equation, Eq. 4, which is given by (18,19)

hti ¼ nþ 1

k1½S� þ nht�1i þ ht2i: (11)

Here n is the average number of dissociation event per each

enzymatic turnover given by n ¼ p�1=p2 with p�1(2) being
the reaction probability,

RN
0

dtf�1ð2ÞðtÞ, of ES complex for
the dissociation (catalytic) reaction, ES / E þ S(P). In
Eq. 11, ht�1(2)i denotes the mean dissociation (catalytic)
reaction time of the ES complex in the presence of the
competing catalytic (dissociation) reaction, defined byRN
0

dt tf�1ð2ÞðtÞ=p�1ð2Þ. From the comparison between
Eqs. 4 and 11, KM and htimin can be identified as KM ¼
(k1htESi)�1 and htimin ¼ htESi/p2, where htESi is the mean
lifetime of the ES complex, defined by htESi ¼ p�1 ht�1i þ
p2 ht2i. In comparison, the expression for the randomness
parameter Q calculated from Eq. 9 is much different from
QC or QGC (19):

Q ¼ QN

xðx � hÞ
ðx þ 1Þ2 : (12)

Here QN, h, and x are given by QN ¼ p2qES/htESi2, h ¼ 2p2
0.8
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(<t
2
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2
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FIGURE 1 Comparison between the results of the previously reported

theories and the experimental data for the randomness parameter data of

enzymatic turnover times. (Solid circles and solid squares) Randomness

parameter data reported in English et al. (3) for b-galactosidase catalyzing

the hydrolysis of RGP. (Black line) The result, Eq. 6, of the conventional

chemical kinetics, which is always negative (15,16). (Blue line) The result,

Eq. 8, obtained from the enzymatic turnover-time distribution proposed in

English et al. (3) and Kou et al. (17). (Red line) The result, Eq. 12, of the

single molecule kinetics for non-Poisson renewal reaction processes

(18,19).
ht2i/(QNhtESi), and x ¼ [S]/KM with qES being defined by
qES ¼ p2(ht22i) � 2ht2i2) þ p�1(ht2�1i � 2 ht�1i ht2i). The
value qES is the parameter representing the stochastic prop-
erty of the reactions of the ES complex. When the dissoci-
ation and the catalytic reaction processes of the ES
complex are Poisson processes, qES vanishes and Q in
Eq. 12 reduces to QC in Eq. 6. It is known that qES appearing
in QN of Eq. 12 assumes a positive value if the reaction
processes of ES complex is a generalized Poisson process
of which rate coefficient, k�1(r) or k2(r), is dependent on
microscopic configuration r of the ES complex. On the other
hand, qES assumes a negative value when the reaction of ES
complex is a multistep reaction composed of consecutive
Poisson reaction processes, ES#I1#/#In/Eþ SðPÞ,
with Ik being the kth intermediate state during the reaction
of ES complex (19).

Equations 11 and 12 for the mean turnover time and
the randomness parameter hold regardless of whether the
normalized reaction time distribution f�1(t)/p�1 for the
dissociation reaction of ES complex is the same as f2(t)/
p2 for the catalytic dissociation reaction. That is to say, in
the analysis of the mean turnover time and the randomness
parameter, one can map the model considered above into the
simpler model in which f�1(t)/p�1 is the same as f2(t)/p2.
For the latter model, the physical interpretation of qES and
hQN in Eq. 12 becomes simpler; qES is the variance ht2ESi �
htESi2 of the conformation-dependent mean lifetime of the
ES complex and hQN is twice the success probability p2
of the catalytic reaction of the ES complex. From the anal-
ysis of the experimental randomness parameter data along
Biophysical Journal 101(3) 519–524
with the mean turnover time data with use of the latter
model, one can separately extract values of the physical
parameters p2, htESi, ht2ESi � htESi2, and k1 of the enzyme
reaction system.
COMPARISON TO EXPERIMENTAL RANDOMNESS
PARAMETER DATA

In Fig. 1, we make a direct comparison between the predic-
tions of the above-mentioned theories for the randomness
parameter and the experimental randomness parameter
data reported in English et al. (3). The parameter QC given
in Eq. 6 yields a negative value for any substrate concentra-
tion, inconsistent with the experimental randomness param-
eter data. In comparison,QGC in Eq. 8 yields a positive value
for the randomness parameter. However, as shown in Fig. 1,
the dependence of QGC on substrate concentration appears
much different from the experimental randomness param-
eter data. The randomness parameter QGC calculated from
jGC(t) looks nearly constant at all substrate concentrations
investigated in English et al. (3), whereas the experimental
randomness parameter data exhibit a strongly nonlinear
behavior. Particularly, the behavior of the randomness
parameter QGC predicted by jGC(t) is qualitatively different
from the experimental data in the low substrate concentra-
tion regime. The parameter QGC yields the following
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expression for the randomness parameter Q0 in the low
substrate concentration limit,

Q0

 
h lim

½S�/0

ht2i � hti2
hti2 � 1

!
¼

2
	�

k�2
2

�
w
��k�1

2

�2
w



�
k�1
2

�2
w

; (13)

which could not vanish for any probability density function
w(k2) with a finite variance. This fact indicates that jGC(t)
cannot be the correct enzymatic turnover-time distribution
of the b-galactosidase enzyme investigated in English et al.
(3), for any choice of w(k2). In producing the curves for QGC

in Fig. 1, the values of the adjustable parameters and the func-
tional form of w(k2) are chosen as given in English et al. (3).

As a matter of fact, jGC(t) is the exact enzymatic turn-
over-time distribution for such statically heterogeneous
enzymes in which each enzyme has constant values for
rate constants, k1, k�1, and k2 throughout the experiment
but the value of k2 is different from enzyme to enzyme,
distributed over the enzymes according to w(k2). In the latter
system, each enzyme has a turnover-time distribution jC(t)
with different values of k2 from each other, and the average
of the turnover-time distribution over the enzymes with
equal weight for every enzyme results in jGC(t). However,
the behavior of the randomness parameter data reported in
English et al. (3) is inconsistent with that of the statically
heterogeneous enzyme model.

We find that Q given in Eq. 12 provides an excellent quan-
titative description of the randomness parameter data unless
we set the value of the MM constant, KM, to be the same as
that reported in English et al. (3). (Note also that the value
of KM reported in English et al. (3) is 380 mM. With use of
the latter value of KM, Eq. 12 could not provide a good quan-
titative description of the randomness parameter data. See
Fig. 5 of Jung et al. (19).) The values of the extracted param-
eters are given by QN ¼ 1.57 and h ¼ 0.624, and KM y
20 mM,which yield p2y 0.49, and (ht2ESi � htESi2)/htESi2y
3.2. Using the value of 1/htimin as 730 s

�1, extracted from the
mean turnover-time analysis in English et al. (3), we can
determine the value of the mean lifetime htESi of the ES
complex: htESi ¼ p2htmini ¼ 0.67 ms. In addition, the value
of the bimolecular rate coefficient k1 associated with the
enzyme-substrate encounter reaction can be obtained from
theMM constant by k1¼ 1/(KM htESi)y 7.46� 107M�1 s�1.

We finish by noting that the single enzyme reaction is not
really a renewal process, as the turnover-time distribution of
an enzyme would change in time in line with thermal fluctu-
ations of the enzyme’s conformation with a wide range of
timescales. For this reason, the enzymatic turnover times
are correlated, and the renewal kinetics would not be enough
for a quantitative description of the turnover-events’ counting
statistics or the probability Pm(T) where we observe m enzy-
matic turnover reactions in observation time T (11,12,14).
(For a renewal process, the randomness parameter Q in this
review is the same as Mandel’s Q parameter, which has
been analyzed in the context of photon statistics; see Barkai
et al. (25). The randomness parameter Q can be different
from Mandel’s Q parameter for nonrenewal processes such
as a single enzyme reaction.) However, when the observation
time is much longer than the conformational relaxation time
of the ES complex, the distribution of single enzymatic turn-
over times canbedescribed byEq. 9 (19). For a particular real-
ization of a single enzymatic turnover, the enzymatic turnover
time t is given by t¼ t1þ n(t�1þ t1)þ t2, where t1, t�1, and t2,
respectively, denote the reaction times associated with E þ
S / ES, E þ S ) ES, and ES / E þ P, and n denotes the
number of dissociation-association cycles realized during
the single enzymatic turnover.

As long as the probability density functions of reaction
times, t�1 and t2, of the ES complex are independent of
the number, n, of dissociation-association cycles in the
single enzymatic turnover, the joint probability jn(t)dt
that the single enzymatic turnover time lies between t and
t þ dt and n cycles of dissociation-association reactions
occur during the single enzymatic turnover can be repre-

sented as bjnðuÞ ¼ bf0

1ðuÞ½bf�1ðuÞbf0

1ðuÞ�nbf2ðuÞ in the Lap-
lace domain for any value of n. Note that

RN
0

dtjnðtÞ ¼bjnð0Þ ¼ ð1� p2Þnp2 is nothing but the probability that the
ES complex suffers n cycles of dissociation-association
reactions during a single enzymatic turnover. Note, in addi-
tion, that

PN
n¼0jnðtÞ yields the single enzymatic turnover-

time distribution for which the Laplace transform is given
in Eq. 9.

This result indicates that the only assumption involved in
Eq. 9 is that probability density functions of reaction times,
t�1 and t2, of the ES complex are independent of the number,
n, of dissociation-association cycles suffered by the ES
complex in a single enzymatic turnover. The significant
assumption in the derivation of Eq. 12 from Eq. 9 is that
the substrate-enzyme association reaction has a constant
steady-state reaction rate, which is widely accepted and
also assumed in English et al. (3). Nevertheless, when the
substrate concentration is low enough, the latter assumption
may not hold and the substrate-enzyme association may not
be a Poisson process. Effects of the non-Poisson substrate-
enzyme association reaction on the mean and the random-
ness parameter of single enzyme turnover times will be
discussed elsewhere shortly.
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