Problem Set 2 Solution

All parts are due Thursday, October 13 at 11:59PM.

Name: Jisoo Min

Collaborators:

Part A

Problem 2-1. [10 points] Back-solving recurrences

(a) Solution: \(a = 4 \)

Recurrence: \(T(n) = aT(n/2) + \Theta(n^2) \ (a \in \mathbb{N}); T(n) = \Theta(n^2 \lg n) \).

Only case 2 of the master theorem can produce this asymptotic bound. Case 2 states that if \(f(n) = \Theta(n^\log_a 2) \), then \(T(n) = \Theta(n^\log_a 2 \lg n) \). To match the result, we get \(a = 4 \). We need to make sure that the condition \(f(n) = \Theta(n^\log_a 2) \) can be satisfied with \(a = 4 \). We are given \(f(n) = \Theta(n^2) \) in the problem, so the condition can be satisfied and case 2 works. Therefore, \(a = 4 \) is valid.

(b) Solution: \(a = 9 \)

Recurrence: \(T(n) = aT(n/3) + \Theta(n) \ (a \in \mathbb{N}); T(n) = \Theta(n^2) \).

Only case 1 of the master theorem can produce this asymptotic bound. Case 1 states that if \(f(n) = \Theta(n^\log_3 a - \epsilon) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^\log_3 a) \). To match the result, we get \(a = 9 \). We need to make sure that the condition \(f(n) = \Theta(n^\log_3 a - \epsilon) \) can be satisfied with \(a = 9 \). We are given \(f(n) = \Theta(n^2) \) in the problem, so the condition can be satisfied and case 1 works. Therefore, \(a = 9 \) is valid.

(c) Solution: \(b > 2 \)

Recurrence: \(T(n) = 4T(n/b) + \Theta(n^2) \ (b \in \mathbb{R}, b > 0); T(n) = \Theta(n^2) \).

Both case 1 and case 3 of the master theorem might produce this asymptotic bound. First, let’s assume that case 1 produced the bound. Case 1 states that if \(f(n) = \Theta(n^{\log_b 4 - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b 4}) \). To match the result, we get \(b = 2 \). We need to make sure that the condition \(f(n) = \Theta(n^{\log_b 4 - \epsilon}) \) can be satisfied with \(b = 2 \). We are given \(f(n) = \Theta(n^2) \) in the problem, so \(f(n) = O(n^{2-\epsilon}) \) cannot hold true. Case 1 does not work. Therefore, \(b = 2 \) is invalid.
Now let’s assume that case 3 produced the bound. Case 3 states that if \(f(n) = \Omega(n^{\log_b 4+\epsilon}) \) for some constant \(\epsilon > 0 \), and if \(4f(n/b) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \). The result is already matched. We need to make sure that first part of the condition \(f(n) = \Omega(n^{\log_b 4+\epsilon})(\epsilon > 0) \) can be satisfied. We are given \(f(n) \in \Theta(n^2) \) in the problem, so \(f(n) = \Omega(n^{\log_b 4+\epsilon})(\epsilon > 0) \) when \(b > 2 \). Because \(b > 2 \) and \(4f(n/b) < 4f(n/2) \), we see that \(4f(n/2) \leq cf(n) \) is true for some constant \(c < 1 \) and all sufficiently large \(n \). So the condition can be satisfied and case 3 works. Therefore, \(b > 2 \) (all real numbers greater than 2) is invalid.

(d) Solution: \(b = 5^{\frac{1}{\log 5}} \)

Recurrence: \(T(n) = 5T(n/b) + \Theta(n^5) \) \((b \in \mathbb{R}, b > 0) \); \(T(n) = \Theta(n^{6.006}) \).

Only case 1 of the master theorem can produce this asymptotic bound. Case 1 states that if \(f(n) = \Theta(n^{\log_b 5 - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b 5}) \). To match the result, we get \(b = 5^{\frac{1}{\log 5}} \). We need to make sure that the condition \(f(n) = \Theta(n^{\log_b 5 - \epsilon})(\epsilon > 0) \) can be satisfied with \(b = 5^{\frac{1}{\log 5}} \). We are given \(f(n) \in \Theta(n^5) \) in the problem, so the condition can be satisfied and case 1 works. Therefore, \(b = 5^{\frac{1}{\log 5}} \) is valid.

(e) Solution: \(f = n^2 \)

Recurrence: \(T(n) = 6T(n/6) + f(n) \); \(T(n) = \Theta(n^2) \).

Only case 3 of the master theorem can produce this asymptotic bound. Case 3 states that if \(f(n) = \Omega(n^{\log_b 6+\epsilon}) \) for some constant \(\epsilon > 0 \), and if \(6f(n/6) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \). To match the result, we get \(\Theta(f(n)) = \Theta(n^2) \). Therefore, \(f = n^2 \) is valid.

Problem 2-2. [20 points] Sorting a Rectangle

Solution:
Given a \(n \times m \) 2D array of integers \(A \) \((m \ll n) \) with all integers sorted within each row and column, we can produce a length-\(nm \) sorted 1D array of \(A \) in \(O(nm \log m) \).

First, we initialize the sorted 1D array output as an empty array. Keeping track of the column and row of origin, we build a min-heap with integers from the first row of \(A \). For \(nm \) iterations, we do the following: 1. Extract minimum from the min-heap and add it to the output array. Say this element was from row \(n' \) and column \(m' \). 2. If \(n' \neq n \), then add \((A[n'+1][m'], n'+1, m) \) to the heap. If \(n' = n \), we do not add anything to the heap.

Both extracting a minimum from the min-heap and inserting a new item to the min-heap is \(O(\log m) \). We have \(nm \) iterations of this operation. Therefore the asymptotic running time behavior of the algorithm is \(O(nm (\log m+\log m)) \), which simplifies to \(O(nm \log m) \).
Figure 1: Diagram of how sort_rectangle algorithm works

First few iterations are shown in the diagram above. Once all elements from a column is used in the output array, the heap size reduces. This algorithm takes care of all cases without errors, because we go through exactly nm iterations and make sure to add the correct minimum value to the output array. The minimum from the remaining integers in the array is guaranteed to be in the min-heap because all rows and columns are given sorted.

```python
import heapq

# 2D array A with n rows and m columns
def sort_rectangle(A, n, m):
    # start the heap with elements of the first row
    look_up_heap = [(A[1, j], 1, j) for j in range(m)]
    sorted_1d_array = []
    for i in range(n * m):
        element, n0, m0 = heapq.heappop(look_up_heap) # O(lg m)
        sorted_1d_array.append((element, n0, m0))
        if n0 != n:
            heapq.heappush(look_up_heap, (A[n0 + 1][m0], n0 + 1, m0)) # O(lg m)
    return sorted_1d_array
```

Problem 2-3. [25 points] Sorting Venture Capital Offers for 6006LE

(a) Solution:

In the given length-n parking_lot indexed 1, 2, ..., n, with values $a_1, a_2, ..., a_n$, we can only compare and swap values within k distance apart in the parking_lot. ($a_1, a_2, ..., a_n$ are constants that do not change.) Under this condition, we are able to switch two arbitrary values a_i and a_j, and return all other values to their original positions in $O(n/k)$ swaps. Say $d = |i - j|$ is the distance between the two arbitrary trucks given. (Assume $i < j$)
With $2\lceil \frac{d}{k} \rceil - 1$ swaps, we can switch two arbitrary values and return all other values to their original positions. We start from position j. Think as if a_j is walking down some stepping stones. Switch this element with the element k distance to the left. And repeat the process until the distance between a_j and a_i is less than or equal to k. Once we are at this point, we are able to swap a_j and a_i. We now have a_j in position i and all other swapped elements shifted to the right with order preserved. Similarly we now start from where a_i is and have it switch and walk up the stepping stones to where a_j was originally. We have switched the values in positions i and j and returned any other involved values to their original positions.

Switch a_2 and a_{12} ($k = 3$)

Original:

\[
a_1 \circled{a_2} a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12} a_{13} a_{14} a_{15}
\]

We bring a_{12} to position 2.

\[
\begin{align*}
& a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 \circled{a_{12}} a_{10} a_{11} a_9 a_{13} a_{14} a_{15} \\
& a_1 a_2 a_3 a_4 a_5 a_{12} a_7 a_8 a_6 a_{10} a_{11} a_9 a_{13} a_{14} a_{15} \\
& a_1 a_2 a_{12} a_4 a_5 a_3 a_7 a_8 a_6 a_{10} a_{11} a_9 a_{13} a_{14} a_{15} \\
& a_1 a_{12} a_2 a_4 a_5 a_3 a_7 a_8 a_6 a_{10} a_{11} a_9 a_{13} a_{14} a_{15}
\end{align*}
\]

\[a_2 \ , \ a_3 \ , \ a_6 \ , \ a_9 \ \text{are moved.}\]

We now bring a_2 to position 12.

\[
\begin{align*}
& a_1 a_{12} \circled{a_3} a_4 a_5 a_2 a_7 a_8 a_6 a_{10} a_{11} a_9 a_{13} a_{14} a_{15} \\
& a_1 a_{12} a_3 a_4 a_5 a_6 a_7 a_8 a_2 a_{10} a_{11} a_9 a_{13} a_{14} a_{15} \\
& a_1 a_{12} a_3 a_4 a_5 a_6 a_7 a_8 \circled{a_9} a_{10} a_{11} a_2 a_{13} a_{14} a_{15} \\
& a_1 a_{12} a_3 a_4 a_5 a_6 a_7 a_8 \circled{a_9} a_{10} a_{11} a_2 a_{13} a_{14} a_{15}
\end{align*}
\]

\[a_2 \ , \ a_3 \ , \ a_6 \ , \ a_9 \ \text{are back in place.}\]

Figure 2: Diagram of how `switch_two` algorithm works

This algorithm takes care of all cases without errors, because we maintain the direction of swapping and go through minimum number of iterations ($2\lceil \frac{d}{k} \rceil - 1$) to switch elements in i and j positions. We are always switching elements exactly k distance apart except for at most once because d may not be divisible by k. For distance d apart elements, we need $2\lceil \frac{d}{k} \rceil - 1$ swaps. $\lceil \frac{d}{k} \rceil$ swaps are used to bring a_j to position i, and $\lceil \frac{d}{k} \rceil - 1$ swaps are used to bring a_i to position j. Because the maximum value of d is n, we are bound to $O(n/k)$ swaps for a given k constraint.
we want parking_lot[i] = a_j, parking_lot[j] = a_i

def switch_two(parking_lot, i, j, k):
 d = |i - j|
 if d ≤ k:
 parking_lot[i], parking_lot[j] = parking_lot[j], parking_lot[i]
 return
 current_pos = j
 remaining_dist = d
 while remaining_dist != 0:
 swap_dist = min(remaining_dist, k)
 parking_lot[current_pos], parking_lot[current_pos - swap_dist]
 = parking_lot[current_pos - swap_dist], parking_lot[current_pos]
 current_pos -= swap_dist
 remaining_dist -= swap_dist
 current_pos = i + d\%k
 remaining_dist = d - d\%k
 if d\%k == 0:
 current_pos += k
 remaining_dist -= k
 while remaining_dist != 0:
 swap_dist = min(remaining_dist, k)
 parking_lot[current_pos], parking_lot[current_pos + swap_dist]
 = parking_lot[current_pos + swap_dist], parking_lot[current_pos]
 current_pos += swap_dist
 remaining_dist -= swap_dist

(b) Solution:

In the given length-n parking_lot indexed 1, 2, ..., n, with values a_1, a_2, ..., a_n, we can only compare and swap values within k distance apart in the parking_lot. (a_1, a_2, ..., a_n are constants that do not change.) Under this condition, we are able to compare two arbitrary values a_i and a_j, and return all values to their original positions in O(n/k) swaps. Say d = |i - j| is the distance between the two arbitrary trucks given.

We are guaranteed that we can compare two adjacent values. If d = 1, we compare the values and return. If d ≠ 1, we switch a_{i+1} and a_j so that a_i and a_j are adjacent. (Assume i < j)

With 2\left\lceil \frac{d-1}{k} \right\rceil swaps, we can compare two arbitrary values and return all other values to their original positions. We start from position j. Think as if a_j is walking down some stepping stones. Switch this element with the element k distance to the left. And repeat the process until the distance between a_j and a_{i+1} is less than or equal to
Once we are at this point, we are able to swap \(a_j\) and \(a_{i+1}\). We now have \(a_j\) in position \(i+1\) and all other swapped elements shifted to the right with order preserved. Now that \(a_i\) and \(a_j\) are adjacent to one another, we can compare them. We now make \(a_j\) go back to its original position \(j\). This takes \(\lceil \frac{d-1}{k} \rceil\) swaps again. We will swap the exact same elements we swapped when bringing \(a_j\) to position \(i+1\).

Compare \(a_1\) and \(a_{12}\) \((k = 3)\)

Original:

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\end{array}
\]

We bring \(a_{12}\) to position 2 so that \(a_1\) and \(a_{12}\) are adjacent.

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\end{array}
\]

Compare \(a_1\) and \(a_{12}\).

We now bring \(a_2\) back to position 12.

\[
\begin{array}{cccccccccccc}
1 & 2 & 12 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 \\
\end{array}
\]

Everything is back in place.

Figure 3: Diagram of how this algorithm of comparing two works

This algorithm takes care of all cases without errors, because we can switch two arbitrary elements in \(O(n/k)\) swaps (see part (a)) and because we can always compare two adjacent elements. We are switching elements exactly \(k\) distance apart except for at most once, because \(d - 1\) may not be divisible by \(k\). For distance \(d\) apart elements, we need \(2\lceil \frac{d-1}{k} \rceil\) swaps to compare them. \(\lceil \frac{d-1}{k} \rceil\) swaps are used to bring \(a_j\) to position \(j\), and another \(\lceil \frac{d-1}{k} \rceil\) swaps are needed to reverse that. Because the maximum value of \(d\) is \(n\), we are again bound to \(O(n/k)\) swaps for a given \(k\) constraint.

c) Solution:

In the given length-\(n\) `parking_lot` indexed 1, 2, ..., \(n\), with values \(a_1, a_2, ..., a_n\), we can only compare and swap values within \(k\) distance apart in the `parking_lot`. \((a_1, a_2, ..., a_n\) are constants that do not change.) Under this condition, we are able to sort the values
in $O\left(\frac{n^2}{k} \cdot n \log n\right)$ swaps.

We build a min heap with the values in parking_lot and use heapsort. Heaps require switching values between parent and child. Because we are restricted to compare and swap elements only k distance apart, we need to modify the heap functions.

Building a heap would require $O(n)$ without any constraints. With our k distance constraint, we will have to use $O(n/k)$ swaps (see part(a)) for all switches that are over k distance. Therefore, building the heap requires $O(n \cdot n/k)$. (To be a little more precise, there are approximately $4n$ cases that require $O(n/k)$ swaps.)

While sorting the heap, we need to trickle down items. Again, we face the problem of switching items over k distance. We will have to use $O(n/k)$ swaps (see part(a)) for all switches that are over k distance. Therefore, sorting the heap requires $O((n \log n) \cdot (n/k))$. (To be a little more precise, there are approximately $4n$ cases that require $O(n/k)$ swaps on top of regular trickle downs.) The final asymptotic running time behavior of sorting the values with a min heap is $O((n^2 \log n)/k)$.

We have handled all cases that require multiple swaps and used a min heap to reduce the runtime complexity in finding the minimum. Therefore, this algorithm works.

(d) Solution:

In the given length-n parking_lot indexed 1, 2, ..., n, with values $a_1, a_2, ..., a_n$, we can only compare and swap values within k distance apart in the parking_lot. ($a_1, a_2, ..., a_n$ are constants that do not change.) Under this condition, we are able to sort the values in $O\left(\frac{n^2}{k} \cdot n \log k\right)$ swaps.

We sort k elements in index 1, 2, ..., k using heapsort. Then we sort another set of k elements in index $[k/2], [k/2] + 1, ..., k + [k/2]$. We continue this process of sorting k elements as we shift our window over by $k/2$ until we get to the end of the given values. Each of this heapsort takes $O(k \log k)$. Now we are guaranteed to have the last $[k/2]$ to be the greatest $[k/2]$ elements of the parking lot. Only the first $n - [k/2]$ elements are unsorted.

We can write the recurrence as $T(n) = T(n - \frac{k}{2}) + \frac{2n}{k} \cdot O(k \log k)$.

Expanding out and solving the recurrence, we get $T(n) = (2n/k)(2n/k)(1/2) \cdot O(k \log k) = O\left(\frac{n^2}{k} \cdot n \log k\right)$.

Problem 2-4.

(a) **Solution:**

Bowser is in the F1 Kart Racing Finals on a circular track. A competitor loses when another competitor from behind passes by. To get Bowser’s rank in $O(N^2)$, we calculate the losetimes of all combinations of the players. For each player i, we calculate the losetimes of i with other competitors. Finding the minimum among these takes $O(N)$. We also check to see if both the loser and the catcher is in the game. If yes, we update `ahead` and `behind` dictionaries accordingly. Checking takes constant time. We may have to repeat this process $O(N)$ times until we find out Bowser’s rank. Therefore, the growth order is $O(N^2)$.

Figure 4: Example of using the algorithm on $n=16$, $k=4$
(b) Submitted on alg.csail.mit.edu

(c) Submitted on alg.csail.mit.edu

(d) Submitted on alg.csail.mit.edu

(e) Solution:

- Events to add:
 - If $v_c > v_a$, then add the event of Charlie catching Alice.
- Events to remove:
 - Charlie caught Bowser; remove the event of Charlie catching Bowser.
 - Bowser is no longer in the game; remove the event of Bowser catching Alice.

(f) Submitted on alg.csail.mit.edu