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Abstract

A method to incorporate aircraft flight path intent
information into a conflict detection and resolution
system is described. The approach uses a set of
probability density functions that describe potential
trajectory errors such as cross-track, along-track, or
course change, in a series of Monte Carlo simulations.
The simulations are used to estimate the probability of
conflict in traffic encounters. Intent information is
readily included in the model, and can consist of a series
of waypoints, heading or track holds, target altitudes, or
maneuvering limitations from free flight concepts. The
method also allows for direct incorporation of the
confidence with which an intended path will be
followed. An efficient modeling method is used that
enables the Monte Carlo simulations to be run in real
time, suggesting that such an approach could be used in
conflict detection systems. Several example traffic
encounters are discussed using conflict probability maps
that show regions in which a conflict will likely occur.
The potential benefit of access to intent information in
a vertical conflict example is also shown.

Introduction

In order to efficiently detect and resolve conflicts
between aircraft, estimates of both the current and future
states of the traffic environment are required. The current
states, obtained through sensors such as radar or via
datalinked position information, are used to indicate
whether a conflict currently exists and to provide a
starting point for projecting future trajectories. The
future states of the traffic must be estimated using some
form of dynamic model that propagates the states
forward in time. Predicted conflicts between aircraft can
then be identified in time for resolution actions to be
taken to maintain safe and efficient traffic flow.

The dynamic model used to propagate states generally
requires some assumptions regarding the future
intentions of each aircraft. Often, it is assumed that
aircraft will fly on their current headings at their current
speeds and altitude rates. Such a model is acceptable if
aircraft indeed tend to fly in straight lines. However, if
an aircraft will be maneuvering (e.g., changing heading,
speed, or altitude), the straight-line projection of its
states becomes inaccurate. If additional intent
information is available (e.g., that the aircraft will be
leveling off at a certain altitude), a more accurate future
trajectory may be projected. However, this intent
information can be unreliable (e.g., a pilot may level
off before or descend through an intended altitude).

An additional source of uncertainty is the accuracy with
which an intended path will be flown. For example,
even if it is known that an aircraft is traveling toward a
particular waypoint, winds and lateral tracking accuracy
will affect the flight path of an aircraft, making
predictions of its future position increasingly uncertain.
Providing additional intent information, such as a
required time of arrival at the waypoint, may help reduce
some of this uncertainty.

In order to develop effective systems that produce correct
detections with few nuisance alerts, it is necessary to
consider these uncertainties. Accordingly, several recent
research efforts have focused on estimating the
probability of conflict.1"4 These probabilistic
methodologies allow for the direct examination of
tradeoffs between nuisance alarms and missed detections
(alerting too late to avoid a conflict) and can also be
used to develop requirements on sensor accuracy. To
date, however, these efforts have primarily investigated
cases in which intent information is not available;
aircraft have been generally assumed to fly along
straight paths.
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This paper extends earlier work, and describes a method
to compute the probability of conflict when intent
information and trajectory uncertainty are both included.
In this manner, a conflict detection system can be
developed that can tailor the trajectory model to the type
of intent information that is available (e.g., that an
aircraft is flying to a waypoint or is turning to a
specific heading). After outlining the major design
issues and presenting the approach, several case study
examples are discussed for both horizontal and vertical
intent information.

Previous Modeling Efforts

In order to detect conflicts between aircraft, it is
necessary to project the future positions of the aircraft
over time. To do so, an appropriate trajectory model is
required to propagate the aircraft's current states.
Approaches to conflict analysis generally rely on one of
two propagation methods, termed nominal and worst
case.1 In the nominal trajectory method, future aircraft
positions are assumed to follow a single specific path
(usually along a straight line with the current estimated
velocity vector). In the worst-case approach, every
possible path is considered, limited only by the
aircraft's aerodynamic capabilities or other imposed
constraints. In between these two methods, however, is
a middle ground where the likelihood of various
trajectories are weighed by their probability of
occurrence. Both the nominal and worst-case approaches
provide either a hit (1) or a miss (0) in their evaluation
of a conflict. In the probabilistic approach, a weighted
value between 0 and 1 is determined, corresponding to
the probability of a conflict, Pc. To some degree, both
the nominal and worst-case approaches can be considered
subsets or special cases of the probabilistic approach.

The nature of the trajectory of an aircraft is inherently
uncertain to some degree, and has been studied
previously.2"5 The uncertainty in the future trajectory
depends on factors such as wind, autopilot tracking
accuracy, or the pilot making course changes. To be
able to estimate Pc, it is necessary to obtain an
appropriate model of the probabilistic aircraft trajectory.

If the trajectory model is relatively simple, then it may
be possible to derive an explicit closed-form solution to
Pc. For instance, Paielli and Erzberger developed a
viable analytical solution for a pair of aircraft
maintaining a straight-ahead course using Gaussian
uncertainties in along- and cross-track error.2 As the
number and complexity of the uncertainties are increased
in the trajectory model, however, it becomes
increasingly difficult to obtain an explicit analytical

solution. This is especially true when complex
trajectories with heading and speed changes are used.

In previous work, the authors developed a prototype
conflict alerting logic based on probability of conflict
principles using pre-processed Monte Carlo
simulations.3 Monte Carlo runs were performed on a
large set of possible conflict geometries between a pair
of aircraft and stored in look-up tables. The tables of Pc
were then referenced by a prototype alerting system
during real-time, piloted simulator studies at NASA
Ames Research Center.3'6 Although successful, the
approach was not able to readily incorporate more
complex intent information because the probability
values were stored in look-up tables based on a single
trajectory model.

Since it is impractical, if not impossible, to pre-
determine all possible conflict scenarios in advance,
especially with multiple aircraft involved in 3-D space,
it is desirable to perform the probability computations
in real-time. The added flexibility from such an
approach is apparent if intent information is to be
incorporated directly into the conflict detection
algorithm of the alerting logic. Any new information
that becomes available (e.g., datalinked information that
an aircraft is flying to a waypoint) can be used to update
the projected path. As intent changes, so should the
trajectory model, which in turn determines Pc. The
predicted paths, the conflict probabilities, and ultimately
the decision to alert would adjust dynamically to
changing conditions and available information on future
intent.

To meet this need, a more efficient method of
performing the Monte Carlo simulations was developed
and is presented in this paper. The approach allows for
direct incorporation of intent information (waypoints,
headings, speed, or altitude targets) as well as arbitrary
(non-Gaussian) probability density functions.
Computation of Pc with the model is possible in real
time, suggesting that its use in conflict detection
systems may be possible.
Before describing the modeling approach and several
example case studies, a brief overview of the potential
benefit of intent information is appropriate.

Value of Intent Information

Intent information will alter the shape and position of
the predicted aircraft trajectory. Knowledge of planned
changes in heading, altitude, or speed can be used to
better model this trajectory. For example, if a waypoint
is programmed into the Flight Management System
(FMS), one can expect the aircraft to follow a relatively
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straight course with some possible errors from wind and
speed variations. Without this waypoint information,
there is more uncertainty as to where the aircraft will
go, requiring a more conservative, broader trajectory
model. Restrictions placed on maneuvering by pre-
defined rules-of-the-road, Air Traffic Control (ATC)
clearances, or a specified required time of arrival could
also limit the range of possible trajectories one could
expect.

Because the ability to predict the future position of an
aircraft is necessary to determine a conflict, the accuracy
of the trajectory model essentially affects the
performance of any alerting system. Including
information with regard to intent into the trajectory
model can lead to a better prediction of the hazard
situation. However, placing complete reliance on
presumed intent information can also lead to false
predictions of conflict and false alarms, especially when
trying to predict conflicts more than a few minutes in
the future.

One example of the difficulties in correctly detecting
conflicts in the presence of intent information is a
recent case involving the Traffic Alert and Collision
Avoidance System (TCAS).7 Earlier versions of TCAS
were prone to generating false warnings in response to
certain situations where one aircraft was descending
rapidly toward another. If the descending aircraft leveled
off above safely the threatened aircraft, a false warning
might still be generated because TCAS could not predict
the level-off maneuver. This problem was largely solved
by modifying the TCAS alerting thresholds. However,
an alternate solution could be developed if the target
altitude of the descending aircraft were available to
TCAS. In such a case, the intent information could be
used to inhibit the normal TCAS alert. If the aircraft
descends through the target altitude, however, there
might not be enough time remaining to avoid a
collision.

Although TCAS is a time-critical collision warning
system, similar issues involving intent apply to more
strategic conflict detection problems as well. In fact,
intent information becomes more important as the time
horizon increases, because straight-line projections of
aircraft position become increasingly inaccurate.

Monte Carlo Simulation Method

In probability conflict analysis, the goal is to determine
the likelihood that one or more intruder aircraft will
violate the protected zone of a host aircraft of interest,
thus determining the level of threat to the host. In this
paper, the protected zone was chosen based on current
separation standards and defined to be a cylinder 5 nmi

in radius and extending 1,000 ft above and below the
host aircraft.

To calculate the probability of conflict, Pc, the
positions of the involved aircraft must be projected into
the future. Fig. 1 shows an example of the predicted
position distributions for a single aircraft traveling with
a nominal speed of 400 kts. Intent information of a 45°
turn at a waypoint 100 nmi ahead was also assumed to
be known. At each time shown in the figure, the aircraft
is predicted to lie within the corresponding region with
probability 0.9999.
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Fig. 1
Example Projected Position Uncertainty

Fig. 1 was generated from point-mass Monte Carlo
simulations using a trajectory model that included
along-track speed fluctuations (Gaussian, with standard
deviation a = 15 kts) and cross-track variability
(Gaussian, a = 1 nmi). These parameter values are based
on prior trajectory modeling efforts.2 At t = 0 min, the
position of the aircraft is known exactly since no sensor
errors are included in this example. As shown, the
predicted position error grows both along-track and
cross-track in time, but generally follows the intended
path.

If for some reason there is uncertainty that the aircraft
will make the intended turn at the waypoint, an
additional confidence probability can be included. In
such a case, the position distribution would split into
two separate regions: one for the case in which the turn
is followed, and one for the case in which the turn is
not followed. A situation where this type of modeling
might prove especially useful is in vertical conflict
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analysis where an intruding aircraft may not be entirely
trusted to level-off at the expected altitude.

The probability of a conflict is then obtained by
extrapolating each aircraft's position in a similar
manner. Given the locations, speeds, and headings of
the aircraft, each Monte Carlo run consists of stepping
through the trajectories over time and determining
whether separation minimums of the protected zone are
violated. The trajectories vary randomly with each run
according to the uncertainty distributions chosen to
define the trajectory model. After a certain number, N,
of Monte Carlo runs, a count of the number of protected
zone intrusions, x, is made. Dividing x by N is then an
estimate of Pc.

Trajectory Modeling

When propagating the aircraft into the future, one
possible approach (used in Ref. 3) is to check for a
protected zone violation at the end of incremental time
steps as depicted in Fig. 2a. For each time step, dt, the
position of each aircraft is calculated and horizontal and
vertical ranges are checked against minimum separation
criteria. This method requires that the time steps be
small enough so that intrusions which might occur in-
between each end point are not missed. However,
reducing dt greatly increases the computational time.
This requires either shortening the maximum projection
time into the future or waiting longer to obtain a value
for Pc.

A more efficient approach (used in the case studies
presented in this paper) can be devised if the trajectories
are modeled as a series of line segments. Over many
runs of the Monte Carlo simulations, the difference in
approaches is likely to be indiscriminate in the net
result. This simplified approach is represented in Fig.
2b, where change points approximate course changes in
the trajectories previously depicted in Fig. 2a. In
between change points, the velocity vector of each
aircraft is constant. Separate change points are generated
at every point at which intended heading, altitude rate,
or speed changes occur.

It is also more straightforward to work in the relative
frame of the host aircraft, as shown in Fig. 2c. The
protected zone is placed around the origin representing
the position of the host, and the relative trajectory of
the intruder aircraft is propagated. Because of the
assumptions made, the trajectories are comprised of
straight line segments with each endpoint corresponding
to a course or speed change by either the host or the
intruder aircraft. The task is then to determine if any
individual line segment passes through the protected
zone around the host aircraft at the origin. Using

geometry, an analytic solution can be derived to check
for intersections between the equation of the lines and a
3-D volume (the protected zone cylinder). Not only does
this method detect conflicts along the entire path rather
than only at discrete points, but the computational time
is decreased by orders of magnitude compared to the
incremental-time approach (Fig. 2a). Also, the method
is insensitive to the time scale of the projection; it only
depends on the number of course or speed changes that
occur between both aircraft.

(a) (b)
Incremental Time Steps Straight Line Approximation

Change Points
Host MaiMt»«

IntnjdAr Uanfluvw

Line-Volume
' Intersect

(c) Line Intersection in Relative Frame

Fig. 2 Aircraft Trajectory Propagation

A similar approach is used in modeling the vertical
plane. Knowledge of vertical speed and/or top or bottom
of climb or descent is used to set change points in three
dimensions.

In some instances, it may be desirable to model the
course transitions more accurately. This might be the
case if an intruding aircraft is relatively close and the
crucial conflict point is somewhere near the region of
the course change. Take for instance the example shown
in Fig. 3 where the host aircraft is making a turn toward
a target waypoint. A trajectory modeled with an
instantaneous turn (dashed line) may be overly
simplistic since the actual turn radius can be on the
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order of 10 nmi or so, depending on the speed and bank
angle. This could lead to missing the detection of the
conflict with the intruder aircraft shown in the picture.
Thus, it is more accurate to include additional line
segments to better represent the actual change in
heading over time. Fig. 3 shows one additional change
point, A, added to better approximate the path of the
host aircraft during the heading transition. The turn
radius (R) can be estimated from the intended bank angle
(0) and speed (v) using

R = (1)

L Target

6—

Fig. 3 Heading Change Model

The center of the turn circle can be approximated to be
in the direction perpendicular to the current aircraft
heading and at a distance R away. Using geometry, the
position of point A can then be determined as a tangent
line from the turn circle to the target waypoint position.
The result is a two-segment path (shown as a solid line
in Fig. 3).

If more accuracy is desired, the turn can be further sub-
divided into additional straight line segments, though at
a cost to computational time.

Trajectory Uncertainties

In each Monte Carlo run, a number of parameters are
considered to be random variables that can change with
each iteration. The values described below represent one
possible model of uncertainties. Alternate probability
density functions can be easily incorporated;
determination of appropriate values for many of the
parameter values is an area for future research.

The baseline trajectory model assumes current position
accuracy to be that from combined Global Positioning
System (GPS) and inertial navigation system estimates,
and is modeled as a normally-distributed random variable
with standard deviation of 50 m laterally and 30 m
vertically. Along- and cross-track error values are based

in part on data from observations of current air traffic by
Paielli and Erzberger and were used in previous
studies.2-3 Along-track error is modeled as a 15 kt
standard deviation speed uncertainty. Cross-track error
grows from its initial standard deviation of 50 m at the
aircraft's current position, to a steady-state error with a
standard deviation of 1 nmi. This growth is assumed to
occur with a lateral deviation error with a standard
deviation of 1°. Thus, the steady-state 1 nmi cross-track
error is achieved approximately 57 nmi ahead of the
aircraft's current position.

Uncertainties in the vertical plane can also be included
in the model. Several modeling methods have been
examined which are discussed later in this paper.

Implementation

The Monte Carlo simulation model was implemented in
C-code on a Silicon Graphics workstation. A modular
framework was set up such that relevant parameters can
be sent to the Monte Carlo simulation engine, which
then outputs the computed probability of conflict. As
shown in Fig. 4, inputs include: size of the protected
zone, current state information, intent information, and
uncertainty information. These inputs may be specified
by a researcher interested in specific encounter situations
or by data from a real-time flight simulation or flight
test. The simulation engine runs in near-real-time,
outputting the probability of conflict on the order of 1
sec after inputs are received. This enables conflict
detection to be responsive to changes in intent
information, such as modifications to a flight plan or
changes in autopilot flight mode.

Current state information
(position, velocity)

Intent information:
Waypoints <2D. 3D.4D)
Target heading
Target speed
Target altitude
Target altitude rate
Maneuvering limitations

Protected Zone size

• Probability of conflict

Uncertainties
(probability density functions)

Current states
Along- and cross-track error

Confidence in intent infonnation

Fig. 4 Monte Carlo Simulation Structure

Current state information includes the position and
velocity vector of aircraft in the surveillance region
around the host aircraft. Intent information may be
specified in a number of forms: multiple 2D (horizontal
position), 3D (horizontal and vertical), or 4D (position
and time) waypoints; target heading, speed, altitude, and
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vertical speed; bottom and top of climb and descent; and
maneuvering limitations such as maximum permitted
turn magnitude and average frequency of maneuvering.
Uncertainties in all of these parameters may also be
specified, including confidence that an intended path will
be followed.

Upon receiving the inputs, the Monte Carlo simulation
engine then computes the probability of conflict using
the method outlined above. Currently, trajectories are
extrapolated using a point-mass model of a jet-transport
aircraft; other aircraft types may require customized
dynamic models.

Computational Accuracy

The problem posed in calculating Pc is basically that of
estimating a value of proportion. The number of
conflicts, x, divided by the total number of runs, N,
provides an unbiased estimator of Pc with variance o2

given by

= Pc(l-Pc)
(2)

For the examples in this paper, N = 10,000 was used as
a compromise between speed and accuracy. Using a
Silicon Graphics Indigo Elan 4000 workstation,
computational time for 10,000 iterations was on the
order of 1 second for a pair of aircraft, providing a 3(7
error in Pc of at most 0.015.

In prior simulation studies, it was found that acceptable
conflict detection performance was possible by alerting
to conflicts which had computed probabilities of
conflict between 0.1 and 0.9. Thus, accuracy to ±0.015
is likely much greater than is required in practice.
Accordingly, in a simulation study being performed at
NASA Ames in the summer of 1998, the Monte Carlo
technique was implemented using N - 1,000, resulting
in a worst-case uncertainty of 3<7 = 0.05. This level of
accuracy is acceptable for distinguishing a conflict from
a non-conflict, and allows for significantly faster
computational times.

One additional feature of Monte Carlo simulation is that
an estimate of Pc is continuously available. The longer
that the simulation runs, the more accurate this estimate
becomes. Additionally, a direct estimate of the
uncertainty in Pc is also available as discussed above. A
different mode of operating, therefore, could be to
specify the maximum computational time that is
permitted, and to use whatever the estimate of Pc
happens to be at the end of that computation time.
Alternatively, one could specify maximum error levels
in the estimate of Pc, and continue to refine the
estimate until that error constraint is satisfied.

Horizontal Conflict Examples

Given the relative speed and heading between aircraft, a
conflict probability map can be constructed to display
the locations where an aircraft currently must be in order
to result in a conflict at some later time. As a simple
example, assume two aircraft (host and intruder) are co-
altitude and both flying with a velocity of 400 kts in
opposite directions. If the intent of each aircraft is
known, then potential conflict situations can be
predicted. Assume that both aircraft have declared that
they will maintain their current speed, heading, and
altitude. This might be inferred, for example, through
datalink of autopilot mode control settings.

The potential conflict map as obtained through the
Monte Carlo simulation is shown in Fig. 5. As a
reminder, in this example the intruder aircraft is
traveling in the opposite direction as the host. The chart
is shown relative to the host aircraft (located at the
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Fig. 5
Case 1: Intruder and Host Maintain Course
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Case 2: Potential for Intruder Course Change

origin (0, 0) with its track pointing up). The top of the
chart is 200 nmi ahead of the host aircraft and represents
a 15 minute time frame. Contours of constant conflict
probability are shown, starting at 1.0 around the host
aircraft and decreasing in increments of 0.1. For
example, the intruder aircraft shown in the figure 100
nmi ahead of the host aircraft will produce a conflict
with a probability of nearly 1.0. Variability and
coarseness of the contours is a result of the accuracy of
the Monte Carlo simulations. In this case, because the
trajectory uncertainties are small, the corridor where
aircraft must be located to generate conflicts is relatively
narrow. Although the example shown is for a specific
relative geometry and speed, similar maps can be
generated for any situation.

A more interesting case to observe is when aircraft may
change course at some time within the foreseeable
future. In many cases, the intentions of each aircraft are
not known for certain, but information regarding rules-
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Fig. 7
Case 3: Host Aircraft Following Waypoints

of-the-road, past experience, or flight restrictions can be
helpful in establishing the likelihood of various
trajectories. In Fig. 6, the intruder aircraft is still headed
in the opposite direction as the host, but now no
explicit intention to maintain a straight course is
assumed. For this particular case, the likelihood that the
intruder would make a heading change is modeled as a
Poisson distribution with an average of rate of 4
turns/hr. Also, the hypothetical flight rules in the
airspace are assumed to require aircraft to restrict heading
changes to less than 20° within a 15 minute period.
Thus, potential changes in heading were modeled with
an uniform distribution between ±20°. The resultant
conflict map is shown in Fig. 6, again using contour
spacing of probabilities of 0.1. Note that the
probability of conflict decreases more rapidly as one
moves farther from the host aircraft due to the increased
uncertainty in the intruder's actions. The same intruder
aircraft 100 nmi ahead of the host will now cause a
conflict with a probability of approximately 0.83
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because there is some chance that the intruder will
perform a turn.

In the next example, shown in Fig. 7, additional intent
information regarding knowledge of waypoints is added
For this case, the intent is supplied by the host aircraft
in terms of 3 future waypoint locations in which the
host will shift its flight path laterally. Again, the
conflict map is shown with contour spacing of 0.1.
Here, the intruder aircraft 100 nmi ahead of the host will
not create a conflict as long as the intended path is
followed.

Comparing Figures 6 and 7 provides some insight into
the potential benefit of intent information. Consider for
example the flight path shown in Fig. 7. If the host's
waypoint information was not used in conflict
detection, the situation would likely be modeled as
shown in Fig. 6, resulting in a conflict alert. Such a
conflict would be unnecessary, however, because as Fig.
7 shows, there is no conflict with the intruder aircraft.

Conflict maps can also be utilized in the examination of
avoidance maneuver options for conflict resolution. Fig.
8 shows an example 30° right turn avoidance maneuver
made by the host aircraft in response to a conflict alert
in the example from Fig. 6. An additional uncertainty
was included in this case to represent variability in pilot
response time latency in initiating the turn maneuver.
The response time was modeled as a Gamma
distribution with an average response time of 1 min,
and skewed such that there is a 95% probability that the
avoidance maneuver will begin within 2 min of the
alert.

Comparison of Fig. 6 with Fig. 8 shows the effect that
the avoidance maneuver has on the probability of a
conflict. Similar analysis can be performed to determine
what other avoidance options (e.g., heading, speed, or
altitude changes) could be used for the resolution. For
multiple aircraft in the airspace, the maneuver could be
checked to see if it induces further conflict with
currently non-conflicting aircraft.

Vertical Conflict Examples

To more fully illustrate the utility of the Monte Carlo
simulation approach, several additional examples are
discussed in which a conflict exists in the vertical plane.
Rather than depict conflict maps, however, the output
of the Monte Carlo simulations is discussed here in
terms of the expected unnecessary alert and missed
detection rates.
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Fig. 8
Case 4: Host Aircraft Turns 30°

System Operating Characteristics

First, a brief description is required of the analysis
method that is used. The approach is based on System
Operating Characteristic (SOC) curves, which facilitate
the visualization of the tradeoffs between unnecessary
alerts and missed detections.8 In any conflict detection
decision, there is some probability that the conflict alert
is unnecessary. Additionally, there is some probability
that the conflict alert is successful in satisfying some
performance constraint (e.g., preventing violation of the
protected zone). As one varies the time at which a
conflict alert is generated, these probabilities trade off
against one another as described by an SOC curve.

In order to determine if an alert is successful, it is
necessary to consider what resolution actions occur
when the alert is generated. Some conflict resolution
maneuver must be assumed so that it can be determined
whether a conflict is ultimately averted by the alert.
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Thus, an SOC curve is specific both to the encounter
geometry and to the type of resolution action that is
prescribed.
Fig. 9 shows an example SOC curve. As shown, if the
conflict decision is made while aircraft are far apart
(upper right comer of the plot), the probability of
successful alert is high, but because action is taken so
early, the probability of unnecessary alert is also high.
As the conflict alert decision is delayed, the probability
of successful and unnecessary alert both decrease as
shown by the curve. If alerts are delayed too long
(extreme lower-left corner of the plot) the alerts will not
be successful, and there will be no unnecessary alerts as
well.

Ideal
AlertingSystem

0 . 0.2 0.4 0.6 0.8 1.0
Probability of Unnecessary Alert

P(UA)
Fig. 9

System Operating Characteristic Curve

The ideal operating point for a system would be at the
upper-left comer of the plot, where alerts are entirely
successful while simultaneously having no unnecessary
alerts. Due to uncertainties in the conflict dynamics,
however, the SOC curve generally lies somewhere
below this optimal point. The closer a system is able to
operate near this optimal point, the more effective the
system will be in terms of providing acceptable safety
and minimizing nuisance alerts. Because the SOC curve
is a function of the resolution action, different
resolution options can be compared by examining
differences in their SOC curves.3

Conflict Examples

The following examples show how the SOC approach
can be utilized to show the effects of intent information
on conflict analysis. In these examples, the lateral
situation is the same as was shown in Fig. 5, and a
conflict is defined as a loss of minimum separation of 5
nmi in the horizontal plane and 1,000 ft in the vertical
plane. The vertical situation involves an intruder aircraft

that is currently above the host aircraft and is descending
directly toward it at 1,000 ft/min.
Two cases are considered. In the nominal case, it is not
known whether the intruder will level off at some point
or continue its descent. The vertical profile of the
intruder is modeled such that it is equally likely that the
intruder will level off at any altitude in a range above
and below the host aircraft. Thus, a conflict may exist
(the intruder continues to descend into the host) or a
conflict may not exist (the intruder levels off safely
above the host).

In the intent case, datalinked information from the
intruder indicates that it will be continuing its descent at
1,000 ft/min through the host aircraft's altitude. For
simplicity, it is assumed here that the aircraft maintains
this descent rate perfectly. In both cases, however, the
along- and cross-track uncertainties are the same as were
introduced in Fig. 5.

SOC curves are plotted in Fig. 10 for both cases. The
assumed resolution maneuver to a conflict involves a 5
sec delay when a conflict alert occurs, followed by a
1,000 ft/min climb. Other resolution maneuvers may be
considered as well, but are not discussed here for
brevity. In Fig. 10, the intent case SOC curve is shown
by the solid line along the y-axis; the nominal case
curve is shown by the dashed line. Operating points for
each case are shown in terms of the time at which the
conflict alert occurs, in increments of 10 sec relative to
the time of Closest Point of Approach (CPA).

The SOC curve in Fig. 10 shows that an essentially
ideal alerting decision could be made in the intent case

intent case

140s
130 s

- nominal case

0.3 -

0.2 -

0.1 •

n I

i
100 sf

ta«*
0 0.1 0.2 0.3 0.4 O.S 0.6 0.7 0.8 0.9 1

P(UA)

Fig. 10 SOC Curves For Conflict Examples
(conflict alert times shown are seconds before CPA)
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(assuming that the intended path was indeed followed).
By alerting any time prior to 140 sec before CPA, the
host aircraft could avoid a protected zone violation with
approximately 100% confidence. Simultaneously,
because the uncertainties in this case are relatively
limited, the probability of unnecessary alert is
approximately 0. Alerting with less than 140 sec to
CPA reduces the probability of successful alert as
shown.

In the nominal case, the intruder could level off at an
altitude above the host aircraft, and a climbing
resolution maneuver may actually induce a conflict that
would not otherwise have occurred. This also implies
that such a resolution maneuver is unnecessary. As a
result, the performance of conflict detection in the
nominal case is lower than in the intent case, as shown
by the dashed lines in Fig. 10. Notice also that the
nominal SOC curve shows that successful alert
probability cannot be increased beyond approximately
0.8 without greatly increasing unnecessary alert
probability.

This case study shows one example of how intent
information may significantly improve the quality of a
conflict detection problem. Although the cases here are
simplified, the overall approach can be applied to more
complex situations in order to evaluate the potential
benefit of having access to intent information. One
additional issue that must be considered is the
confidence with which the intended path will be
followed. Such confidence can be included in the Monte
Carlo simulations, and the resulting performance effect
will be depicted in SOC curves.

Conclusions

The ability to rapidly and accurately estimate the
probability of conflict will be an important factor in the
acceptability of future conflict probe tools. The
approach presented here relies on Monte Carlo
simulation using a series of straight-line trajectories,
and has been shown to allow accurate computation of
probabilities in less than one second. Thus, real-time
Monte Carlo based conflict probes are becoming
feasible, and would allow fairly complex conflict
scenarios to be examined.

The flexibility of the Monte Carlo approach to include
intent information such as heading, speed, and altitude
changes, lends it to be an attractive choice. Such an
approach directly includes the intent information in the
trajectory models, allowing dynamic updates of conflict
probability in response to modifications in flight plan
or autopilot mode. Additionally, the Monte Carlo
simulation engine can be used as an evaluation tool to

investigate issues such as appropriate protected zone
size, requirements on sensor accuracy, or determination
of appropriate resolution actions. However, a significant
obstacle remains in that the probability distributions
that are used must be relatively well-known. Otherwise,
modeling errors may lead to inaccurate predictions of the
probability of conflict.
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