
1

Introduction to Computation and Problem
Solving

Prof. Steven R. Lerman
and

Dr. V. Judson Harward

Class 27: Class 27:
Nested Classes andNested Classes and

an Introduction to Treesan Introduction to Trees

2

Goals

• To explain in more detail the different
types of nested classes and how to use
them. A nested class is one that is defined
inside another class.

• To introduce the large family of data
structures known as trees

2

3

static Nested Classes

You can define a static nested class inside another
class:

public abstract class java.awt.geom.Line2D
{
public static class Double { ... }
public static class Float { ... }

}

4

static Nested Classes, 2

• It behaves like any other top level class
except that its true name is the outer class
name concatenated with the inner class
name: e.g., Line2D.Double

• A nested class is considered to be part of
the enclosing class:
– Make it public if you want methods in other

classes to use it
– Make it private if you are only going to use it

in the enclosing class

3

5

private static Nested Class

public class SLinkedList implements List {
private int length = 0;
private SLink first = null;
private SLink last = null;

private static class SLink {
Object item; SLink next;

SLink(Object o, SLink n)
{ item = o; next = n; }

SLink(Object o)
{ this(o, null); }

}

6

Inner Classes

• If a nested class is not static, we call it an inner
class.

• Instances of inner classes are usually created
using new in an instance method of the enclosing
class.

• Inner class methods have access to the instance
variables and methods of the enclosing class
instance.

• Inner classes can have constructors with or
without arguments.

4

7

ListIterator as an Inner Class Example

public class SLinkedList implements List {
private SLink first = null;
...
public class SLinkedListIterator
implements ListIterator {
private SLink previous = null;
private SLink current = null;
private SLink next;

public SLinkedListIterator() {
next = first;
current = null;

}
...

8

Anonymous Inner Classes

• Are “cheap” inner classes in the sense
that they are easy to define
– They are unnamed, so you can only create a

single instance at the place you define them.
– They must extend a class or implement an

interface.
– They can’t have a defined constructor and,

therefore, always use a default constructor.
• Are commonly used in Swing code to

implement listeners or adapters.

5

9

Listener Example

public class AnonExample extends JFrame
{
private JLabel countLabel;
private int count = 0;

public AnonExample()
{
JPanel myPanel = new JPanel();
JButton myB = new JButton("Increment");
myPanel.add(myB);
countLabel = new JLabel(“ 0");
myPanel.add(countLabel);

10

Listener Example, 2

myB.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
countLabel.setText(
String.valueOf(++count));

}
}
);
getContentPane().add(myPanel,

BorderLayout.CENTER);
}

Variables
from the

enclosing
class

6

11

Listener Example Without Anonymous Class

public class MyAction implements ActionListener
{

private int count;
private JLabel myL;
public MyAction(JButton b, JLabel l)
{
count = 0; myL = l;
b.addActionListener(this);

}

public void actionPerformed(ActionEvent e)
{ l.setText(String.valueOf(count++)); }

}

12

Adapters

• Some listener interfaces have many methods and
you may only be interested in using one. For
most Listener interfaces with multiple methods,
there is a corresponding Adapter, a class with
null implementations of the listener methods.

• Pattern: create an anonymous inner class that
extends the adapter and override the single
method you are interested in.

7

13

Adapter Example

package java.awt.event;
public interface MouseMotionListener extends

EventListener {
public void mouseDragged(MouseEvent e);
public void mouseMoved(MouseEvent e);

}

public abstract class MouseMotionAdapter implements
MouseMotionListener {
public void mouseDragged(MouseEvent e) {}
public void mouseMoved(MouseEvent e) {}

}

14

Adapter Example, 2

import java.awt.event.*; import javax.swing.*;
public class MouseMotion extends JFrame {

public MouseMotion() {
setSize(600, 400);
setDefaultCloseOperation(EXIT_ON_CLOSE);
getContentPane().addMouseMotionListener(
new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {
System.err.println("Dragged: " + e.getX() +

", " + e.getY());
}

}
);

}
}

8

15

Trees

• Trees are the name given to a versatile group of
data structures.

• They can be used to implement a number of
abstract interfaces including the List, but those
applications in which they are most useful
employ trees' branching structure to represent
some property of the data elements or to optimize
certain methods.

• For example, Minimax game trees, are often used
in game playing programs to represent the way
board positions multiply from a single starting
situation.

16

Tree Terminology

root

A B

C

B’s parent

D’s ancestors

B’s children

A’s descendants
or the subtree

rooted at C

leaves

G H

D E F

9

17

Trees, Nodes, and Roots

• A tree consists of connected nodes.
• Each tree (except a degenerate empty

tree) has a distinguished node called the
root.

• There can be no circular paths in a tree's
connections so there is a unique path
from every node to the root.

18

Child and Parent Nodes

• All nodes connected to a particular node
are either children or the parent of that
node.

• If the connected node lies along the
unique path to the root, then that node is
called the parent. All nodes except the
root have a unique parent.

• All other nodes connected to a particular
node are that node's children.

10

19

Ancestors, Descendants, and Subtrees

• The nodes that lie along the path from a node to
the root are called a node's ancestors and include
its parent, its parent's parent, etc., back to the
root.

• The set of nodes that includes a node's children,
and its children's children, etc, is called a node's
descendants.

• A node and its descendants forms a subtree
rooted at that node.

• A node without children is called a leaf.

20

Binary Tree

• A particularly common and useful type of
tree called a binary tree allows a node to
have at most two children.

• We can give a more formal definition of
binary tree that emphasizes a tree's
recursive character as follows:
A binary tree is either the empty tree or a root

node with left and right subtrees that are both
binary trees.

11

21

Binary Tree Examples

1.
root

3.2.
root root

A B B

DC

F

E

22

Tree Traversal

• Listing all the elements of a tree is more
complicated than listing all the elements
of a linked list, and there are a number of
ways we can do it.

• We call a list of a tree's nodes a traversal
if it lists each tree node exactly once.

• Tree implementations usually possess an
iterator that will list the tree’s elements in
a predictable sequence.

12

23

Preorder, Inorder, Postorder

The three most commonly used traversal orders can
be recursively described as:

• preorder: root, left subtree, right subtree

• inorder: left subtree, root, right subtree

• postorder: left subtree, right subtree, root

24

Traversals

• Preorder: A B D E C F H I G
• Inorder: D B E A H F I C G
• Postorder: D E B H I F G C A

A

B C

D E F G

H I

13

25

Tree Traversal Exercise

• Download TreeTraversal.jar from the class
web site.

• Double click TreeTraversal.jar to execute it.
• Use the buttons on the bottom of the frame to

explore tree terminology.
• Use the buttons on the top of the frame to explore

the three typical tree traversals inorder, preorder,
and postorder.

26

Tree Example:
Binary Search Tree

• Consider a binary tree of nodes each of which
contains an integer called the value of the node.
Let this tree obey one further rule that for every
node, the value of the nodes in the left subtree (if
it exists) are always less than or equal to the
value of the node which is less than or equal to
the values of the nodes in the right subtree (if it
exists).

• This tree is sorted, and the inorder traversal will
produced an ordered listing of it.

• Such trees are called binary search trees and we
will examine them more closely in the next
lecture.

14

27

Tree Example:
Parse Tree

• Consider an arithmetic expression that you might
want to evaluate using a calculator:

3.14159*((6+3*1.17)/2)2

• This expression can be viewed as a tree where
non-leaf nodes contain operators and their
children contain the operands, which may be
subexpressions. The resulting tree is called a
parse or expression tree.

28

Parse Tree Diagram

3.14159*((6+3*1.17)/2)2

*

3.14159 ^

2/

2+

6 *

3 1.17

15

29

Parse Trees and Postorder

A postorder traversal of the parse tree will
produce the postfix version of the original
expression:

3.14159*((6+3*1.17)/2)2

3.14159 6 3 1.17 * + 2 / 2 ^ *

30

Tree Editor Exercise, 1
• Download TreeEditor.jar from the class web site.
• Double click TreeEditor.jar to execute it.

• Create a binary search tree by adding a root node with
value 7 and then children for the sequence of nodes:
1,3,4,5,8,9,10,15. Make sure the tree obeys the binary search
tree property. Check your node values by clicking on
inorder traversal. If you have constructed a proper binary
search tree, your nodes will be listed out in order. Now
select the root node and click remove to clear the display,
then recreate the tree with the same nodes but this time
make node 3 the root.

• Can you describe an algorithm to add nodes to a binary
tree while preserving the binary search tree property?

16

31

Tree Editor Exercise, 2

• Select the root node and then click remove to clear the
display. Now create a parse tree for the arithmetic
expression ((1+2.718)*2) / (2*3.14)
using +, -, *, and /.

• Click the inorder and postorder traversal buttons. If you are
confident that you have constructed a proper parse tree,
click the calculate the tree button to evaluate the
expression.

• The editor will respond "please check your input for each
node" if your parse tree is invalid. If it is a correct parse
tree, it will calculate the value of the expression.

32

Inorder Traversal Implementation, 1

public class BinaryTree
{

private Object value;
private BinaryTree left = null;
private BinaryTree right = null;

public BinaryTree(Object o, BinaryTree l,
BinaryTree r)

{
value = o; left = l; right = r;

}

17

33

Inorder Traversal Implementation, 2

public ArrayList getInorder()
{
ArrayList list = new ArrayList();
return traverseInorder(this, list);

}

private ArrayList traverseInorder(BinaryTree b,
ArrayList l)

{
if (b != null) {
traverseInorder(b.left, l);
l.add(b.value);
traverseInorder(b.right, l);

}
return l;

}

34

The Efficiency of Algorithms

• Much of the motivation for the design of
trees comes from the fact that they
support efficient algorithms.

• We are going to take a brief detour to
introduce the concepts computer
scientists use to discuss the efficiency of
algorithms.

18

35

Searching a Sorted List

• Let's start with a particular example, that of searching for a
particular element in an unsorted list.

• There is no more efficient way to search a sorted list than to
start with the first entry and examine each in turn until a
matching item is found or the end of the list is encountered.

• If the list is sorted in ascending order, then you can
recognize a miss as soon as you encounter a key greater
than the key that is sought. How efficient is this?

• On average, if the list contains n elements, you would
expect to examine half of them before finding the entry or
realizing that it is missing.

• If a list contained 2n elements, you would intuitively expect
it to take twice as long to search as a list containing n
elements.

36

Analyzing the Execution Time

• Analysis of an algorithm starts by breaking the
computation down into well-defined steps that
should take the same amount of time whenever
they are executed.

• If there are loops that may be executed variable
numbers of times, and conditions that will affect
the course of the algorithm, the analysis should
identify them so that the average and worst case
number of repetitions can be calculated.

19

37

Runtime Costs

• The result of this analysis is usually a sum of terms, each of
which consists of a repetition count times a constant
representing the estimated time for the subtask.

• The sum for the linear search of a sorted list can be
expressed as cs + cc*k, where
– cs = the constant cost of setting up a search, e.g., invoking the

Java Virtual Machine, parsing arguments, etc;
– cc = the cost of checking one element of the list;
– k = 1, in the best possible case, i.e., the target element is first

in the list;
n/2 in the average case where n = the number of elements

in the list;
n in the worst case.

38

Absolute vs Relative Execution Time

• An accurate estimate of the time to execute the subtasks is
difficult to calculate on a priori grounds. It depends on CPU,
machine configuration, compiler efficiency, etc.

• But the repetition count can be very precise. We usually
express it as a function of a variable that represents some
aspect of the problem's size. In the case of searching a
singly linked list, as we saw, the key quantity is the length
of the list we are searching.

• Our goal here is not to guess the exact execution time of a
particular algorithm applied to a particular data set, but
rather to figure out what happens to the execution time as
the size of the problem grows.

20

39

Algorithmic Efficiency

• In our example of searching the linked list, we don't care
about the constant cs term because it doesn't change as the
list gets longer. What we do care about is that we can
expect the execution time to grow linearly with the size of
the problem (the length of the list).

• If our algorithm had two or more loops that depended on
the number of elements, our formula for worst or average
case would be a sum of terms that depended on variable n.
For example,

• In this case, the squared term is the important one. We say
that the n2 term dominates the 5n term as n gets large.

2 5n n+

40

Dominance

• Some terms will come to dominate others as n
increases. For instance in a sum of polynomial
terms, the term with the highest exponent will
dominate the others.

• In the same way n will dominate log n and 2n will
dominate na for any constant a.

21

41

O() Notation

• Taking dominance into consideration, the growth
of execution time for an algorithm usually comes
down to a single term without a constant.

• Thus the search time for a linear search through a
sorted list will grow proportionally to n, the length
of the list.

• More formally, we call it an O(n) algorithm
(pronounced “order n”). The execution time of an
algorithm that is O(n2) will grow more quickly
(proportionally to the square on n) and that of an
O(log n) algorithm more slowly.

42

The Efficiency of Trees

One of the main reasons that we are looking
at trees is that while linked lists give
search times of O(n), most tree
implementations support search times of
O(log n).

22

43

The Efficiency of Trees, 2
of tests
to search
to level

1

2

cumulative
nodes

3

4

. . .n

1

15

7

3

2n-1

44

Efficiency of Trees, Example

• Consider searching a singly linked list where the
average search time is given by time = .01 +
0.0001n seconds.

• Now compare a tree where the search time for an
element is given by time = 0.1 + 0.001log2n
seconds.

• Despite the fact that the constant term and the
coefficient are an order of magnitude larger in the
tree case, estimate at what size n tree
performance surpasses that of the list.

• What happens if we increase n past that point by
three orders of magnitude?

