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Goals

• To explain in more detail the different 
types of nested classes and how to use 
them. A nested class is one that is defined 
inside another class.

• To introduce the large family of data 
structures known as trees
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static Nested Classes

You can define a static nested class inside another 
class:

public abstract class java.awt.geom.Line2D
{
public static class Double { ... }
public static class Float { ... }

}
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static Nested Classes, 2

• It behaves like any other top level class 
except that its true name is the outer class 
name concatenated with the inner class 
name: e.g., Line2D.Double

• A nested class is considered to be part of 
the enclosing class:
– Make it public if you want methods in other 

classes to use it
– Make it private if you are only going to use it 

in the enclosing class
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private static Nested Class

public class SLinkedList implements List {
private int length = 0;
private SLink first = null;
private SLink last = null;

private static class SLink {
Object item; SLink next;

SLink( Object o, SLink n )
{ item = o; next = n; }

SLink( Object o )
{ this( o, null ); }

}
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Inner Classes

• If a nested class is not static, we call it an inner 
class.

• Instances of inner classes are usually created 
using new in an instance method of the enclosing 
class.

• Inner class methods have access to the instance 
variables and methods of the enclosing class 
instance.

• Inner classes can have constructors with or 
without arguments.
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ListIterator as an Inner Class Example

public class SLinkedList implements List {
private SLink first = null;
...
public class SLinkedListIterator
implements ListIterator {
private SLink previous = null;
private SLink current = null;   
private SLink next;

public SLinkedListIterator( ) {
next = first;
current = null;

}
...
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Anonymous Inner Classes

• Are “cheap” inner classes in the sense 
that they are easy to define
– They are unnamed, so you can only create a 

single instance at the place you define them.
– They must extend a class or implement an 

interface.
– They can’t have a defined constructor and, 

therefore, always use a default constructor.
• Are commonly used in Swing code to 

implement listeners or adapters.
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Listener Example

public class AnonExample extends JFrame
{
private JLabel countLabel;
private int count = 0;

public AnonExample()
{
JPanel myPanel = new JPanel();
JButton myB = new JButton( "Increment" );
myPanel.add( myB );
countLabel = new JLabel( “ 0" );
myPanel.add( countLabel );
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Listener Example, 2

myB.addActionListener( new ActionListener() 
{
public void actionPerformed(ActionEvent e)
{
countLabel.setText(
String.valueOf( ++count ));

}
}
);
getContentPane().add( myPanel,

BorderLayout.CENTER );
}

Variables
from the

enclosing
class
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Listener Example Without Anonymous Class

public class MyAction implements ActionListener
{

private int count;
private JLabel myL;
public MyAction( JButton b, JLabel l )
{
count = 0; myL = l;
b.addActionListener(this);

}

public void actionPerformed(ActionEvent e)
{ l.setText( String.valueOf( count++ )); } 

}
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Adapters

• Some listener interfaces have many methods and 
you may only be interested in using one. For 
most Listener interfaces with multiple methods, 
there is a corresponding Adapter, a class with 
null implementations of the listener methods.

• Pattern: create an anonymous inner class that 
extends the adapter and override the single 
method you are interested in.
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Adapter Example

package java.awt.event;
public interface MouseMotionListener extends 

EventListener {
public void mouseDragged(MouseEvent e);
public void mouseMoved(MouseEvent e);

}

public abstract class MouseMotionAdapter implements 
MouseMotionListener {
public void mouseDragged(MouseEvent e) {}
public void mouseMoved(MouseEvent e) {}

}
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Adapter Example, 2

import java.awt.event.*; import javax.swing.*;
public class MouseMotion extends JFrame {

public MouseMotion() {
setSize( 600, 400 );
setDefaultCloseOperation( EXIT_ON_CLOSE );
getContentPane().addMouseMotionListener(
new MouseMotionAdapter() {
public void mouseDragged( MouseEvent e ) {
System.err.println( "Dragged: " + e.getX() +

", " + e.getY() );
}

}
);

}
}
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Trees

• Trees are the name given to a versatile group of 
data structures.

• They can be used to implement a number of 
abstract interfaces including the List, but those 
applications in which they are most useful 
employ trees' branching structure to represent 
some property of the data elements or to optimize 
certain methods.

• For example, Minimax game trees, are often used 
in game playing programs to represent the way 
board positions multiply from a single starting 
situation.
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Tree Terminology

root

A B

C

B’s parent

D’s ancestors

B’s children

A’s descendants
or the subtree

rooted at C

leaves

G H

D E F
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Trees, Nodes, and Roots

• A tree consists of connected nodes.
• Each tree (except a degenerate empty 

tree) has a distinguished node called the 
root.

• There can be no circular paths in a tree's 
connections so there is a unique path 
from every node to the root.
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Child and Parent Nodes

• All nodes connected to a particular node 
are either children or the parent of that 
node.

• If the connected node lies along the 
unique path to the root, then that node is 
called the parent. All nodes except the 
root have a unique parent.

• All other nodes connected to a particular 
node are that node's children.
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Ancestors, Descendants, and Subtrees

• The nodes that lie along the path from a node to 
the root are called a node's ancestors and include 
its parent, its parent's parent, etc., back to the 
root.

• The set of nodes that includes a node's children, 
and its children's children, etc, is called a node's 
descendants.

• A node and its descendants forms a subtree
rooted at that node.

• A node without children is called a leaf.
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Binary Tree

• A particularly common and useful type of 
tree called a binary tree allows a node to 
have at most two children.

• We can give a more formal definition of 
binary tree that emphasizes a tree's 
recursive character as follows:
A binary tree is either the empty tree or a root 

node with left and right subtrees that are both 
binary trees.
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Binary Tree Examples

1.
root

3.2.
root root

A B B

DC

F

E
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Tree Traversal

• Listing all the elements of a tree is more 
complicated than listing all the elements 
of a linked list, and there are a number of 
ways we can do it.

• We call a list of a tree's nodes a traversal 
if it lists each tree node exactly once.

• Tree implementations usually possess an 
iterator that will list the tree’s elements in 
a predictable sequence.
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Preorder, Inorder, Postorder

The three most commonly used traversal orders can 
be recursively described as:

• preorder: root, left subtree, right subtree

• inorder: left subtree, root, right subtree

• postorder: left subtree, right subtree, root
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Traversals

• Preorder:  A B D E C F H I G 
• Inorder:     D B E A H F I C G 
• Postorder: D E B H I F G C A 

A

B C

D E F G

H I
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Tree Traversal Exercise

• Download TreeTraversal.jar from the class 
web site.

• Double click TreeTraversal.jar to execute it.
• Use the buttons on the bottom of the frame to 

explore tree terminology.
• Use the buttons on the top of the frame to explore 

the three typical tree traversals inorder, preorder, 
and postorder.
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Tree Example:
Binary Search Tree

• Consider a binary tree of nodes each of which 
contains an integer called the value of the node. 
Let this tree obey one further rule that for every 
node, the value of the nodes in the left subtree (if 
it exists) are always less than or equal to the 
value of the node which is less than or equal to 
the values of the nodes in the right subtree (if it 
exists).

• This tree is sorted, and the inorder traversal will 
produced an ordered listing of it.

• Such trees are called binary search trees and we 
will examine them more closely in the next 
lecture.
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Tree Example:
Parse Tree

• Consider an arithmetic expression that you might 
want to evaluate using a calculator:

3.14159*((6+3*1.17)/2)2

• This expression can be viewed as a tree where 
non-leaf nodes contain operators and their 
children contain the operands, which may be 
subexpressions. The resulting tree is called a 
parse or expression tree.
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Parse Tree Diagram

3.14159*((6+3*1.17)/2)2

*

3.14159 ^

2/

2+

6 *

3 1.17
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Parse Trees and Postorder

A postorder traversal of the parse tree will 
produce the postfix version of the original 
expression:

3.14159*((6+3*1.17)/2)2

3.14159  6  3  1.17  *  +  2  /  2  ^  *
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Tree Editor Exercise, 1
• Download TreeEditor.jar from the class web site.
• Double click TreeEditor.jar to execute it.

• Create a binary search tree by adding a root node with 
value 7 and then children for the sequence of nodes: 
1,3,4,5,8,9,10,15. Make sure the tree obeys the binary search 
tree property. Check your node values by clicking on 
inorder traversal. If you have constructed a proper binary 
search tree, your nodes will be listed out in order. Now 
select the root node and click remove to clear the display, 
then recreate the tree with the same nodes but this time 
make node 3 the root.

• Can you describe an algorithm to add nodes to a binary 
tree while preserving the binary search tree property?
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Tree Editor Exercise, 2

• Select the root node and then click remove to clear the 
display. Now create a parse tree for the arithmetic 
expression  ((1+2.718)*2) / (2*3.14)
using +, -, *, and /.

• Click the inorder and postorder traversal buttons. If you are 
confident that you have constructed a proper parse tree, 
click the calculate the tree button to evaluate the 
expression.

• The editor will respond "please check your input for each 
node" if your parse tree is invalid. If it is a correct parse 
tree, it will calculate the value of the expression.
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Inorder Traversal Implementation, 1

public class BinaryTree
{ 

private Object value;
private BinaryTree left = null;
private BinaryTree right = null;

public BinaryTree( Object o, BinaryTree l, 
BinaryTree r )

{
value = o; left = l; right = r;

}
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Inorder Traversal Implementation, 2

public ArrayList getInorder()
{
ArrayList list = new ArrayList();
return traverseInorder( this, list );

}

private ArrayList traverseInorder( BinaryTree b,
ArrayList l )

{
if ( b != null )  {
traverseInorder( b.left, l );
l.add( b.value );
traverseInorder( b.right, l );

}
return l;

}
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The Efficiency of Algorithms

• Much of the motivation for the design of 
trees comes from the fact that they 
support efficient algorithms.

• We are going to take a brief detour to 
introduce the concepts computer 
scientists use to discuss the efficiency of 
algorithms.
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Searching a Sorted List

• Let's start with a particular example, that of searching for a 
particular element in an unsorted list.

• There is no more efficient way to search a sorted list than to 
start with the first entry and examine each in turn until a 
matching item is found or the end of the list is encountered.

• If the list is sorted in ascending order, then you can 
recognize a miss as soon as you encounter a key greater 
than the key that is sought. How efficient is this?

• On average, if the list contains n elements, you would 
expect to examine half of them before finding the entry or 
realizing that it is missing.

• If a list contained 2n elements, you would intuitively expect 
it to take twice as long to search as a list containing n
elements.
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Analyzing the Execution Time

• Analysis of an algorithm starts by breaking the 
computation down into well-defined steps that 
should take the same amount of time whenever 
they are executed.

• If there are loops that may be executed variable 
numbers of times, and conditions that will affect 
the course of the algorithm, the analysis should 
identify them so that the average and worst case 
number of repetitions can be calculated.
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Runtime Costs

• The result of this analysis is usually a sum of terms, each of 
which consists of a repetition count times a constant 
representing the estimated time for the subtask.

• The sum for the linear search of a sorted list can be 
expressed as cs + cc*k, where
– cs = the constant cost of setting up a search, e.g., invoking the 

Java Virtual Machine, parsing arguments, etc;
– cc = the cost of checking one element of the list;
– k = 1, in the best possible case, i.e., the target element is first 

in the list;
n/2 in the average case where n = the number of elements 

in the list;
n in the worst case. 
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Absolute vs Relative Execution Time

• An accurate estimate of the time to execute the subtasks is 
difficult to calculate on a priori grounds. It depends on CPU, 
machine configuration, compiler efficiency, etc.

• But the repetition count can be very precise. We usually 
express it as a function of a variable that represents some 
aspect of the problem's size. In the case of searching a 
singly linked list, as we saw, the key quantity is the length 
of the list we are searching.

• Our goal here is not to guess the exact execution time of a 
particular algorithm applied to a particular data set, but 
rather to figure out what happens to the execution time as 
the size of the problem grows.
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Algorithmic Efficiency

• In our example of searching the linked list, we don't care 
about the constant cs term because it doesn't change as the 
list gets longer. What we do care about is that we can 
expect the execution time to grow linearly with the size of 
the problem (the length of the list).

• If our algorithm had two or more loops that depended on 
the number of elements, our formula for worst or average 
case would be a sum of terms that depended on variable n. 
For example,

• In this case, the squared term is the important one. We say 
that the n2 term dominates the 5n term as n gets large.

2 5n n+
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Dominance

• Some terms will come to dominate others as n 
increases. For instance in a sum of polynomial 
terms, the term with the highest exponent will 
dominate the others.

• In the same way n will dominate log n and 2n will 
dominate na for any constant a.
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O() Notation

• Taking dominance into consideration, the growth 
of execution time for an algorithm usually comes 
down to a single term without a constant.

• Thus the search time for a linear search through a 
sorted list will grow proportionally to n, the length 
of the list.

• More formally, we call it an O(n) algorithm 
(pronounced “order n”). The execution time of an 
algorithm that is O(n2) will grow more quickly 
(proportionally to the square on n) and that of an 
O( log n ) algorithm more slowly.
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The Efficiency of Trees

One of the main reasons that we are looking 
at trees is that while linked lists give 
search times of O(n), most tree 
implementations support search times of 
O(log n).
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The Efficiency of Trees, 2
# of tests
to search
to level

1

2

cumulative
nodes

3

4

. . .n

1

15

7

3

2n-1

44

Efficiency of Trees, Example

• Consider searching a singly linked list where the 
average search time is given by time = .01 + 
0.0001n seconds.

• Now compare a tree where the search time for an 
element is given by time = 0.1 + 0.001log2n
seconds.

• Despite the fact that the constant term and the 
coefficient are an order of magnitude larger in the 
tree case, estimate at what size n tree 
performance surpasses that of the list.

• What happens if we increase n past that point by 
three orders of magnitude?


