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select models  when the observed snow–AO relationship 
emerges. This finding suggests that internal variability 
may play a significant role in the observed relationship. 
Further analysis demonstrates that the models poorly cap-
ture the downward propagation of stratospheric anomalies 
into the troposphere, a key facet of NH wintertime cli-
mate variability irrespective of the influence of Eurasian 
snow cover. A weak downward propagation signal may be 
related to several factors including too few stratospheric 
vortex disruptions and weaker-than-observed tropospheric 
wave driving. The analyses presented can be used as a 
roadmap for model evaluations in future studies involving 
NH wintertime climate variability, including those con-
sidering future climate change.

Keywords  Arctic Oscillation · Large-scale extratropical 
climate variability · Stratosphere–troposphere coupling · 
Eurasian snow cover

1  Introduction

The Arctic Oscillation (AO) (also referred to as the North-
ern Annular Mode) is the leading mode of Northern Hemi-
sphere (NH) wintertime climate variability and describes 
meridional shifts in the polar jet stream and changes in 
storm tracks and temperatures across the NH middle 
and high latitudes (Thompson and Wallace 1998, 2000). 
Because the AO typifies wintertime weather regimes, pre-
dicting its phase is an active goal for seasonal forecasts 
(e.g., Baldwin et al. 2003; Cohen 2003; Orsolini and Kin-
dem 2011a; Maidens et al. 2013). Moreover, detection and 
prediction of decadal- and longer-scale trends in the AO 
resulting from, for example, radiative warming is important 
for future climate projections (e.g., Gillett and Fyfe 2013).

Abstract  Observational studies and modeling experi-
ments illustrate that variability in October Eurasian snow 
cover extent impacts boreal wintertime conditions over 
the Northern Hemisphere (NH) through a dynamical 
pathway involving the stratosphere and changes in the 
surface-based Arctic Oscillation (AO). In this paper, we 
conduct a comprehensive study of the Eurasian snow–AO 
relationship in twenty coupled climate models run under 
pre-industrial conditions from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5). Our analyses indi-
cate that the coupled climate models, individually and 
collectively, do not capture well the observed snow–AO 
relationship. The models lack a robust lagged response 
between October Eurasian snow cover and several NH 
wintertime variables (e.g., vertically propagating waves 
and geopotential heights). Additionally, the CMIP5 mod-
els do not simulate the observed spatial distribution and 
statistics of boreal fall snow cover across the NH includ-
ing Eurasia. However, when analyzing individual 40-year 
time slices of the models, there are periods of time in 
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The existence of the AO is primarily the result of inter-
nal tropospheric dynamics, arising from large-scale tropo-
spheric eddy-zonal mean feedbacks (e.g. Lorenz and Hart-
mann 2003; Gerber and Vallis 2007). But, variability in the 
AO can be modulated from forcings and interactions with 
other large-scale climate modes. Several hypotheses on 
teleconnections and dynamical mechanisms influencing 
the AO exist, including: (1) Indo-Pacific SST variability 
(e.g., Hoerling et  al. 2001; Schneider et  al. 2003; Hurrell 
et  al. 2004), particularly the El Niño-Southern Oscilla-
tion (ENSO; e.g., Garfinkel and Hartmann 2007; Ineson 
and Scaife 2009); (2) the quasi-biennial oscillation (e.g., 
Baldwin and Dunkerton 1999); (3) solar variability (e.g., 
Ineson et al. 2011); and (4) influences of autumn Eurasian 
snow cover variability on the extratropical atmospheric cir-
culation in the fall and following winter (e.g., Foster et al. 
1983; Cohen and Entekabi 1999). The focus of this study is 
on the last hypothesis.

The dynamical mechanism linking October Eurasian 
snow cover to the following wintertime climate is schemati-
cally presented in Fig. 1 (Cohen et al. 2007). Step 1 involves 

the expansion of the Eurasian snow cover (primarily in Sibe-
ria during most of October and expanding westward and 
southward from late October into November). Anomalously 
high Eurasian snow cover cools the surface and increases 
surface pressure (Step 2). The lower tropospheric anomalies 
amplify the downstream standing wave pattern and enhance 
vertical wave propagation into the polar stratosphere (Step 
3). Anomalous momentum and heat fluxes from these ver-
tically propagating waves are deposited in the stratosphere 
once the waves “break”, disturbing the mean stratospheric 
circulation (Step 4). The imposed stratospheric anomalies 
eventually descend into the troposphere from continued 
wave-breaking at consecutively lower levels (e.g., Haynes 
et al. 1991), introducing same-signed anomalies there (Step 
5). The tropospheric manifestation of these downward prop-
agating anomalies is the negative phase of the AO; i.e., an 
equatorward shift of the polar jet and colder weather in the 
middle latitudes (Step 6).

Though the Eurasian snow–AO relationship was initially 
shown statistically, modeling experiments forced with Eur-
asian snow cover anomalies also reproduce this connection 
(e.g., Gong et  al. 2003; Fletcher et  al. 2007, 2009; Allen 
and Zender 2010, 2011; Peings et al. 2012). This relation-
ship can therefore offer improvement in winter seasonal 
forecasts (e.g., Fletcher et  al. 2007; Cohen and Fletcher 
2007). Modeling experiment success, however, arises only 
when prescribing observed snow cover variability; i.e., 
models cannot recover the Eurasian snow–AO relationship 
with internally-generated snow cover (e.g., Hardiman et al. 
2008; Allen and Zender 2011; Riddle et al. 2013).

While the dynamical mechanism depicted in Fig.  1 
evolves on seasonal timescales, long-term trends in autumn 
temperature and high-latitude snowfall could amplify or 
reduce the impacts of autumn climate variability on winter-
time climate. Coupled-climate models have long projected 
a positive trend in the AO (i.e., strong warming in the NH 
mid-latitudes and a poleward contraction of the polar jet 
stream) due to increases in greenhouse gases and warm-
ing of the tropical oceans (e.g., Shindell et al. 1999; Hurrell 
et al. 2004; Scaife et al. 2012), though that consensus has 
diminished in the latest set of coupled climate models (e.g., 
Gillett and Fyfe 2013; Cattiaux and Cassou 2013). Yet, sev-
eral studies suggest that less Arctic sea ice in the fall may 
increase latent heat fluxes at high latitudes and thus gener-
ate higher snowfall across portions of Eurasia (e.g., Deser 
et al. 2010; Ghatak et al. 2010; Orsolini et al. 2011; Cohen 
et  al. 2012). With potentially higher autumn snowfall in 
Eurasia, the mechanism outlined in Fig.  1 could mitigate 
a projected positive trend in the AO and associated NH cli-
mate changes, at least on shorter time scales.

This paper diagnoses the presence of the Eurasian snow–
AO mechanism in the latest set of coupled climate models 
in the Coupled Model Intercomparison Project (CMIP) 
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Fig. 1   The six-step process describing how Eurasian snow cover in 
the fall (October) can impact the NH tropospheric circulation in the 
winter (December–February) via changes in the stratospheric circu-
lation and changes in the surface AO pattern. Diagram adapted from 
Fig. 6 of Cohen et al. (2007)
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Phase 5 (CMIP5). We will demonstrate that these models 
are unable to reproduce the snow–AO dynamical links, 
echoing similar results from Hardiman et  al. (2008) for 
the CMIP3 models. Like the Hardiman et al. (2008) study, 
we will illustrate that the CMIP5 models underestimate 
the variability of October Eurasian snow cover and do not 
simulate lagged atmospheric responses during the winter to 
October Eurasian snow cover variability. However, we will 
also illustrate that the relationship is present in select mod-
els during select periods of time, suggesting that internal 
variability may play a dominant role in the observed snow–
AO relationship. The paper is organized as follows. Sec-
tion  2 describes the observational data and model output 
analyzed and compared in this study. Relationships derived 
from the six-step framework in Fig. 1 are then explored in 
Sect. 3. Next we offer some hypotheses on why the models 
remain unable to reproduce the Eurasian snow–AO rela-
tionship through examination of stratosphere–troposphere 
coupling dynamics in Sect. 4. A discussion of the findings 
and conclusions follow.

2 � Data and methods

2.1 � Observations

The observational dataset used for comparison with the 
model output analyses is the European Centre for Medium-
Range Weather Forecasts Interim Reanalysis (ERA-
Interim; Dee et al. 2011). ERA-Interim data are spaced on a 
1.5

◦ by 1.5
◦ longitude/latitude grid globally, with 23 vertical 

pressure levels ranging non-uniformly from 1 to 1,000 hPa. 
However, for comparison with the coupled climate models, 
we restrict analyses to below 10 hPa. Monthly-mean values 
from 1979 to 2013 of several atmospheric variables [geo-
potential height, zonal and meridional winds, air tempera-
ture, and sea level pressure (SLP)] are studied with focus 
on the extended NH cold season (October through March). 
Additionally, to test the robustness of our conclusions, we 
also performed comparisons with the National Centers of 
Environmental Prediction/National Center for Atmospheric 
Research (NCEP/NCAR) Reanalysis project (Kistler et al. 
2001) and the National Aeronautics and Space Administra-
tion Modern Era Retrospective Analysis for Research and 
Applications (NASA MERRA; Rienecker et al. 2011) and 
received qualitatively similar results (not shown).

For snow cover, we use observed October snow cover 
extent (SCE) from the Rutgers Global Snow Lab (Robin-
son et al. 1993) from 1979 to 2012 (available for download 
at http://climate.rutgers.edu/snowcover). The SCE data are 
a merged product from reanalysis of observational snow 
cover maps and remote sensing measurements. Since 1999, 
the Rutgers snow cover data rely on the daily Interactive 

Multisensor Snow and Ice Mapping System (IMS) high-
resolution (24 km) product. All SCE data are on a 89 × 89 
grid. The data source also provides a Eurasian-sector snow 
cover index, in km

2, which is used as the basis for several 
regression and correlation analyses presented in this study. 
Brown and Robinson (2011) suggest uncertainties in the 
measurements for the Rutgers SCE are up to 5 % over the 
Eurasian sector, but including these uncertainties do not 
impact our results or conclusions.

2.2 � Coupled climate model output

Models examined in this study originate from the CMIP5 
multi-model archive, which are available for download 
from the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI) at the Lawrence Livermore 
National Laboratory (more information on the program 
is available at http://cmip-pcmdi.llnl.gov/index.html). 
We select the pre-industrial control (piControl) scenario 
(i.e., prescribed, non-evolving greenhouse gas concentra-
tions and aerosols mimicking conditions prior to 1850 
are the primary forcings) for analysis in this work. The 
advantages of choosing this scenario over others available 
in CMIP5 are its long integrations (hundreds of years of 
model output) and its exclusion of anthropogenic effects 
which could influence the studied relationship. That said, 
we also repeated analyses for the historical scenario of 
the models (i.e., a continuation of the piControl run from 
1850 onwards with anthropogenic and aerosol forcing 
representative of the late 19th/20th century included). 
Analyses with this scenario test whether the observed 
relationship relies on modern-day forcings. Results with 
the historical scenario of the model runs were quite simi-
lar to those from the piControl runs, indicating that the 
effects of anthropogenic greenhouse gas or aerosol forc-
ing in the 20th century do not impact the simulated Eura-
sian snow–AO relationship versus observations. Particular 
models for the study are chosen based on the availability 
of monthly-mean output for the piControl scenario of all 
required variables, including SCE. Twenty models meet 
this criterion and are listed in Table 1. All model output 
are re-gridded to a common 2.5

◦ by 2.5
◦ longitude/latitude 

grid to facilitate inter-model comparison and comparison 
with the observations.

Model atmospheric variables analyzed are identical to 
those from observations. Snow cover from the model out-
put is provided as the monthly-mean fractional area (0–1) 
of a grid cell covered in snow. To get an areal extent of 
snow cover, the fractional area is multiplied by the size 
of the grid box and then summed over the area from 0◦ to 
170°W, 20°N to 75°N, which coincides roughly with the 
same area used for the Rutgers Global Snow Lab Eurasian 
SCE index (T. Estilow, personal communication).

http://climate.rutgers.edu/snowcover
http://cmip-pcmdi.llnl.gov/index.html


J. C. Furtado et al.

1 3

2.3 � Statistical methods

Lag regression and correlation are the primary statistical 
methods used for studying relationships between SCE and 
atmospheric variables. Significance testing for temporal 
correlations and regressions is done through a two-sided 
Student t test with one degree of freedom per year. We also 
calculated effective degrees of freedom using the formula-
tion from Bretherton et al. (1999), but the differences were 
small (~1–2). To complement the Student t test method, we 
also conducted significance testing using a Monte Carlo 
approach. Under this method, we generate 1,500 pairs of 
random time series representing the indices of interest. The 
random time series were formed in two ways: (1) using a 
simple autoregressive order-1 model with random numbers; 
and (2) taking the index and randomly shuffling the val-
ues to form a new time series. The determined significance 
level was not sensitive to the method chosen. Similar meth-
odology was used to assess the significance of similarities 

between the observed and modeled correlation/regression 
maps. In this case, we calculate a null distribution of pat-
tern correlation values by (1) forming regression/correla-
tion maps between each synthetic time series described 
above and the variable of interest and (2) calculating pat-
tern correlations between the resulting synthetic maps and 
the observed map.

Monthly-mean anomalies are used throughout the 
study. For the observations, anomalies are calculated by 
removing the long-term climatological mean for each 
month in the record. For the models, however, hun-
dreds of years of output exist for computing anomalies 
and relevant statistics. With 10–25 times more samples 
in the models than observations for statistical analyses, 
we choose an alternative approach to test the robustness 
of the results. The output from the long model integra-
tions are subdivided into 40-year long sub-intervals, and 
monthly-mean anomalies are computed based on each 
40-year climatology, along with the relevant statistics 

Table 1   List of coupled climate models from the CMIP5 model archive analyzed in this study, along with total length of the piControl run for 
each model (years)

Institution, Country Model name Length of  
piControl run (years)

Beijing Climate Center (BCC), China BCC-CSM1.1 500

Beijing Normal University (BNU), China BNU-ESM 559

Canadian Centre for Climate Modeling and Analysis (CCCma), Canada CanESM2 996

National Center for Atmospheric Research (NCAR), United States CCSM4 501

National Center for Atmospheric Research (NCAR), United States CESM1-WACCM 200

Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation 
Avancées en Calcul Scientifique (CNRM-CERFACS), France

CNRM-CM5 850

Commonwealth Scientific and Industrial Research Organisation (CSIRO) in collaboration 
with the Queensland Climate Change Centre of Excellence (QCCCE), Australia

CSIRO-Mk3-6-0 500

Institute of Atmospheric Physics (IAP) and Tsinghua University, China FGOALS-g2 700

National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies 
(GISS), United States of America

GISS-E2-H 240

National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies 
(GISS), United States of America

GISS-E2-R 401

Institute of Numerical Mathematics (INM), Russia INMCM4 500

Atmosphere and Ocean Research Institute (The University of Tokyo)/National Institute for 
Environmental Studies/Japan Agency for Marine-Earth Science and Technology, Japan

MIROC4h 100

Atmosphere and Ocean Research Institute (The University of Tokyo)/National Institute for 
Environmental Studies/Japan Agency for Marine-Earth Science and Technology, Japan

MIROC5 670

Atmosphere and Ocean Research Institute (The University of Tokyo)/National Institute for 
Environmental Studies/Japan Agency for Marine-Earth Science and Technology, Japan

MIROC-ESM 531

Atmosphere and Ocean Research Institute (The University of Tokyo)/National Institute for 
Environmental Studies/Japan Agency for Marine-Earth Science and Technology, Japan

MIROC-ESM-CHEM 255

Max Planck Institute for Meteorology (MPI-M), Germany MPI-ESM-LR 1000

Max Planck Institute for Meteorology (MPI-M), Germany MPI-ESM-MR 1000

Max Planck Institute for Meteorology (MPI-M), Germany MPI-ESM-P 1156

Meteorological Research Institute (MRI), Japan MRI-CGCM3 500

Norwegian Climate Centre (NCC), Norway NorESM1-M 501
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on that sub-interval. This parsing method was also done 
with 30-year and 50-year segments of the model output, 
along with performing no parsing of the record (i.e., using 
the full record). The aggregated results, including the 
multi-model ensemble-mean statistics, are highly similar, 
increasing confidence in our methodology. Before sta-
tistics are calculated in the observations and models, all 
anomalies are linearly detrended.

When comparing model performance to observations, 
we rely primarily on ensemble-mean statistics for the com-
parison, though we highlight individual model performance 
as well. For the individual models, we aggregate statistics 
among the several sub-intervals of a model to get represent-
ative statistics for that model. Multi-model ensemble-mean 
statistics are then calculated by averaging a particular sta-
tistic over all models.

3 � Model evaluation of October Eurasian SCE 
and wintertime surface climate relationship

3.1 � The AO signature in the models

Before exploring particular statistical relationships repre-
sented in Fig. 1, we examine how the CMIP5 models repro-
duce fundamental characteristics of the AO. Figure 2 pre-
sents the spatial signature of the AO (shown in the negative 
phase) in observations (Fig. 2a) and for the CMIP5 ensem-
ble-mean (Fig. 2b). Here, the AO is defined as the leading 
empirical orthogonal function (EOF) of detrended Novem-
ber–March (NDJFM) monthly SLP anomalies (SLPa) pole-
ward of 20 N. The observed AO pattern explains ~23  % 
of the total variance of the NDJFM NH SLPa field and 

resembles that shown in prior studies, including the max-
imum of the positive SLPa loading center situated in the 
North Atlantic (Fig.  2a). The CMIP5 ensemble-mean AO 
pattern explains nearly the same fraction of variance as the 
observed (~25 %) and resembles quite closely the observed 
pattern. The pattern correlation between Fig.  2a, b is 
r = 0.88 (p < 0.01). This close correspondence in the AO 
spatial patterns is notable considering the background cli-
mate and boundary conditions are different in the piControl 
runs from the observations. Inter-model spread in the AO 
signature is quite small as well, with pattern correlations 
between the observed and model AO patterns ranging from 
to r = 0.88 to r = 0.97. Temporally, the standard devia-
tion of the December–February (DJF) surface AO index 
(σAO) for the observations is σAO = 1.70, which is slightly 
less than that of the CMIP5 ensemble-mean (σAO = 2.02). 
For individual models, the standard deviation ranges from 
σAO = 1.16 in the FGOALS-g2 model to a notably high 
σAO = 3.23 in the BNU-ESM model.

3.2 � Assessing the snow‑AO dynamical framework 
in the models

Seeing that the CMIP5 models represent the surface-based 
AO sufficiently well, we now explore pieces of the six-step 
Eurasian snow–AO framework (Fig.  1). Figure 3 presents 
the mean October NH fractional snow cover for observa-
tions (Fig. 3a) and in the multi-model ensemble-mean (Fig. 
3b). The spatial extent of snow cover has notable differ-
ences between the observations and the models. In par-
ticular, the observations show higher fractional snow cover 
(nearly 30–40  % higher) over northeastern Siberia and 
Canada. The ensemble-mean field exhibits slightly higher 

Fig. 2   a Regression of 
observed November–March 
(NDJFM) SLPa (hPa) onto the 
principal component time series 
of NDJFM SLPa poleward 
of 20°N (i.e., the surface AO 
index). b As in a but for the 
CMIP5 ensemble-mean regres-
sion pattern. Sign convention 
of the anomalies chosen to 
represent the negative phase of 
the AO

[hPa]

-7 70

Observations CMIP5 Ensemble-Mean

Regression of NDJFM SLPa 
onto PC-1 of SLPa

(a) (b)
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October snow cover over eastern Europe and Scandinavia 
than the observations, but these larger snow cover amounts 
do not offset the deficits over Siberia when aggregated for 
the Eurasian SCE index.

Figure 3c illustrates the long-term mean October Eura-
sian SCE in observations and the models. The observed 
value from the Rutgers SCE dataset (9.45 × 10

6
km

2) 
is nearly 20  % larger than the ensemble-mean 
(7.64 × 10

6
km

2), but the inter-model spread is fairly large. 
Some models (i.e., the MIROC and MPI models) have 
nearly half the mean October Eurasian SCE, but others 
have a significantly higher SCE. However, spread within 
40-year sub-intervals within the same model (denoted 
by the vertical bars in Fig.  3c) is very small. The stand-
ard deviation of the Rutgers October Eurasian SCE index 
is σ = 1.63 × 10

6
km

2, which is significantly larger than 
that seen from all of the CMIP5 models, including all sub-
intervals (Fig.  3d). The ensemble-mean standard devia-
tion of the October Eurasian SCE index is 0.72 × 10

6
km

2,  

less than half of that from the Rutgers snow cover dataset 
(Fig.  3d). The models with the closest level of variability 
to observations are the BNU-ESM and NorESM1-M mod-
els. The reduced interannual variability in October Eurasian 
SCE in the models agrees with Derkson and Brown (2012), 
who also found an underestimate of interannual spring SCE 
in the CMIP5 models. Coefficients of variation are fairly 
consistent among all models, with an absolute range from 
~7 to 13 % and a mean coefficient of variation among all 
models of ~9.7 %. By comparison, the Rutgers snow cover 
dataset has a coefficient of variation of about 17 %. Ulti-
mately, the lack of high variance in the CMIP5 October 
Eurasian SCE indices compared to observations mirrors 
results from other studies (e.g., Hardiman et al. 2008; Allen 
and Zender 2011). Hence, the issues with diagnosed snow 
cover in the coupled climate models persist with the latest 
generation of models.

Recently, Brown and Derkson (2013) identified differ-
ent trends in several observational snow cover datasets, 
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Fig. 3   a The mean October fractional snow cover (in percent) from 
1979 to 2012 from the Rutgers snow cover dataset. Only coverage 
exceeding 1 % is plotted. b As in a but from the multi-model ensem-
ble-mean. c The October monthly-mean Eurasian snow cover extent 
(106 km2) for each model, the multi-model ensemble-mean, and three 
versions of observations: the Rutgers Eurasian SCE index, the long-

term Eurasian SCE index from Brown (2000), and the MERRA Eura-
sian SCE index. Black vertical bars indicate the total spread in mean 
October SCE among the 40-year sub-intervals from the models ana-
lyzed. d The standard deviation of the October Eurasian SCE index 
(106 km2) for each model, the multi-model ensemble-mean, and the 
three observational datasets. Black vertical bars as in c
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including the NOAA satellite record (used for the Rutgers 
SCE index calculation), hence questioning the accuracy of 
the Rutgers snow record. To check for potential differences 
in the mean and standard deviation of the October Eurasian 
SCE in multiple datasets, Fig. 3c, d also include statistics 
from two other observational datasets: (1) A reconstruction 
of Eurasian October SCE from station data from 1922 to 
1997 (Brown 2000), and (2) a computed October Eurasian 
SCE index using MERRA snow cover data (we elected 
not to use the ERA-Interim snow depth data given known 
issues with its fidelity. See, for example, http://old.ecmwf.
int/research/era/do/get/index/QualityIssues). The statistics 
from the Brown (2000) dataset was computed by randomly 
choosing 34 years from the entire period and computing 
the mean and standard deviation for those years. This pro-
cedure was repeated 30 times and then averaged. For the 
mean, note that the values across all three observational 
datasets are highly comparable (Fig. 3c). In terms of stand-
ard deviation, both the Rutgers and Brown (2000) Octo-
ber Eurasian SCE indices are comparably high, with the 
latter the largest of all the datasets and models examined. 
However, the standard deviation of the MERRA October 
Eurasian SCE index is 80–100  % less than the other two 
observational datasets (Fig.  3d). The coefficient of varia-
tion for the Brown (2000) October Eurasian SCE index is 
about 21 %, or slightly higher than that from the Rutgers 
Eurasian SCE index. The MERRA Eurasian SCE index, 
however, has a coefficient of variation of only 10 %, which 
is closer to that from the CMIP5 models than the two other 
observational datasets.

The relationship between Eurasian SCE, the lower tropo-
spheric circulation pattern, and vertical wave propagation is 
summarized in Fig. 4. In observations, the November SLPa 
pattern linearly related to October Eurasian SCE anomalies 
resembles a wave-2-like pattern. The direct response over 
northwestern Eurasia is anomalously high pressure at the 
surface with anomalously low pressure downstream across 
the North Pacific (Fig. 4a, line contours). Upstream across 
the North Atlantic, there is negative SLPa across the North 
Atlantic and slightly positive SLPa near the Azores. The 
multi-model mean October SCE/November SLPa regres-
sion pattern bears some resemblance to that from the obser-
vations, especially across Eurasia and the northwest Pacific, 
but with much weaker coefficients (Fig. 4b). However, the 
ensemble-mean pattern also shows positive SLPa over the 
North Atlantic, which is opposite of what is observed.

Also shown in Fig. 4a, b is the lag regression of Novem-
ber SLPa onto December 100 hPa vertical component of 
the wave activity flux (WAFz; proportional to the meridi-
onal heat flux; Plumb 1985) area-averaged from 40 to 80°N 
(shaded contours). As anomalously positive WAFz rep-
resents wave forcing that weakens the stratospheric polar 
vortex, this latter lag regression analysis depicts favorable 

near-surface circulation patterns that precede anomalously 
strong vertical wave propagation into the stratosphere in 
December. Note that the November SLPa/December 100 
hPa WAFz regression analysis is done irrespective of the 
October Eurasian SCE. In observations, anomalously posi-
tive December 100 hPa WAFz is generally preceded by 
a hemispheric SLPa pattern that resembles the SLPa pat-
tern linearly related to October SCE—i.e., positive SLPa 
throughout Eurasia and negative SLPa in the North Pacific 
and North Atlantic basins (Fig. 4a). Indeed, the spatial cor-
relation between the two regression patterns in observations 
is r = 0.83 (see also Fig. 5a). Overall, this finding suggests 
that the November SLP pattern related to anomalously high 
October Eurasian SCE is spatially similar to a favorable 
precursor pattern to strong vertical wave propagation (e.g., 
Garfinkel and Hartmann 2010; Kolstad and Charlton-Perez 
2011; Cohen and Jones 2011). For the CMIP5 multi-model 
ensemble-mean, the November SLPa pattern preceding 
anomalously large poleward heat flux in December matches 
well with that from the observations (the pattern correlation 
between shaded contours in Fig. 4a, b is r = 0.65). How-
ever, the spatial correlation between the line contours (i.e., 
the October Eurasian SCE-November SLPa relationship) 
and the shaded contours (i.e., the tropospheric precursor 

Regression of November SLPa onto the October SCE Index 

Observations

CMIP5 Ensemble-Mean

3.5-3.5 0

(a)

(b)

[hPa]

Fig. 4   a (Contours) Regression of observed November SLPa (hPa) 
onto the Rutgers October Eurasian SCE index. (Shading) Regression 
of November SLPa (hPa) onto December 100 hPa WAFz anomalies, 
area-averaged from 40 to 80°N. The pattern correlation between the 
two regression patterns is r = 0.83. Results similar to that in Cohen 
et  al. (2014) but for ERA-Interim. b As in a but for the CMIP5 
ensemble-mean. The pattern correlation between the two regression 
patterns is r = 0.09

http://old.ecmwf.int/research/era/do/get/index/QualityIssues
http://old.ecmwf.int/research/era/do/get/index/QualityIssues
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pattern to strong vertical wave propagation into the strato-
sphere) in the ensemble-mean is only r = 0.09 (Fig.  4b). 
Most of the individual models also do not simulate the cor-
respondence between the October Eurasian SCE/Novem-
ber SLPa association and the tropospheric precursor to 
strong vertical wave propagation (Fig.  5a). However, the 
spread among 40-year sub-intervals is large and spans 
both positive and negative values in almost all of the mod-
els (vertical lines in Fig. 5a). The spread is especially seen 
in the histogram of the spatial correlations from the 279 
40-year sub-intervals of the models (Fig. 5b). Note that the 
observed correlation lies just outside the entire distribution 
of simulated spatial correlations. Indeed, more than half of 
the 40-year sub-intervals have a negative spatial correlation 
between the November SLPa pattern and the December 

100 hPa WAFz pattern. By contrast, 45 of the 40-year sub-
intervals (~17 %) have spatial correlations greater than 0.3 
(Fig. 5b), indicating that one out of six 40-year sub-inter-
vals from the CMIP5 multi-model suite reproduces the 
observed relationship decently well. 

We now investigate more directly the observed relation-
ship between October Eurasian SCE and impacts on the 
stratospheric circulation. Figure 6 shows the lag correlation 
between the October Eurasian SCE index and two quan-
tities: WAFz anomalies, area-averaged from 40 to 80°N 
(Fig.  6a, b), and polar cap geopotential height anomalies 
(i.e., geopotential height anomalies area-averaged from 60 
to 90°N; Fig. 6c, d). For WAFz, the observations show two 
significant regions of positive correlation (i.e., anomalous 
upward WAF/poleward heat flux associated with anoma-
lously high October Eurasian SCE)—one in the lower 
and middle troposphere during November and another in 
the lower and middle stratosphere during December (Fig. 
6a), representing Steps 3 and 4 in Fig. 1. The multi-model 
ensemble-mean WAFz correlation plot, however, exhibits 
weak contemporary correlations with negligible signals 
in November and December (Fig.  6b). This weak signal 
in the ensemble-mean exists likely because of the large 
spread in the relationship between individual models (and 
even 40-year sub-intervals within the model), both in tim-
ing (i.e., appropriate lags) and the sign of the relationship. 
Of all the 40-year sub-intervals from the multiple models, 
only 17 segments (i.e., ~6 % of all segments) show lag cor-
relation plots with a pattern correlation with the observed 
plot exceeding r = 0.35, a threshold approximately equal 
to the 90 % significance level. Analysis of other statistical 
relationships (i.e., analyses in Fig. 4) for those 17 segments 
reveal no systematic pattern or other agreement with the 
observations or with each other, however. The weak Octo-
ber SCE/late fall WAFz relationship may also reflect some 
issues with stratosphere–troposphere coupling in the mod-
els, upon which we elaborate further in Sect. 4.

The observed relationship between wintertime polar cap 
height anomalies and the October Eurasian SCE is also 
missing in the models (Fig. 6c, d). In observations, signifi-
cant correlations between October Eurasian SCE and the 
polar cap height exist first in the lower troposphere during 
October and November (due to higher than normal heights 
over the Arctic Ocean initially that then build onto the 
Eurasian continent) and then in the lower stratosphere and 
throughout the troposphere in January and February (Fig. 
6c). The multi-model mean polar cap height lag correlation 
plot, however, shows only a contemporaneous geopotential 
height signal throughout the atmospheric column associ-
ated with the October Eurasian SCE index and no lagged 
relationship into the late fall and winter months (Fig. 6d). A 
similar dissection of the analysis on the individual 40-year 
time slices from the models shows that only eight 40-year 

(a)
Spatial Correlation of Nov SLPa / Oct SCE and 

(b)

Fig. 5   a The spatial correlation between the November SLPa/Octo-
ber Eurasian SCE and November SLPa/December 100 hPa 40–80°N 
WAFz regression patterns for each model, the multi-model ensemble-
mean, and the observations. Vertical bars indicate the range in spatial 
correlation values among the individual 40-year sub-intervals in the 
models. b Histogram of the spatial correlations between the Novem-
ber SLPa/October Eurasian SCE and November SLPa/December 100 
hPa 40–80°N WAFz from the individual 40-year sub-intervals in the 
models. Thick black line denotes the correlation from observations 
(i.e., ERA-Interim)
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sub-intervals (~3 %) have pattern correlations with Fig. 6c 
exceeding the 90 % significance level. But, the significance 
arises mainly due to the October signal—i.e., those eight 
sub-intervals still lack a lagged relationship later in the fall 
and winter to October Eurasian SCE.

Based on the above results, we expect that the relation-
ship between the October Eurasian SCE index and the DJF 
surface AO index in the models will also be weak; Fig. 7a 
supports this conclusion. The October Eurasian SCE–DJF 
AO index relationship in observations is significant and 
explains nearly 18 % of the variance in the DJF AO surface 
index over the last three decades (r = −0.42; p < 0.05).  
In considering the other two observational SCE indi-
ces included in Fig. 3c, d, for 1979–1997 (i.e., the com-
mon period for all three snow datasets), the correlations 
are r = −0.60 (p < 0.05) for the Rutgers SCE index, 
r = −0.57 (p < 0.05) for the Brown (2000) SCE index, 
and r = −0.43 (p < 0.1) for the MERRA SCE index. In 
considering the full period 1979–2012, the correlation 
between the DJF AO index and the MERRA SCE index 
falls to an insignificant r = −0.13. The relatively weak cor-
relation between the DJF AO index and the MERRA Octo-
ber Eurasian SCE index for the full period is a function of 
the poor statistics of SCE noted before. When consider-
ing the CMIP5 models, mixed results arise—some models 
indicate a weakly negative correlation, while many have 
a positive correlation between October Eurasian SCE and 

the DJF AO index. The vertical bars plotted in Fig. 7 rep-
resent the total range of correlation coefficients among the 
40-year sub-intervals used for the analysis. Except for the 
MIROC4h (which has the shortest temporal record of the 
models; Table 1), all models show a very large range (span-
ning either side of zero) in correlation between the October 
Eurasian SCE index and the DJF surface AO index among 
the 40-year sub-intervals. The ensemble-mean correlation, 
as expected by this large spread, is close to 0 (r = 0.01). 
The distribution of correlations between all of the 40-year 
sub-intervals from the models appears nearly normal with 
notable outliers on both the negative and positive ends (Fig. 
7b). Nearly 30 % (10 %) of the 40-year sub-intervals ana-
lyzed show an October Eurasian SCE–DJF AO index corre-
lation less than −0.1 (−0.3), indicative that there is a sub-
set of models and periods of time that capture the observed 
relationship. Conversely, 27 % of the 40-year sub-intervals 
show a positive correlation greater than 0.1.

4 � Stratosphere–troposphere coupling dynamics in the 
models

Results from Sect. 3 overwhelmingly illustrate that the 
observed October Eurasian SCE–DJF AO connection (Fig. 
1) is not present in most models but can be found in select 
40-year sub-intervals of some of the models. The absence 

Fig. 6   a Lag correlation of 
observed WAFz anomalies 
area-averaged between 40 and 
80°N and the Rutgers October 
Eurasian SCE index. Red line 
denotes correlation values 
exceeding the p < 0.1 level. 
b As in a but for the multi-
model ensemble-mean. c Lag 
correlation of geopotential 
height anomalies area-averaged 
between 60 and 90°N and the 
October Eurasian SCE index. 
Red line as in a. d As in c but 
for the multi-model ensemble-
mean. Contour interval 0.1 
(...,−0.15, −0.05, 0.05, 0.15,...). 
Positive (negative) correlation 
values in solid (dashed) con-
tours. All shaded coefficients in 
b and d are statistically signifi-
cant at the p < 0.1 level

(a) (b)

(c) (d)
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of this mechanism may be related to inherent internal varia-
bility associated with the observed relationship, issues with 
simulated snow cover, and/or issues with more fundamental 
stratosphere–troposphere coupled dynamics in the models. 
In this section, we select several diagnostics representing 
dynamical stratosphere–troposphere coupling to investi-
gate whether the models can correctly capture the neces-
sary dynamics needed for the troposphere-stratosphere–
troposphere pathway associated with the October Eurasian 
SCE–AO connection.

The initiation and subsequent propagation of the waves 
that later impact the polar stratospheric circulation are 
related to background zonal-mean conditions in the tropo-
sphere and lower stratosphere (e.g., Charney and Drazin 
1961). Figure 8 investigates the relationship between the 
zonal-mean circulation and October Eurasian SCE through 
regression of October zonal-mean temperatures, zonal-
mean zonal winds, and Eliassen–Palm (EP) flux compo-
nents (Eliassen and Palm 1961; Edmon et  al. 1980) onto 

the October Eurasian SCE index in both the observations 
(Fig. 8a, c) and the models (Fig. 8b, d). Because monthly-
mean data and output are used, only the relationship with 
quasi-stationary eddies are investigated in this analysis. In 
observations, significant negative zonal-mean temperature 
anomalies (Ta) in the middle latitude troposphere are jux-
taposed with significant positive tropospheric Ta in the high 
latitudes (Fig. 8a). This zonal-mean pattern is reminiscent 
of the “warm Arctic-cold continents” pattern (Overland 
et  al. 2011; Cohen et  al. 2013). The extratropical zonal-
mean temperature pattern also reveals opposite-signed Ta 
in the troposphere and lower stratosphere. The resulting 
weaker meridional temperature gradient in the troposphere 
is associated with a weakening of the zonal-mean zonal jet 
at higher latitudes (Fig.  8c). Anomalously high Eurasian 
SCE is also associated with anomalously strong poleward 
heat fluxes (i.e., upward EP flux vectors) from about 25 to 
40°N and again from 60 to 70°N and altogether anomalous 
poleward wave propagation in the middle latitudes in both 
the troposphere and stratosphere (Fig. 8c).

The ensemble-mean zonal-mean Ta regression pattern 
(Fig. 8b) captures the lower tropospheric cooling/warming 
dipole between middle and high latitudes, but its magnitude 
is weaker than in the observations, particularly in the Arc-
tic. Consequently, the ensemble-mean zonal-mean zonal 
wind changes associated with the October Eurasian SCE 
is also weaker, especially in the high-latitude troposphere, 
and also exhibits a more equivalent barotropic structure 
than in the observations (Fig. 8d). Wave propagation as 
represented by the EP flux vectors is similar to observa-
tions in the troposphere but weaker. More mixed signals are 
observed in the polar stratosphere, with even a suggestion 
for equatorward heat flux anomalies (i.e., downward-point-
ing EP flux vectors) there.

Overall, Fig. 8 shows that the CMIP5 models simulate 
well the observed relationships between October Eurasian 
SCE and the October tropospheric zonal-mean circulation 
pattern. But, later in the fall and early winter, what is the 
relationship between vertically propagating waves in the 
lower stratosphere and troposphere? Figure 9 presents the 
lag correlation between area-averaged (40–80°N) WAFz 
anomalies at 100 hPa during December (i.e., the same index 
used as the basis of regression for the shaded contours in 
Fig. 4a, b) and the inverted AO index at each pressure level. 
In this and subsequent analyses, the AO at a given pressure 
level is defined as the leading mode of detrended NDJFM 
geopotential height anomalies poleward of 20°N on that 
pressure level. Because a negative AO index is associated 
with anomalously high heights in the polar atmosphere, the 
inversion of the AO index allows us to relate these results to 
polar cap height anomalies (i.e., Fig. 6c, d). Hence, positive 
correlations in Fig. 9 indicate that anomalously positive 
WAFz anomalies (i.e., stronger vertical wave propagation) 

(a)

(b)

Fig. 7   a The correlation between the October Eurasian SCE index 
and the following DJF AO index in each model, the multi-model 
ensemble-mean, and the observations. Vertical bars indicate the range 
in correlation values among the individual 40-year sub-intervals in 
the models. b Histogram of the DJF AO—October Eurasian SCE 
correlations from the individual 40-year sub-intervals in the models. 
Thick black line denotes the correlation from observations
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are related to more positive heights at the pole and hence 
a more negative AO index. In observations (Fig. 9a), two 
statistically significant (p < 0.1) features are seen: (a) posi-
tive correlations in the stratosphere during January and 
February, with some indication of downward propagation 
of the AO signal into the troposphere; and (b) a strong sig-
nal throughout the troposphere in October. For the multi-
model ensemble-mean (Fig.  9b), the stratospheric signal 
in January and February is still apparent, although connec-
tions with the troposphere are much weaker than observed. 
The October signal is not replicated by the models, how-
ever. This feature may have ties to October Eurasian SCE 
variability (e.g., Cohen et al. 2014; also Fig. 6c), but how 
important its relationship is to late fall vertical wave propa-
gation remains to be studied.

Finally, the models also do not simulate well the “down-
ward propagation” of wave-induced stratospheric anoma-
lies into the troposphere (e.g., Haynes et al. 1991; Baldwin 
and Dunkerton 1999). Figure 10 depicts this downward 
propagation signal via lag correlation of the January AO 
index at 10 hPa (AO10) with the AO index at all pres-
sure levels (e.g., a similar diagnostic done by Baldwin 
and Dunkerton (1999) except here we use monthly-mean 
values) for the observations (Fig. 10a) and the CMIP5 
ensemble-mean (Fig. 10b). Observations illustrate strong 
downward propagation of changes in the January AO10,  
as evidenced by positive, significant correlation coeffi-
cients extending throughout the atmospheric column below 
10 hPa during January. The maximum correlation at the 
surface is r ≈ 0.4 (p < 0.05) in January (Fig. 10a), while 
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Fig. 8   a Regression of October zonal-mean Ta (°C) onto the Rutgers 
October Eurasian SCE index in the observations. Contour interval 
0.1°C (... ,−0.15, −0.05, 0.05, 0.15, ...). Thick brown line denotes 
significant coefficients at the p < 0.1 level. b As in a but for the 
multi-model ensemble-mean regression pattern. c (shading) Regres-
sion of observed October zonal-mean zonal wind anomalies (Ua; 
m/s) onto the Rutgers October Eurasian SCE index. Contour inter-
val 0.2  m/s (...,−0.3, −0.1, 0.1, 0.3,...). (arrows) Regression of the 
anomalous observed horizontal and vertical components of the EP 

flux 
(

Fφ , Fp; J/kg
)

 in October onto the Rutgers October Eurasian 

SCE index. Arrows scaled for plotting as: ρ cos φ

(

Fφ

asφ

,
Fp

sp

)

, where 

ρ =

√

1000

pressure
, φ is latitude, a is the radius of Earth, sφ = π radians, 

and sp = 1 × 105 Pa. Reference vector in scaled units included. Thick 
brown line as in a. d As in c but for the multi-model ensemble-mean 
regression pattern. In b and d, all shaded coefficients are significant 
at the p < 0.1 level



J. C. Furtado et al.

1 3

positive, significant correlation values persist in the lower 
stratosphere into February. The downward propagation sig-
nature in the CMIP5 ensemble-mean differs from obser-
vations, especially in the troposphere (Fig. 10b), however. 
The most striking difference is the low correlation between 
the January AO10 and January AO1000 indices in the mod-
els. When examining individual models, the correlation 
coefficients between the January AO10 and January AO1000 
indices vary from r = −0.40 in the INMCM4 model to 
r = 0.31 in the MPI-ESM-MR model. Instead of simulta-
neous correlation with the January AO10, significant posi-
tive (albeit weak) correlation coefficients exist at 1,000 hPa 

in February and March. Lower stratospheric memory is 
simulated well in the models, though, with positive corre-
lation coefficients remaining from January into February. 
We also subdivided the models into “high–top” (i.e., the 
lid height of the model was at least 1 hPa) and “low–top” 
models (i.e., all other models) and re-constructed Fig. 10b 
for each of those subdivisions. The results were similar to 
the ensemble-mean with only slightly higher correlations at 
the surface for the high-top ensemble, but in February, not 
January (not shown). Figure 10 thus illustrates that down-
ward propagating signals from the stratosphere into the 
troposphere are likely muted or not captured at all in the 

Observations CMIP5 Ensemble-Mean

with the Inverted AO Index at Each Level

(a) (b)

[Correlation]

-0.8 0.80

Fig. 9   a Lag correlation between the inverted AO index at each level and the December 100 hPa WAFz anomalies from 40 to 80°N. Thick gray 
line shows significance at the p < 0.1 level. b As in a but for the multi-model ensemble-mean

(a) (b)

Fig. 10   a Lag correlation of the January AO index at 10 hPa (AO10) 
with itself and the AO index at all other pressure levels. Thick brown 
line outlines correlation coefficients significant at the p < 0.1 level. 
b As in a but for the CMIP5 ensemble-mean correlation. All shaded 

coefficients in b are significant at the p < 0.1 level. Contour interval 
in both plots 0.1 (..., −0.15, −0.05, 0.05, 0.15, ...). Positive (negative) 
correlation values in solid (dashed) contours
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models. Hence, more work needs to be done to investigate 
model deficiencies in capturing the physics and dynamics 
of stratosphere–troposphere dynamical coupling.

5 � Discussion and conclusions

This study evaluated how the latest state-of-the-art coupled 
climate models simulate an observed relationship between 
October Eurasian SCE and the following wintertime atmos-
pheric circulation regime. By systematically testing the 
components outlined in Fig. 1, we showed that the coupled 
climate models from CMIP5 do not consistently replicate 
the observed relationship. As in Hardiman et al. (2008), the 
CMIP5 models do not reproduce the lagged response in 
either late fall and early winter geopotential height or ver-
tical wave propagation to variability in October Eurasian 
SCE (e.g., Fig. 6b, d). In examining the direct relationship 
between October Eurasian SCE and the DJF AO index, 
we find that the models exhibit a wide range of correla-
tions both positive and negative (Fig. 7), indicating there 
are periods of time when most of the models will capture 
something close to the observed relationship. Therefore, 
internal variability of the climate system may play a role 
in setting the observed snow–AO relationship. However, 
the CMIP5 models capture the first-order response of the 
stratosphere to tropospheric wave driving (Fig. 9b), though 
the downward propagation of those anomalies is question-
able in most models (Fig. 10). Implications of these latter 
dynamical analyses involving stratosphere–troposphere 
coupling are important for understanding how the models 
handle wintertime climate variability in both the strato-
sphere and the troposphere, irrespective of the existence of 
the snow–AO relationship.

A recurring issue seen with the CMIP5 models is that 
the model-generated snow cover over Eurasia (and the NH) 
overall is overall less and exhibits less interannual vari-
ability than the observations (Fig. 3; Derkson and Brown 
2012). We examined the boreal fall mean and monthly 
climatological land surface temperatures in the mod-
els and found them to be sufficiently cold in Eurasia and 
North America for snowfall (not shown). Though unre-
solved, other potential problem areas associated with the 
snow deficiency may be in precipitation generation and/or 
land-surface parameterizations for accumulating snowfall. 
Irrespective of its implications for our dynamical frame-
work, poor snowfall and snow cover representation in the 
coupled climate models results in weak or incorrect ther-
modynamical and dynamical responses in the atmosphere. 
Future modeling studies should focus on assessing this 
snow cover/snowfall issue, as its effects permeate to other 
important quantities not considered in this study (e.g., soil 
moisture, river runoff).

One important conclusion is that the CMIP5 models 
have weak lagged responses between fall anomalies and 
wintertime regimes. The simulated October Eurasian SCE 
is related to October zonal-mean temperatures and zonal 
winds in the models similar to the observations (Fig. 8). 
However, by November, the circulation response is already 
much weaker or non-existent in the models versus the 
observations (Fig. 6d). Moreover, the spatial pattern of the 
November surface circulation response to October SCE 
anomalies is not nearly as well-aligned with the optimal 
precursor pattern for vertical wave propagation (i.e., the 
main driver of extratropical stratospheric variability) as it is 
in the observations (Fig. 4). There is also little connection 
between late fall vertical wave propagation and October 
Eurasian SCE (Fig. 6b). Moreover, the subsequent impact 
of stratospheric circulation anomalies on the tropospheric 
circulation is much weaker in the models than in obser-
vations. The overall weaker wave propagation seen in the 
lower stratosphere in the models could be the result of poor 
eddy-mean flow interactions or weaker source regions, but 
this remains to be further explored.

This work builds upon a growing body of literature on 
the performance of CMIP5 models at simulating extratropi-
cal climate variability. Charlton-Perez et  al. (2013) illus-
trate that the historical runs of the CMIP5 models simulate 
a lower frequency of sudden stratospheric warmings than 
observations and, relatedly, the variance of the polar vortex 
is also weaker. Similar findings are also seen in the piCon-
trol runs of those models in our study (not shown), suggest-
ing that the low variance bias is systematic to the models 
themselves and not related to changes in external forcings. 
Weaker variability in the model stratospheric polar vortices 
versus observations may be tied to the strength of upward 
wave fluxes into the stratosphere and the tropospheric 
precursor patterns that initiate these waves (e.g., Fig. 4). 
There are also likely feedbacks between the weakened 
stratospheric polar vortex variability and poor downward 
propagation of stratospheric anomalies in the models (Fig. 
10b). Given these results about stratosphere–troposphere 
coupling dynamics, projected NH winter climate from the 
latest models may be less certain than currently thought 
and should be evaluated more rigorously. Even opera-
tional forecasting models like the NOAA Coupled Fore-
cast System version 2 (CFSv2) show weak lagged relations 
between fall boundary conditions and the circulation pat-
tern the following winter (Riddle et al. 2013).

There are two main caveats to our study. First, testing 
any observed relationship in the CMIP5 model suite is 
problematic given the relatively short observational sample 
size (here, N = 34) versus the very large sample size from 
the models and their multiple ensemble members. We have 
attempted to account for this aspect by analyzing shorter 
subsets of the model runs and reporting on the variance in 
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the statistical relationships among individual 40-year sub-
intervals within each model. The relatively large model 
spread in certain relationships (e.g., spatial correlations 
presented in Fig. 5 and the October Eurasian SCE index–
DJF AO index correlations in Fig. 7) suggests that there 
may be periods of better agreement between the models 
and observations than other periods. Individual examina-
tion of these “good” periods, however, yield mixed signals 
in terms of the other elements of the snow–AO relationship 
(Fig. 1). Yet, the distributions of the spatial correlations of 
the November SLPa/December WAFz regression pattern 
(Fig. 5b) and the October Eurasian SCE–DJF AO index 
(Fig. 7b) illustrate some 40-year sub-intervals reproduce 
correlations near the observed value. This introduces the 
second caveat to this study—the role of internal variability 
in the observed snow–AO relationship. Indeed, Peings et al. 
(2013) find that the Siberian snow cover—AO connection 
is nonstationary in time and may have emerged in the lat-
ter part of the twentieth century only. Hence, internal vari-
ability may play a significant role in the observed relation-
ship, and the century-long climate model runs may not be 
expected to faithfully replicate this relationship because of 
that. To better understand the contribution of the forced ver-
sus internal variability component of the Eurasian SCE–AO 
link, more studies in understanding the troposphere–strato-
sphere–troposphere pathway outlined in Fig. 1, particularly 
the early steps, are needed. Cohen et al. (2014) offers addi-
tional evidence of the dynamical forced pathway at work in 
observations, but more targeted modeling experiments are 
needed to confirm these findings.

Future model evaluation of wave generation and prop-
agation related to October Eurasian SCE should rely on 
higher temporal resolution than presented here (i.e., daily-
mean output). Observational analyses that track wave 
“pulses” or wave source regions associated with Eurasian 
snow cover would be particularly useful, accompanied 
with modeling experiment results. Such a study would 
further understanding on wave-mean flow interactions and 
feedbacks and may elucidate missing or incorrect model 
dynamics responsible for poorly recovering the snow–AO 
dynamical relationship.
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