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Abstract Lagged ensembles from the operational Cli-

mate Forecast System version 2 (CFSv2) seasonal hindcast

dataset are used to assess skill in forecasting interannual

variability of the December–February Arctic Oscillation

(AO). We find that a small but statistically significant

portion of the interannual variance ([20 %) of the win-

tertime AO can be predicted at leads up to 2 months using

lagged ensemble averages. As far as we are aware, this is

the first study to demonstrate that an operational model has

discernible skill in predicting AO variability on seasonal

timescales. We find that the CFS forecast skill is slightly

higher when a weighted ensemble is used that rewards

forecast runs with the most accurate representations of

October Eurasian snow cover extent (SCE), hinting that a

stratospheric pathway linking October Eurasian SCE with

the AO may be responsible for the model skill. However,

further analysis reveals that the CFS is unable to capture

many important aspects of this stratospheric mechanism.

Model deficiencies identified include: (1) the CFS signifi-

cantly underestimates the observed variance in October

Eurasian SCE, (2) the CFS fails to translate surface pres-

sure anomalies associated with SCE anomalies into verti-

cally propagating waves, and (3) stratospheric AO patterns

in the CFS fail to propagate downward through the tro-

popause to the surface. Thus, alternate boundary forcings

are likely contributing to model skill. Improving model

deficiencies identified in this study may lead to even more

skillful predictions of wintertime AO variability in future

versions of the CFS.

Keywords Arctic Oscillation � Stratosphere–troposphere

coupling � Seasonal forecasting � Eurasian snow cover �
Climate prediction � Modes of climate variability

1 Introduction

The Arctic Oscillation (AO), characterized by opposing

pressure anomalies in the Arctic and the northern mid-

latitudes, is the dominant mode of atmospheric climate

variability in the Northern Hemisphere extratropics

(Thompson and Wallace 1998). In the winter months, the

positive (negative) AO is associated with warmer (colder)

than average temperatures across northern Eurasia and the

eastern United States, and colder (warmer) than average

temperatures over northeastern Canada, Greenland and

Alaska (e.g., Thompson and Wallace 2001; Buermann

et al. 2003; Cohen and Barlow 2005). Given these wide-

spread impacts on surface climate, skillful seasonal pre-

diction of the December–February (DJF) AO index could

improve wintertime climate outlooks such as those issued

by the National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center (CPC).

This paper is a contribution to the Topical Collection on Climate

Forecast System Version 2 (CFSv2). CFSv2 is a coupled global

climate model and was implemented by National Centers for

Environmental Prediction (NCEP) in seasonal forecasting operations

in March 2011. This Topical Collection is coordinated by Jin Huang,

Arun Kumar, Jim Kinter and Annarita Mariotti.
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Variability of the AO is considered to be primarily due to

internal atmospheric dynamics and feedbacks (e.g., Rob-

inson 2000; Lorenz and Hartmann 2003), making its pre-

diction a challenge beyond a few weeks. However, some

studies have suggested that a portion of the wintertime AO

variability may be driven by external forcings that operate

on longer timescales, permitting some predictability of the

AO at leads of a month or more. For example, Cohen and

Fletcher (2007) have examined the utility of using October

Eurasian SCE as a predictor of the DJF AO. They find that

20 % of the variance in the DJF AO is explained by a simple

SCE index describing the mean snow extent over Eurasia in

October. This can be increased to 37 % of the variance

when using a combination of the snow cover and sea-level

pressure anomalies over Eurasia. A Snow Advance Index

(SAI), which describes the rate that snow advances across

Eurasia in October, can explain up to 74 % of the variance

in the DJF AO, albeit for a short 14-year record (Cohen and

Jones 2011a). Significant correlations have also been found

between wintertime AO variability and a number of other

predictors, including: (1) North Atlantic SSTs (e.g., Wang

et al. 2004; Hu and Huang 2006), (2) the Quasi-Biennial

Oscillation (QBO; e.g., Garfinkel and Hartmann 2007; Lu

and Pandolfo 2011), (3) Solar variability (e.g., Ruzmaikin

and Feynman 2002; Ineson et al. 2011), (4) late summer

Arctic sea ice extent (e.g., Deser et al. 2010; Strong and

Magnusdottir 2011; Liu et al. 2012), and (5) Pacific sea

surface temperatures (SSTs; e.g., Garfinkel and Hartmann

2008; Ineson and Scaife 2009).

In order to understand these relationships, physical

mechanisms are needed that operate on timescales of several

months or more. Since the ocean tends to have a longer

memory than the atmosphere, one possible mechanism

involves the persistence of sea-surface temperatures anom-

alies from the boreal autumn into the winter season. For

example, Derome et al. (2005) find that 20 % of the

1948–1998 DJF AO variance can be predicted with a dry

atmospheric Global Circulation Model (GCM) forced with

November oceanic anomalies persisted through the winter

months. Using the same model, Tang et al. (2007) find that

years with the largest oceanic anomalies in November tend to

have the most predictable AO index in the following winter.

Mechanisms involving coupling between the stratosphere

and the troposphere can also operate on monthly to seasonal

timescales. AO-like geopotential height anomalies in the

stratosphere, such as those associated with sudden strato-

spheric warming (SSW) events, can propagate downward

into the troposphere and influence the surface AO on time-

scales of several weeks to 2 months (e.g., Baldwin and

Dunkerton 1999, 2001). Furthermore, stratospheric anoma-

lies (including SSWs) may be preceded by anomalous tro-

pospheric precursor patterns (e.g., Garfinkel et al. 2010;

Cohen and Jones 2011b), extending the timescale for

prediction even further backward in time. A number of

studies have proposed that these stratosphere-troposphere

coupling mechanisms may explain observed relationships

between various predictors (e.g., Pacific SSTs, solar vari-

ability, the QBO, and Eurasian SCE) and the wintertime AO

(e.g., Cohen et al. 2007; Garfinkel et al. 2010; Fletcher and

Kushner 2011). Accurate representation of stratosphere-

troposphere coupling may improve dynamical model fore-

casts of Northern Hemisphere surface climate (Douville

2009; Orsolini et al. 2011; Sigmond et al. 2013).

The present study is divided into two parts. In the first part,

we examine how well ensembles of the National Centers for

Environmental Prediction (NCEP) operational Climate

Forecast System model version 2 (CFSv2; Saha et al. in

review) can be used to predict the DJF AO at lead-times

ranging from 0 to 6 months. A few previous studies have

examined the skill of CFSv2 at predicting seasonal climate

variability (e.g., Yuan et al. 2011; Kim et al. 2012; Chen et al.

2013; Saha et al. in review), but none have focused specifi-

cally on seasonal predictions of the wintertime (DJF) AO

index in CFSv2. We examine the sensitivity of our results to

the ensemble size used, and to an ensemble member selection

procedure that rewards runs that best track observed climate

variables (e.g., Eurasian SCE) in the period before the

forecast is made. This methodology is a simplified version of

the ‘‘dynamic stratification’’ procedure defined by Schubert

et al. (1992) for numerical weather prediction, and adapted

for decadal climate prediction by Meehl et al. (2010).

In the second part of the study, we test how well the

CFSv2 model represents troposphere-stratosphere-tropo-

sphere coupling mechanisms that might account for skill in

the CFSv2 AO forecasts. We focus particularly on evalu-

ating each step in a proposed mechanism connecting

October Eurasian SCE to the DJF AO (e.g., Cohen et al.

2007), but the results are also applicable to other potential

mechanisms involving interactions between the strato-

sphere and the troposphere. Our analysis is similar to that

presented by Hardiman et al. (2008) and Furtado et al. (in

revision) who evaluate the same mechanism in several

coupled climate models as part of the Coupled Model

Intercomparison project (CMIP), phases 3 and 5, respec-

tively. However, by focusing on an operational model, we

provide specific insights that will be useful for both users

and for model developers working on the next generation

of climate forecast models.

2 Methods

2.1 Data and models

This study uses seasonal retrospective forecasts (hindcasts)

from the NCEP CFSv2 model, which consists of the NCEP

1100 E. E. Riddle et al.

123



Global Forecast System (GFS) atmospheric model run at

T126 (*100 km) horizontal resolution fully coupled with

ocean, sea-ice, and land surface models (LSMs) (Saha et al. in

review). The ocean model is the Geophysical Fluid Dynamics

Laboratory (GFDL) Modular Ocean Model version 4.0

(MOM4; Griffies et al. 2004) at 0.25�–0.5� latitude by 0.5�
longitude grid spacing. The LSM is the four-layer Noah LSM

(Ek et al. 2003) and the sea ice model is an interactive three-

level model. The CFSv2 forecast model is initialized using the

atmospheric and surface fields from the Climate Forecast

System Reanalysis (CFSR; Saha et al. 2010).

Four CFSv2 runs (00Z, 06Z, 12Z and 18Z) are initial-

ized every 5 days starting on 12 December, 1981 and run

for 9.5 months each. Monthly averaged output is used in

this study. Since we focus on predictions of the DJF AO,

we analyze only those runs that include the entire DJF

timeframe in their output. For each winter season from

1982/1983 to 2009/2010, there are a total of 188 ensemble

members initialized between 11 April and 27 November

that cover the full DJF period.

The CFSR is used for the reanalysis in this study to

calculate various atmospheric diagnostics and as a bench-

mark for the forecast simulations. The CFSR assimilates

in situ and remote observations of the atmosphere, land-

surface and oceans. It assimilates snow depth measure-

ments from the Air Force Weather Agency’s SNODEP

model (Kopp and Kiess 1996) adjusted after 1997 to match

snow cover data from the NOAA Ice and Snow Mapping

System (IMS; Ramsay 1998).

The Northern Hemisphere snow cover observations used in

this study are from the Rutgers Global Snow Lab (http://

climate.rutgers.edu/snowcover/), provided on a 24-km equal

area grid. From 1966 to 1997, these data are created based on

the weekly satellite-based snow cover maps from the NOAA/

National Environmental Satellite, Data, and Information

Service (NESDIS) (Robinson et al. 1993). From 1997 to the

present, the data are based on the daily NOAA IMS, which

replaced the weekly NESDIS products (Ramsay 1998). The

Rutgers record adjusts these NOAA satellite-based datasets to

correct for discontinuities and biases in the 44-year record. For

the Rutgers data, each 24-km grid cell is determined to be either

entirely ‘‘covered’’ or entirely ‘‘snow-free’’ on any given day,

and the monthly fraction is based on the number days in the

month that the grid cell is covered. In contrast, the NOAH LSM

used in CFSv2 allows each grid cell to be fractionally covered

at each time step, with the snow cover fraction functionally

related to the snowdepth. The monthly snow cover fraction in

CFSv2 is the monthly average of the spatial fractions.

2.2 Indices and diagnostics

The AO index is calculated from an empirical orthogonal

function (EOF) analysis of area-weighted monthly mean

1,000-hPa geopotential height anomalies poleward of

20�N, using the months of December–February

1982/1983–2009/2010. The monthly AO index (i.e., the

time series associated with the leading mode of variability

in the EOF analysis) is averaged to create a DJF index and

then normalized with respect to its mean and standard

deviation. The reference (‘‘observed’’) DJF AO index is

calculated using the CFSR geopotential height field and is

very similar (r = 0.995) to the downloadable AO index

from the CPC website (http://www.cpc.ncep.noaa.gov/

products/precip/CWlink/daily_ao_index/ao.shtml). As on

the CPC website, the AO loading pattern is defined as the

regression of DJF 1,000 hPa height anomalies onto DJF

AO index. In addition, 28-year DJF AO index time series

are calculated for each of the 188 CFSv2 ensemble mem-

bers by projecting the model 1,000 hPa geopotential height

anomalies onto the CFSR AO loading pattern and nor-

malizing with respect to their mean and standard deviation.

CFSv2 anomaly fields are calculated with respect to their

lead-dependent climatologies.

We calculate an October Eurasian SCE index using a

method intended to achieve as much consistency as

possible between the model and observations, despite

different grids and land masks. Both the model and

observed October snow cover records are first converted

to a T62 Gaussian grid and adjusted manually to account

for land mask differences. Eurasian SCE is then calcu-

lated as a weighted sum of the T62 grid cell areas, with

weights determined by the monthly snow cover fraction

at each grid cell. Northern Hemisphere grid cells

between 26�W and 190�E are used in the index calcu-

lation, with Greenland excluded. The resulting observed

Eurasian snow cover extent (SCE) data matches very

closely to the monthly SCE data provided by the Rutgers

Snow Lab.

2.3 Ensemble averaging

As mentioned previously, 188 runs in the CFSv2 hindcasts

dataset provide simulations of wintertime climate each

year. In general, the most recent of these runs (those ini-

tialized in November) should have the most skill, while the

oldest runs (those initialized during the previous spring)

would typically be discounted by forecasters, since the

model forecasts eventually lose information about the ini-

tial atmospheric and oceanic conditions and converge

towards the model climatology. The older runs may be

useful for some purposes, however. First, from a fore-

casting perspective, adding ensemble members generally

improves model skill by eliminating the contribution from

the noise component (e.g., Déqué 1997; Kumar and

Hoerling 2000; Kharin et al. 2001; Kumar et al. 2001;

Wilks 2011; Chen et al. 2013). While including the oldest

CFSv2 ensemble prediction 1101

123

http://climate.rutgers.edu/snowcover/
http://climate.rutgers.edu/snowcover/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml


runs will likely degrade rather than improve the prediction

skill, it is not obvious at what point the advantage of a

larger ensemble is outweighed by the disadvantage of

adding less skillful runs (Chen et al. 2013). Second, from a

model diagnostics perspective, the large ensemble can be

used to examine mechanistic relationships internal to the

model. In the second case, the quality of the model ini-

tialization is less important than having a large number of

internally consistent model runs to evaluate.

In the first part of the paper, we test different methods of

averaging the available ensemble members to make predic-

tions of the DJF AO index at leads of 0–6 months. The fore-

cast lead refers to the number of months (or days) between the

date the forecast is made and the first day of the forecast

period, in this case 01 December. Table 1 lists the number of

ensemble members available for various leads. Instead of

making any prior assumptions about the optimal number of

ensemble members to use, we examine the skill of AO fore-

casts at different leads based on different-sized ensemble

averages that selectively retain some or all of the older runs.

For each of these ensemble averages, the predicted DJF AO

index is calculated by averaging the AO indices (calculated as

the projection onto the CFSR AO loading pattern) from all the

desired ensemble members. The resulting 28-year ensemble-

mean forecast time series is then detrended and normalized

with respect to its mean and standard deviation. The forecast

skill is evaluated based on the anomaly correlation between

the predicted and the observed (CFSR) DJF AO time series for

1982/1983–2009/2010.

The second part of this study uses the available ensemble

members to diagnose physical mechanisms internal to the

CFS model. Here, we analyze runs that capture the full

period covering October through February to see how the

CFS translates model anomalies in October and November

into wintertime climate variations. Each year, there are 140

runs available for this analysis, initialized between 11 April

and 28 September. Each lead-time is considered as a sep-

arate ‘‘run’’, and diagnostics are performed on each run

separately. Diagnostics, including lagged correlations, are

then averaged over the 140 runs. We note the fundamental

difference between this approach and the methodology in

the first half of the study in which the ensemble averaging

occurs before the correlation is calculated.

3 Prediction of the DJF AO

In this section, we evaluate CFSv2 forecasts of the DJF AO

as a function of the forecast lead and ensemble size. For

this analysis, an ensemble average of N members always

uses the most recent N runs available on the date that the

forecast is issued. All of the figures in this section show

anomaly correlations between predicted and observed AO

time series, as described in Sect. 2.3.

Figure 1a examines the skill of 4-, 20- and 64-member

ensemble averages, as function of lead-time. The hori-

zontal grey line indicates the threshold correlation value

associated with statistical significance at the 5 % level, as

determined by a two-tailed Student t test. As would be

expected, the correlation values are generally larger for

short-lead forecasts compared with long-lead forecasts.

The 4-member ensemble averages show considerable

variability in skill from one lead to the next, due to ran-

dom variations in the correlation values as a result of the

relatively short 28-year time series (Kumar 2009). Indi-

vidual peaks (e.g., at 74, 99 and 154 days) are the

expected result of this noise, and are not likely to be

meaningful increases in skill. Only a handful of the

4-member forecasts pass a significance test at the 5 %

level, however even the very long-range forecasts

(4–6 month lead) show more positive correlations than

negative correlations which possibly indicates some skill,

even at these long leads. The 20- and 64-member

ensemble averages are smoother functions of the lead-

time, with the 64-member ensemble showing a monotonic

increase in skill as the lead-time decreases. Correlation

values exceed the 5 % significance threshold at leads of

3.5 months or less in the 64-member averages.

Figure 1b displays the effect of ensemble size on the 0,

1, 2, 3 and 4-month lead forecasts. Note that the larger

ensemble sizes include older, less-skillful forecast runs in

addition to the newer, more skillful ones. All ensemble

sizes of 12 members or more produce significant correla-

tions for the 0-, 1- and 2-month lead forecasts. Some

ensemble sizes also produce significant correlations for the

3- and 4-month forecasts. The model skill improves ini-

tially with the inclusion of older model runs, but then

flattens or decreases slightly as much older runs are added.

Table 1 CFSv2 runs available each year for the prediction of the DJF AO

0-month lead 1-month lead 2-month lead 3-month lead 4-month lead 5-month lead 6-month lead

Date of forecast Nov 30 Oct 31 Sept 30 Aug 31 July 31 June 30 May 31

Number of runs available 188 164 140 116 92 68 44

Range of model

initialization dates

11 Apr–27 Nov 11 Apr–28 Oct 11 Apr–28 Sep 11 Apr–29 Aug 11 Apr–30 Jul 11 Apr–30 Jun 11 Apr–31 May

1102 E. E. Riddle et al.
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Figure 1c, d are similar to Fig. 1b except showing

results for the first and second halves of the record sepa-

rately. While positive correlations exist for both periods,

the skill is mainly seen in the most recent 14 years

(1997–2010) where correlations as high as 0.8 are seen in

the 0-month lead forecasts, and correlations between 0.6

and 0.7 are observed for the 1- and 2-month lead forecasts.

This difference between the first and second halves of the

record may be related to systematic errors and biases prior

to 1998 that have been noted in the initialization of the

CFSv2 hindcasts (Saha et al. in review). A large positive

model bias in October Eurasian SCE also exists prior to

1997, as will be discussed in Sect. 4.

One intriguing aspect of Fig. 1b–d is that very large

ensembles (i.e. 40–70 members), including older runs ini-

tialized as early as July, appear to have skill which is

comparable to or better than smaller ensembles using only

the most realistic recent runs. Chen et al. (2013) recently

investigated the trade-offs in a lagged ensemble between

the benefits of increasing the ensemble size and the

drawbacks of including longer lead forecasts. Like in

Fig. 1b–d, they found that the model skill improves ini-

tially with the inclusion of older model runs, but eventually

drops off, so that an ‘‘optimal lagged ensemble time’’ can

be calculated where the skill is maximized. They found that

the optimal ensemble size is highly dependent on the

geographic location and forecast variable, with the optimal

number of ensemble members ranging from approximately

8 members for tropical SSTs to approximately 60 members

for extratropical precipitation. Variables with low predict-

ability generally benefitted from using the largest number

of lagged ensemble members, consistent with the theoret-

ical results of Kumar and Hoerling (2000).

Given sampling errors in the forecast skill (Kumar

2009), and the fact that we are only forecasting a single

index value, and therefore cannot average over multiple

grid cells or seasons, it is not straight forward to determine

the optimal lagged ensemble for our wintertime AO fore-

casts. Doing this would require fitting a statistical model to

estimate underlying parameters of the model/climate sys-

tem (e.g., underlying model skill, predictability) as a

function of the lead-time and then using these parameters

to determine a theoretical optimal ensemble size. Even

without these steps, however, we can say qualitatively that

a very large 64-member lagged ensemble appears more

skillful at many lead-times than a smaller 20-member

ensemble, despite including many older runs (Fig. 1a). As

such, forecast skill of the wintertime AO, especially at

leads of 1–3 months, might be improved by expanding the

ensemble beyond the 10–20 members that are typically

used.

Figure 2a is a generalization of the plots in Fig. 1,

examining both the effect of different forecast leads and

different ensemble sizes. The x-axis gives the initialization

date of the earliest run used in the ensemble average, while

the y-axis gives the initialization date of the latest run. All

Fig. 1 a Correlations between the predicted DJF AO index and the

observed DJF AO index time series at different forecast leads using

the most recent 4 runs (black), 20 runs (blue), and 64 runs (red) in the

ensemble average. b Skill associated with the 0-month lead (black),

1-month lead (blue), 2-month lead (red), 3-month lead (green) and

4-month lead (gold) forecasts as a function of the ensemble size.

c Same as b except using only the first 14 years of the record before

1997. d Same as b and c except using only the second half of the

record, from 1997 onward. The small ensembles only use the most

recent runs, while the larger ensembles include older runs as well.

Horizontal grey lines show the threshold for statistical significance at

the 5 % level. All time series are detrended before the correlations are

made

CFSv2 ensemble prediction 1103
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ensemble members in between these start and end dates are

included in the forecast. As such, the diagonal of Fig. 2a is

equivalent to the correlation values plotted in Fig. 1a

(black line), and the top-most row is equivalent to the

correlation values in Fig. 1b (black line). What is most

striking about Fig. 2a is that positive correlations are

observed for the large majority of these different ensemble

averages, even those including only much older runs.

As shown in Table 1, there are 164 ensemble runs

available to use in a 1-month lead forecast (i.e. a forecast

made at the end of October). In addition to the model runs,

the forecaster has access to the actual climate conditions

that occurred in the months previous to the forecast,

including the state of ENSO and the autumn Eurasian snow

cover progression. This information could theoretically be

used to discard earlier runs that are the least successful at

capturing the observed climate conditions, and retain ear-

lier runs that are the most successful at representing the

observed conditions. This approach is similar to the

‘‘dynamic stratification’’ procedure defined by Schubert

et al. (1992) for numerical weather prediction, and adapted

for decadal climate prediction by Meehl et al. (2010).

Figure 2b–d apply dynamic stratification to the CFSv2

hindcasts based on October Eurasian SCE. The month of

October is chosen because previous studies have found

October SCE to be an important predictor of the wintertime

AO (e.g., Cohen and Fletcher 2007; Cohen et al. 2007), and

because October SCE data are available by the time of the

1-month lead forecast for wintertime (DJF) climate, a

useful lead-time for seasonal forecasting. Figure 2b is

similar to Fig. 2a in that the dates on the x and y axes define

a window of initialization times to be included in the

ensemble mean. However, instead of averaging all of the

runs in that window, only those that best capture the actual

observed October Eurasian SCE are retained, as deter-

mined by the smallest absolute difference between the

observed October Eurasian SCE and the modeled SCE.

More specifically, half of the runs in the specified window

initialized before 1 October are retained and half are dis-

carded based on their absolute SCE error. All runs ini-

tialized after 1 October are retained since October SCE

data are not available for these runs. As we will see in Sect.

4, the model tends to have a high bias in October Eurasian

SCE, especially in the earlier years of the record (before

Fig. 2 a Correlations between

the predicted DJF AO index and

the observed DJF AO index

time series using ensembles of

different lengths. The earliest

and latest initialization dates are

bounds on the dates used in the

ensemble average. b As in

a except only ensemble

members with the best October

Eurasian SCE each year are

used in the average. c As in

a and b except only using

ensemble members with the

worst October Eurasian SCE.

d Difference between the

correlation values in b and c

1104 E. E. Riddle et al.
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1997). Thus, the best runs in early years are often those

with the lowest absolute snow extents, while after 1997 an

average of the best runs tends to match the highs and lows

of the observed snowfall variations quite well.

Figure 2c is similar to Fig. 2a but shows the skill when

retaining runs with the ‘‘worst’’ October Eurasian SCE.

Figure 2d illustrates the difference between Fig. 2b and

Fig. 2c. In most cases, we see an increase (decrease) in skill

for the forecasts that use only the best (worst) October

Eurasian SCE values (Fig. 2b, c), in agreement with the

October Eurasian SCE–wintertime AO hypothesis. If we

plot the results from Fig. 2d separately for the first and

second halves of the record (not shown), we find that the

improvement in AO prediction occurs only for the second

half of the record (1997–2010) when the ‘‘best’’ runs more

accurately represent October Eurasian SCE variability. We

note that the specific choices used in this analysis (e.g.,

retaining 50 % of the applicable runs, and stratifying based

on the absolute error in October Eurasian SCE) have not

been optimized, and further work is needed to examine

whether other choices, including retaining more or fewer

runs, would improve the results.

Figure 3 extends the analysis presented in Fig. 2 to test

stratification based on other climate variables. The top-most

panels of Fig. 3 again show the results of dynamic stratifi-

cation based on October Eurasian SCE, as in Fig. 2. The

left-hand panels show the 1-month lead forecast skill for

ensemble forecasts using all members, the best members

and the worst members (as in Fig. 2a–c, respectively), while

the right-hand panels show the difference in skill between

the ‘‘best’’ and ‘‘worst’’ ensembles (as in Fig. 2d). Ensem-

ble members are selected from a window of initialization

dates ranging from the date on x-axis label to 28 October

when the latest runs available for the 1-month forecast are

initialized. As in Fig. 2, the 24 ensemble members initial-

ized during October are included in all ensembles and not

subject to stratification. The statistical significance of the

results is determined based on a resampling test where the

‘‘best’’ and ‘‘worst’’ 50 % of ensemble members are chosen

at random from the available pool of runs. Percentiles of

this null distribution are calculated from 10,000 random

selections, and are plotted in grey on the right-hand panels.

There is generally improvement associated with using only

the best runs based Eurasian SCE. The improvement

exceeds the 90th percentile of the null distribution for some

ensemble averages, but always falls below the 95th per-

centile and so cannot be considered statistically significant

at the 5 % level.

Figure 3c–f are similar to Fig. 3a, b, but use October

SSTs in the Nino 3.4 region (Fig. 3c, d) and the October

AO index (Fig. 3e, f) instead of October Eurasian SCE

as criteria to select the ‘‘best’’ runs. These selections

perform no better than October Eurasian SCE at

distinguishing the best from the worst ensemble members

and also fail to exceed the 5 % significance threshold. In

fact, of the three variables tested, October Eurasian SCE

is the only one where stratification based on the best

members shows considerable improvement over using all

members for the majority of ensemble sizes. The results

from Figs. 2 and 3 are inconclusive, but suggest that

runs with realistic representation of October Eurasian

SCE may lead to better CFSv2 ensemble forecasts of the

DJF AO.

4 CFSv2 model diagnostics

In the previous section, we demonstrated that CFSv2

ensemble forecasts of the DJF AO have modest but positive

skill at leads up to a few months, raising questions about

potential sources of skill in the CFS model. Furthermore,

dynamic stratification based on October Eurasian SCE hin-

ted that an accurate representation of Eurasian SCE might be

important to model skill. While a full diagnosis of the sources

of the model skill is beyond the scope of this paper, this

section tests one potential mechanism: a stratospheric path-

way linking October Eurasian SCE variability to the DJF AO

(Cohen et al. 2007). This theoretical mechanism begins with

a tropospheric response in October and November to

anomalous snowfall covering the landscape over Eurasia. A

characteristic upstream ridge over the north Pacific and

downstream trough over Eastern Europe develop in response

to the SCE anomaly. The location of these anomalies serves

to amplify the climatological wave 1 and 2 patterns in the

troposphere, leading to increased vertical planetary wave

propagation into the stratosphere in November and Decem-

ber. These waves break in the stratosphere, slowing the polar

vortex, warming polar stratospheric temperatures and lead-

ing to a negative stratospheric AO signal during the early

winter. The stratospheric anomalies then propagate down

into the troposphere, resulting in a negative surface AO

tendency in DJF.

We will attempt to diagnose the CFS model ability to

capture each of the steps in this pathway using the 140

CFSv2 ensemble members that capture the full October–

February period (i.e., the period covering the full tropo-

sphere-stratosphere-troposphere pathway linking October

SCE anomalies to the wintertime AO). The results will be

applicable to other potential AO-forcing mechanisms

besides October Eurasian SCE, since other proposed

mechanisms also involve troposphere–stratosphere inter-

actions. For example, Pacific SST anomalies associated

with ENSO can also create a persistent trough over the

north Pacific (e.g., Garfinkel et al. 2010, 2012; Fletcher and

Kushner 2011; Hurwitz et al. 2012), initiating a similar

response in the troposphere and stratosphere as Eurasian
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SCE anomalies. The following four sub-sections will focus

on different links the chain of events described above. The

first sub-section will examine how well the model runs

reproduce the DJF AO loading pattern. The second sub-

section will examine how well the model runs reproduce

variability in Eurasian SCE. The next sub-section will look

at the surface response to snow cover anomalies. The final

sub-section will diagnose the remaining stages of the tro-

posphere-stratosphere coupling mechanism.

4.1 The Arctic Oscillation

Figure 4 examines how well the CFSv2 model runs

reproduce the wintertime AO spatial loading pattern. The

CFSR AO loading pattern is shown in Fig. 4a. It resembles

the AO pattern identified in many previous studies (e.g.,

Thompson and Wallace 1998) except that the Atlantic and

Pacific sectors show approximately equal loadings,

whereas other studies have found a stronger loading in the

Atlantic. Figure 4b shows the mean CFSv2 loading pattern,

averaged over all 140 runs initialized between April and

September. We omit runs initialized after October 1 (i.e.,

those with leads less than 2 months) in order to focus on

the same set of runs that will be used in the remainder of

this section to study the atmospheric response in CFSv2 to

modeled October SCE anomalies. To calculate the CFSv2

AO loading pattern, first a run-specific AO index is com-

puted using an EOF analysis of December–February

1,000 hPa geopotential height anomalies. Then, the run-

specific loading pattern is calculated as the regression of

monthly 1,000 hPa height anomalies onto this index. If the

AO is not the leading mode in the EOF analysis, the next

two modes are also tested and the mode that most resem-

bles the observed AO pattern is used. The AO is the leading

pattern in 121 out of the 140 runs. We have also calculated

the AO loading pattern from an aggregated sample of all

months (December–February), runs and years with very

similar results (not shown).

Qualitatively, the mean CFSv2 loading pattern

(Fig. 4b) is very similar to the CFSR loading pattern

(Fig. 4a) , though the regression coefficients are slightly

weaker on average and the negative pole lacks an

Fig. 3 a The 1-month lead forecast skill in predicting the DJF AO

using all ensemble members (black line), using only those members

with the best representation of October Eurasian SCE (red line), and

using only members with the worst October Eurasian SCE (blue line;

see text for details). b (Red line) The difference in skill between the

best and worst October Eurasian SCE ensemble members (i.e., the red

and blue lines in a). Thin black lines with grey shading show from

bottom to top, the 5th, 10th, 25th, 50th, 75th, 90th and 95th

percentiles for a null distribution where the best half of runs are

chosen at random. c As in a, except the best half and worst half are

chosen based on ensemble members with the best October SSTs in the

Nino 3.4 region. d As in b, except showing the difference between the

red and blue lines in c. e As in a, except that the best half of ensemble

members is chosen based on the best October AO index values. f As

in b, except showing the difference between the red and blue

lines in e
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extension over northern Eurasia. The weaker signal may

be due to averaging over the 140 runs. The loading

pattern calculated based on the aggregated sample has

slightly stronger magnitudes, especially over the Pacific

sector (not shown). Figure 4c shows the distribution of

pattern correlations between the loading patterns from

each of the 140 runs and the observed loading pattern.

Most are relatively well correlated, though the pattern

correlation is below 0.5 for a few runs, suggesting that a

canonical AO-like pattern does not always emerge.

Because of this, the CFSv2 AO index used in the

remainder of the paper is the projection of CFSv2 height

anomalies onto the CFSR loading pattern, ensuring that

the index represents the canonical AO.

4.2 October Eurasian snow cover

Figure 5a, b show the mean 1982–2009 climatology of

October Eurasian snow cover percent based on the satellite-

based Rutgers observational dataset (Fig. 5a), and based on

an ensemble average of the 140 CFSv2 model runs

(Fig. 5b). The difference between Fig. 5b and a is shown in

Fig. 5c. The CFSv2 model runs tends to produce too much

snow cover in October over a band centered around 60�N,

suggesting that central Russia is likely covered earlier in

October in the model compared with the observations. Too

little snow is simulated over some regions of mountainous

northeastern Siberia, though discrepancies in this region

may be partly due to higher resolution in the original model

grid compared with the Rutgers dataset. Figure 5d

shows October Eurasian SCE time series from the obser-

vations and the CFSv2 140-member ensemble average.

Note that the ensemble average shows little year-to-year

variability and a slight downward trend, while the obser-

vations show much larger variations and an upward trend.

Due to the trend in the observations, the CFSv2 SCE bias is

much higher in the second half the record compared with

the first half of the record.

Figure 6 shows the ensemble distribution of the mean

and standard deviation of October Eurasian SCE in the 140

CFSv2 runs compared with the observations. In general,

the climatological snow extent is too large in the model

runs (though this bias is mostly limited to the first half of

the record prior to 1997 as shown in Fig. 5d), while the

standard deviation is much too small. Figure 6a, b indicate

that none of the 140 model runs have a 28-year mean

October Eurasian SCE that is as small as the observed

mean SCE, or a year-to-year variance that is as large as the

observed SCE variance. In some of the runs, the standard

deviation is less than half the observed standard deviation.

Figure 6c, d show the same data as Fig. 6a, b, but with the

model runs plotted as a function of the lead before October

1. The runs with the shortest leads show the most realistic

(i.e. lowest) mean SCE and also tend to have slightly more

realistic (i.e. higher) standard deviations. Intermediate

lead-times of approximately 1–2 months, however, show

Fig. 4 a Regression map of 1,000 hPa October–February geopoten-

tial height anomalies (m) onto the CFSR AO index. b Same as

a except that the plot is an average of the 140 regression maps

obtained separately for each of the 140 CFSv2 runs. c Histogram

showing the distribution of pattern correlation values between the

CFSR regression map in a and regression maps obtained individually

for each of the 140 CFSv2 hindcast runs. The vertical black line

shows the pattern correlation value between the regression maps

shown in a and b
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the least realistic representations of the mean snow extent.

This may be related to spin-up problems in the model at

these intermediate lead-times.

The CFSv2 SCE statistics presented here are consistent

with previous studies, which have found that models tend

to underestimate the year-to-year variability of snowfall

(e.g., Hardiman et al. 2008; Allen and Zender 2010; Fur-

tado et al. in revision). The lack of snowfall variability has

been implicated as one of the primary reasons that models

with simulated snow cover fail to capture relationships

between October snow cover and the wintertime AO. In

contrast, models that have been forced with either idealized

or observed snow cover tend to better simulate the pro-

posed mechanism (Cohen and Entekhabi 2001; Gong et al.

2003; Fletcher et al. 2009; Orsolini and Kvamstø 2009;

Allen and Zender 2010, 2011; Peings et al. 2012), sug-

gesting that better representation of snow cover variability

may be important for capturing the SCE/AO relationship.

Recent work has suggested that the latitude at which the

snow cover forcing occurs may be important. Cohen and

Jones (2011a) find that the strongest relationship between

October Eurasian SCE and the DJF AO occurs when

considering SCE variability late in October and south of

60�N. Because Eurasian SCE is consistently too high in the

CFSv2 model, key forcing regions may always be covered

by the end of October, resulting in even less year-to-year

variability in these areas.

4.3 The surface response to October Eurasian SCE

The response of the surface geopotential height field to

October Eurasian snow cover is shown in Fig. 7. The first

column shows the difference in CFSR 1,000 hPa geopo-

tential height anomalies for the 7 years (i.e. 25 % of years)

with the highest observed October Eurasian SCE minus the

7 years with the lowest observed October Eurasian SCE.

The second and third columns show composite anomaly

maps associated with high-snow minus low-snow CFSv2

runs, with the high-snow and low-snow runs drawn from

the aggregated pool of all CFSv2 ensemble members and

years (i.e. a pool of 28 9 140 = 3,920 runs). The second

column shows seven-sample composite anomalies,

matching the observed sample size, while the third column

shows 980-sample composite anomalies, created from the

top and bottom 25 % of runs in the aggregated pool. His-

tograms in the last column show a distribution of pattern

correlations between the observed composite anomalies

and model composite anomalies using seven high-snow

and seven low-snow runs, drawn at random from the top/

bottom 25 % of the aggregated pool of runs.

In October, positive SCE anomalies are associated with

a negative AO/NAO pattern, with positive geopotential

height anomalies over Greenland, the North Pole and

eastern Siberia, and negative anomalies over the North

Atlantic, northern Europe and western and central Russia.

The model shows a similar signal to the reanalysis in

October, as seen in both the small-sample (Fig. 7b) and the

large-sample (Fig. 7c) composite differences. Note that the

SCE difference between the high-snow and low-snow

composites is slightly larger in the 7-sample CFSv2 com-

posites than in the observations since only the runs with the

Fig. 5 Percentage of days in October from 1982 to 2009 that a grid

cell is covered with snow a in the Rutgers observations and b in the

140-run ensemble average of the CFSv2 hindcasts. Solid lines show

the 25, 50 and 75 % contours. c Difference in snow cover percentage

between the CFSv2 model and the Rutgers observations. Solid lines

show differences of ?25 and -25 %. d Time series of Rutgers

October Eurasian SCE observations (grey) and CFSv2 140-member

ensemble average October Eurasian SCE (black)
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very highest and very lowest SCE are selected, but almost a

factor of two smaller in the 980-sample composites than in

the observations (see Fig. 7 caption). While variability due

to sampling is quite large, pattern correlations in Fig. 7d

also suggest that 7-sample CFSv2 anomalies are mostly

consistent with the observed anomaly pattern in October,

with positive pattern correlations between the two occur-

ring in more than 93 % of the 10,000 random draws.

Because the snow anomalies are contemporaneous with the

geopotential height signal in October, it is not possible to

determine if the geopotential height signal causes the

snowfall anomalies or vice versa.

During November and December, the positive anoma-

lies in CFSR geopotential height extend southward and

westward across much of northern Eurasia, and a trough

develops over the northeastern Pacific (Fig. 7e, i). This

Pacific trough has been identified as an important feature

driving increased wave activity fluxes into the stratosphere

(e.g., Garfinkel et al. 2010; Hurwitz et al. 2012). In con-

trast, the 7-sample CFSv2 composite anomalies for

November and December show a very different pattern,

including a strong ridge over the northeastern Pacific

(Fig. 7f, j), likely due to sampling variations. The large-

sample composite anomalies lack any strong coherent

signal in November and December, though a very weak

trough may be detected over the northeastern Pacific

(Fig. 7g, k), consistent with the sign of the observed signal

but more than an order of magnitude weaker. The pattern

correlation histograms (Fig. 7h, l) also demonstrate only a

very weak tendency towards positive correlations.

In January and February, the CFSR geopotential height

anomalies become larger, more annular, and begin to

resemble a canonical negative AO pattern over the Atlan-

tic, North American and Eurasian sectors. The 7-sample

CFSv2 anomalies show little resemblance to the observed

anomalies with any patterns likely due to sampling vari-

ability. No signal is present in the large-sample model

anomalies or the pattern correlation histograms. These

results indicate that the CFS model, similar to other models

studied (e.g., Hardiman et al. 2008; Furtado et al. in revi-

sion), loses the surface response to snow cover anomalies

in the months following October.

We have also examined surface temperature anomalies

associated with SCE variability (not shown). In October,

high Eurasian snowfall is associated with strong negative

temperature anomalies over most of Siberia with the

highest anomalies over the eastern portion of the continent.

Weaker but still significant positive temperature anomalies

are observed over Greenland and central Asia. The model

runs show a similar surface temperature signal, but with

location of the negative anomalies over western instead of

eastern Siberia.

Figure 8 shows correlations between the October Eur-

asian SCE signal and the DJF AO. Correlation values

between these two detrended time series are calculated

separately for each of the 140 runs and shown as a

Fig. 6 Top Histograms

showing ensemble distributions

of the a climatological mean

and b standard deviation of

October Eurasian SCE for

1982–2009 both in units if

millions of square kilometers.

Bottom Same as top except

showing the dependence of the

c climatological mean and

d standard deviation on the

model lead in days before 1

October. The vertical black

lines show the 28-year mean

(a, c) and standard deviation

(b, d) of observed October

Eurasian SCE
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Fig. 7 a Composites of October 1,000 hPa CFSR geopotential height

anomalies (m) for the 7 years with the highest observed October

Eurasian SCE (top 25 % of cases) minus the 7 years with the lowest

observed October SCE (bottom 25 % of cases). Average October SCE

is 11.3 (7.3) million square kilometers for these high (low) years.

b Composites of October 1,000 hPa CFSv2 height anomalies for the 7

cases in the CFSv2 model runs with highest October Eurasian SCE,

minus the 7 cases with the lowest modeled October Eurasian SCE.

Average October SCE is 13.9 (7.9) million square kilometers for

these high (low) cases. Cases are drawn from the combined pool of all

ensemble members and years. c Composites of October 1,000 hPa

CFSv2 height anomalies for the 980 cases in the CFSv2 model runs

with highest October Eurasian SCE (top 25 % of cases) minus the 980

cases with the lowest modeled October Eurasian SCE (bottom 25 %

of cases). Average October SCE is 11.9 (9.6) million square

kilometers for these high CFS (low) cases. d Histogram of anomaly

correlations between panel a and 10,000 composite maps calculated

from the difference between 7 high-snow and 7 low-snow cases from

the CFSv2 hindcasts. The high snow and low snow cases are chosen

at random from pools of the top and bottom 25 % of cases. e–t Same

as above panels except for geopotential height anomalies for

November–February
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histogram in Fig. 8a and as a function of lead-time in

Fig. 8b. The observed correlation value is indicated with

vertical black lines and the null distribution for correlations

between two unrelated 28-year time series is shown in red.

The histogram is centered near zero with a mean correla-

tion of -0.002 and a standard deviation of 0.188, and is not

statistically distinguishable from the null distribution,

which has a mean of zero and a standard deviation of

0.193. Correlations do not tend to improve at shorter leads.

We have repeated Fig. 8 using only the most recent

14 years of the record (not shown). The mean correlation is

-0.054 in the recent record, which is statistically signifi-

cant at the 5 % level due to the large number of degrees of

freedom (140 ensemble members and 14 years), but still

very weak.

More work is needed to reconcile these results with

those in the previous section. If snow cover in the model is

so weakly correlated with the DJF AO, why do runs with

the best representations of October Eurasian SCE create

better forecasts of the DJF AO? One possibility is that runs

with unrealistic October Eurasian SCE have other defi-

ciencies that make them unsuitable for wintertime AO

prediction. On average, the ensemble members with the

most realistic October Eurasia SCE do have slightly higher

covariance between snow anomalies and negative AO

anomalies, though the difference is small and not statisti-

cally significant.

Given the relatively short length of the observational

record and deficiencies in the model, it is not possible at

this time to conclusively determine the ‘‘true’’ correlation,

q (e.g., the correlation if we had an infinite, stationary

observational record) between the October Eurasian SCE

and the DJF AO. Confidence intervals for q can be cal-

culated using a Fisher-z transformation (Wilks 2011).

Using r = -0.40 and a 28-year record, the 95 % confi-

dence interval for q is between -0.03 and -0.67. With

time, we should get a better sense if the observed corre-

lation is coincidentally strong and will weaken with a

longer record, or if model improvements will eventually

lead to stronger correlations that are comparable to the

observed record. The fact that model runs with realistic

prescribed snow cover (e.g., Orsolini and Kvamstø 2009;

Allen and Zender 2011) recover the observed relationship

better than runs with coupled snow cover offers some

indication that the latter may be true.

4.4 Troposphere–stratosphere–troposphere coupling

We now examine how well the CFSv2 runs capture cou-

pling from the troposphere to the stratosphere, and subse-

quently from the stratosphere back down to the

troposphere. As mentioned previously, these couplings

may provide a source of memory in the atmosphere at

timescales beyond a few weeks, and, as such, may provide

a physical mechanism for extending predictability of the

wintertime AO. Some of these results are relevant not only

to diagnosing relationships between October Eurasian SCE

and the wintertime AO, but also to other mechanisms that

involve coupling between the stratosphere and the

troposphere.

Figure 9a, b show the relationship between the surface

forcing (October Eurasian SCE variability) and vertical

wave activity fluxes (WAFz; Plumb 1985) at 40�–80�N for

the months of October through February. In the reanalysis,

strong spikes in vertical wave activity flux are observed in the

troposphere in November and into the stratosphere in

December, associated with larger SCE over Eurasia in

October. In the CFSv2 model runs, all WAFz anomalies

associated with October Eurasian SCE are very weak. A very

slight tendency towards positive WAFz at 100 hPa is

Fig. 8 a Grey bars show a histogram of correlations values between

October Eurasian SCE and the DJF AO index for the 140 CFSv2 runs.

The black vertical line shows the observed correlation value. The red

curve shows the null distribution associated with correlations between

two independent 28-year time series. b Correlation values for each of

the 140 CFSv2 ensemble members between October SCE and the

normalized DJF AO as a function of model lead-time in days
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observed in January, but the average correlations are a

magnitude smaller and occur a month later than in the CFSR.

Figure 9c, d show the relationship between standardized

WAFz anomalies in December at 100 hPa, and zonal wind

anomalies in October through February. In both the

observations and the model, a slowing of the stratospheric

polar vortex is observed in the December and January

associated with WAFz pulses through the tropopause in

December. This relationship is easily explained physically,

due to wave breaking events in the stratosphere that slow

the vortex (e.g., Matsuno 1971). CFSv2 appears to suc-

cessfully capture this mechanism.

Figure 10 examines the downward propagation of

stratospheric AO signals into the troposphere. The AO in

the upper atmosphere is calculated in the same way as the

1,000 hPa AO using an EOF analysis of CFSR December–

February monthly geopotential height anomalies. As at

1,000 hPa, CFSv2 AO indices at upper levels are calcu-

lated as projections onto the upper level CFSR loading

patterns. Figure 10a shows that in CFSR an AO signal at

10 hPa in January is positively correlated with the signal at

the surface. In the CFSv2 runs, the coupling extends only

down to the tropopause but not below (Fig. 10b). Fig-

ure 10c, d are similar, but examine the stratospheric and

tropospheric precursor signals associated with surface DJF

AO anomalies. Again, the coupling between the surface

and the stratosphere is much stronger in the observations

than in the model, with the model correlations not

extending much above the tropopause. These results sug-

gest a significant shortcoming in the CFSv2 model, given

that stratosphere–troposphere coupling is potentially an

important source of predictability at both extended range

and seasonal timescales (e.g., Orsolini et al. 2011). A

similar barrier between the stratosphere and the tropo-

sphere is seen in many CMIP-5 models as well (Furtado

et al. in revision).

Figure 11 summarizes the stratosphere-troposphere cou-

pling relationships associated with snow cover variability in

terms of polar cap height anomalies (i.e., the area-averaged

geopotential height anomalies at each pressure level pole-

ward of 60�N). In the observations, positive polar cap height

anomalies (i.e. indicative of a negative AO index) associated

with October Eurasian SCE extend up to the stratosphere in

October (Fig. 11a). This stratospheric AO signal weakens in

November but reemerges in December and January, likely in

response to anomalous vertical wave propagation and

breaking that weakens the stratospheric polar vortex. This

signal then influences the surface AO in January and Feb-

ruary. By contrast, the CFSv2 ensemble-mean captures a

negative AO signal in October, but the signal does not persist

into the following winter (Fig. 11b).

We have repeated Figs. 9, 10 and 11 using only the most

recent 14 years of the record (not shown). The CFSv2

results for these figures do not depend strongly on whether

the full 28-years or only the most recent 14 years are used,

suggesting that the higher skill in the second half of the

Fig. 9 a Correlations between

the detrended Rutgers October

Eurasian snow cover index and

detrended monthly 40–80 N

WAFz anomalies. b Same as

a except showing the average of

correlations from the 140

CFSv2 hindcast runs.

Correlations between the model

October snow cover index and

the model WAFz anomalies are

calculated for each run,

separately, then averaged.

c Correlations between

observed standardized Dec

40–80 N WAFz anomalies at

100 mb and zonal wind

anomalies at 60 N. d Same as

c except showing the average of

correlations from the 140

CFSv2 hindcast runs. In all

panels, significant positive

(negative) correlations are

enclosed with a solid (dotted)

black line
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record (Fig. 1) cannot be attributed better model repre-

sentation of troposphere-stratosphere-coupling mecha-

nisms in these years.

5 Discussion and conclusions

This study demonstrates that lagged ensemble-mean fore-

casts using CFSv2 have small but discernible skill in pre-

dicting wintertime AO index at lead-times up to more than

2 months, using a variety of ensemble sizes. While previ-

ous studies have also found some skill in dynamical model

forecasts of the AO and NAO (e.g., Doblas-Reyes et al.

2003; Müller et al. 2004; Johansson 2007), this is the first

to demonstrate skill in an operational model at leads longer

than 1 month. The skill was higher if only the most recent

half of the record was used.

At leads of 1–3 months, our results suggest that using

large ensemble averages of up to 60 or more lagged

members may be beneficial if older runs are available.

Fig. 10 a Correlations between

the CFSR January AO index at

10 hPa and monthly AO indices

for other months and pressure

levels. b Same as a except

showing the average of

correlations from the 140

CFSv2 hindcast runs.

c Correlations between the

CFSR DJF AO index at

1,000 hPa and monthly AO

indices for other months and

pressure levels. d Same as

c except showing the average of

correlations from the 140

CFSv2 hindcast runs. In all

panels, significant positive

(negative) correlations are

enclosed with a solid (dotted)

black line

Fig. 11 a Correlations between

the Rutgers October Eurasian

snow cover index and monthly

polar cap anomalies. Polar cap

anomalies are calculated as the

areal average of geopotential

height anomalies poleward of

60 N. Significant correlations

are enclosed with a black line.

b Same as a except showing the

average of correlations from the

140 CFSv2 hindcast runs.

Correlations between the model

October snow cover index and

the model polar cap anomalies

are calculated for each run

separately, and then averaged
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These results are consistent with the theoretical results of

Kumar and Hoerling (2000) who find that, in a ‘‘perfect’’

GCM, the ensemble size needed to achieve the upper limit

of predictability increases as the signal to noise ratio in the

system decreases, as it does at longer leads. Additional

work is also needed to evaluate whether the observed

CFSv2 skill is sufficient to be translated into more accurate

wintertime climate outlooks such as those issued by CPC.

We applied a simplified dynamic stratification procedure

to the ensemble forecasts and found that forecasts using

runs with a good representation of October Eurasian SCE

do better than forecasts using runs with poor representation

of this feature, hinting that links between October Eurasian

SCE and the wintertime AO may be responsible for the

model skill. However, the improvement is not statistically

significant at the 5 % level and run-by-run correlations

between October Eurasian SCE and the DJF AO are not

distinguishable from a null distribution based on uncorre-

lated 28-year time series.

Further analysis of this relationship suggests that the

CFSv2 model misses several crucial steps in the strato-

spheric pathway proposed to link October Eurasian SCE to

the DJF AO. These results did not change when only the

most recent 14 years were used, suggesting that the higher

skill seen in recent years cannot be attributed to better

representation of stratosphere/troposphere interactions.

Model improvements should focus on:

(1) Better representation of the mean climatology and

interannual variability of SCE. The model overesti-

mates the total October Eurasian SCE, and its

variability in regions of interest (e.g., western Eurasia

and south of 60�N) remains poor.

(2) A better relationship between SCE and WAFz. Unlike

observations, the CFSv2 model runs do not show a

clear lagged response between autumn Eurasian SCE

and winter WAFz that impacts the stratospheric

circulation (Fig. 9b). However, the model does

effectively recover the fundamental dynamical rela-

tionship between upwelling tropospheric waves and

their impact on the stratospheric polar vortex

(Fig. 9d). Therefore, the issue with the model lies in

the hypothesized SCE-induced forcing of these

waves, not in wave breaking dynamics.

(3) Better representation of the downward propagation of

stratospheric anomalies into the troposphere. Despite

the effectiveness of the model in capturing the

stratospheric response to wave breaking, the down-

ward propagation of the anomalies only exists in the

stratosphere and fails to descend into the troposphere,

as seen in observations (Fig. 10). This missing aspect

of stratosphere-troposphere dynamical coupling has

impacts beyond the October Eurasian SCE–DJF AO

connection explored in this paper and will likely

impact seasonal forecast confidence using the CFSv2

(e.g., Douville 2009; Orsolini et al. 2011; Sigmond

et al. 2013). Possible causes may be inaccurate

diagnosis of the residual circulation induced by wave

breaking at successively lower levels of the strato-

sphere (‘downward control; Haynes et al. 1991) or the

lack of tropospheric eddy feedbacks at work in the

model (e.g., Robinson 2000; Song and Robinson

2004). The CMIP5 coupled models also suffer from

the same lack in downward propagation of strato-

spheric anomalies into the troposphere (Furtado et al.

in revision), and hence future research should focus

on this aspect in operational and coupled climate

models.

The largest outstanding question raised by this study

concerns the source of model skill. If the model is not

capturing coupling between the troposphere and the

stratosphere, then what mechanism is responsible in the

model for translating initial conditions in summer and fall

into predictable wintertime climate anomalies? One pos-

sibility is that the model has some skill in predicting SST

anomalies and that these are forcing wintertime AO

anomalies. Future work will focus on understanding alter-

native mechanisms that may account for skill in the model.
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