
Fundamental limitations for anonymous distributed systems
with broadcast communications

Julien M. Hendrickx and John N. Tsitsiklis

Abstract— We consider deterministic anonymous distributed
systems with broadcast communications where each node has
some initial value, and the goal is to compute a function of all
these values. We show that only a very restricted set of functions
can be computed if the nodes do not know (and cannot use)
the number of their out-neighbors. Our results remain valid
even if nodes know the precise structure of the network but do
not know where they lie within the structure. They also remain
valid if nodes know their out-degree up to an uncertainty of
1. These results are a variation of those obtained by Boldi and
Vigna (1997) for a weaker computation model.

As a consequence, computing more complex functions in
the context of broadcast communications requires the explicit
or implicit knowledge or use of either (a) the out-degree of
each node, (b) global node identifiers, (c) randomization, or (d)
asynchronous updates with specific properties.

I. INTRODUCTION

We consider a model of anonymous distributed computa-
tion where nodes communicate by broadcasting messages,
they have thus to send the same message to all those with
which communication is possible.

We assume that nodes can distinguish the emitters of
the different messages they receive (their in-neighbors),
but do not know how many nodes receive the messages
they broadcast (their out-neighbors). We do not assume the
communication links to be symmetric, as various practical
constraints (power, geometry etc.) may make it possible for
a node j to receive messages from i but impossible for i to
receive messages from j. Nodes act synchronously and can
perform arbitrary but deterministic internal computations.

Each node holds an initial input value xi and the goal is for
all the nodes to collaboratively compute a function of these
input values xi. We will explore the fundamental limitations
on the functions that can be computed in our model.

Different recent works in the control and communica-
tion literature concern the design of algorithms to compute
functions on systems with (possibly) asymmetric broadcast
communications. The problems studied include, for example,
evaluating the average of the node values [5], [6], [10], [14],
distributed optimization problems, in which each node holds
a function and the goal is to find a minimizer of the sum of
these functions [1], [12], [13], [15], [16], or the distributed

Julien Hendrickx is with the ICTEAM institute, Uni-
versité catholique de Louvain, Louvain-la-Neuve, Belgium.
julien.hendrickx@uclouvain.be, John Tsitsiklis is
with LIDS, Massachusetts Institute of Technology, Cambridge, MA 02139,
jnt@mit.edu.

This work was supported by the Belgian Network DYSCO (Dynamical
Systems, Control, and Optimization), funded by the Interuniversity Attrac-
tion Poles Program, initiated by the Belgian Science Policy Office.

computation of a vector satisfying a set of constraints held
by the nodes [11].

In many of these works, it is assumed that nodes know
their out-degree, i.e., the number of nodes receiving the
messages they broadcast, see, e.g., [1], [12], [13], [16], or
[6] in a slightly different context. Alternatively, nodes are
sometimes provided with equivalent information, such as a
set of weights Aij whose sum over their out-neighbors and
themselves equals 1; see, e.g. [5], [10], [15]. We note that
such information cannot be obtained by the nodes directly
if they do not know their out-degree, but would have to be
externally supplied.

We believe that having nodes knowing the out-degrees
is a nontrivial assumption. Indeed, consider a directed link
(i, j), meaning that the messages broadcast by i reach j
but j cannot communicate directly with i. How would it
be possible for i to know a priori that its messages are
received by j? One option is to provide this information to
i when the network is established. This requires an external
intervention not necessarily convenient in the context of
self-organized systems. Moreover, this information may
eventually become outdated, as certain links may disappear
or appear if the network is deployed over a long period of
time. External interventions would then be needed again
to re-configure the network. Alternatively, some systems
may allow nodes to occasionally use more transmission
power, allowing j to inform i every once in a while that
it receives its messages, but this is not necessarily always
possible. Another option is to have a first phase of the
algorithm that computes the out-degrees, using for example
identifiers or random numbers. One could then argue that
this first phase is a part of the algorithm, and that the nodes
initially did not know their out-degrees. Finally, even when
node out-degrees can be detected or supplied, knowing
whether their knowledge is necessary is of interest to an
algorithm designer, especially if this involves an additional
implementation cost.

Our main message is that the systems we consider, and in
which nodes do not know their out-degrees, can only com-
pute the restricted set of order- and multiplicity-independent
functions: functions depending only on the set of values
held by nodes in the network and not on the number of
nodes holding each value. Those include, for example, the
minimum and the maximum, but not the average.

This fundamental limitation had been proved by Boldi
and Vigna [3, Theorem 15] for systems where nodes are
not only ignorant of their out-degrees but are also unable to

distinguish between the emitters of the different messages
they receive. Their proof relies on the notion of graph
fibration which plays an essential role in different works
on distributed computation [4], and is also related to the
notion of a “view” of a network by a node, introduced in
[18]. It turns out their proof can be directly extended to the
systems we consider. In addition, in their work classifying
various weak models of distributed computation, Hella et al.
[8] argue that in the absence of restrictions on node memory
and messages, models where nodes are able to distinguish
the emitters of the broadcasted messages that they receive
are equivalent to models where they are unable to do so.
Note that the latter work considers algorithms that compute
properties of the network or identify certain structures within
the network, as opposed to computing functions of inputs
held by the nodes, but their argument remains valid in the
context of function computation.

In this work, we present an alternative proof of this
fundamental limitation, also showing that it applies even if
nodes know their out-degrees up to an uncertainty of 1. (By
contrast, the proof in of Boldi and Vigna relies on arbitrarily
large uncertainties on the degrees). We also consider the
problem of approximately computing a function, and show
that this cannot be done with any meaningful accuracy
guarantee, even if nodes know the network and their out-
degree up to an uncertainty of 1. (We note that our negative
results actually apply to a somewhat weaker requirement than
that in the previous literatire, in that we only require eventual
convergence to a desired answer, as in average consensus,
optimization, etc.) Finally, we connect our negative results
to various problems that have attracted some attention in the
recent control and optimization literature, and explore how
they relate to models where a network is assumed to be
represented by a (often stochastic) matrix A; see, e.g., [5],
[7], [10], [15].

II. MODEL

Network: The network is modeled as a fixed directed
graph G=(V,E) with an incoming port numbering. The
presence of a directed edge (i, j) ∈ E means that node
j ∈ V receives the messages that node i ∈ V broadcasts. The
incoming port-numbering assigns a distinct port number in
{1, 2, . . . , d−i } to each incoming edge of every node i, where
d−i denotes the out-degree of node i, and thus the number
of nodes from which it can receive messages. These port
numbers represent the ability of the nodes to distinguish the
emitters of the different messages they receive. We do not
consider self-loops, and assume n > 2 to avoid trivial cases.

It is important to note that nodes do not know the
identifiers i that we use in our analysis, and they cannot use
them in their computations.

Node variables and messages: To each node i are
associated four variables xi ∈ X , yi ∈ Y , zi ∈ Z and
bi ∈ B. The input xi ∈ X is constant over time and
represents an observation made by the node or its initial
information. The output yi(t) represents the estimated

answer of node i at time t, and can be updated at each time.
In addition, nodes have some internal memory state zi(t) to
help in performing their computation, and may broadcast at
each time a (unique) message bi(t).

Algorithms: An algorithm is a family of update functions
(Ad)d=1,2,..., where the index d represents the in-degree of
the node, and thus the number of messages that it receives.
At each time t ≥ 0, every node i with in-degree d−i and in-
neighbors j1, j2, . . . , jd−i with corresponding port-numbers
1, 2, . . . , d−i , updates its variables according to

(yi(t+ 1), zi(t+ 1), bi(t+ 1)) (1)

= Ad−i

(
xi(t); yi(t); zi(t); bj1(t), . . . , bj

d
−
i

(t)

)
.

In other words, based on all its internal variables and
on the messages broadcast by its in-neighbors, the node
computes its new estimated answer yi, its new internal state
zi, and its new broadcast message bi. This computation
may depend on the node in-degree, but not on its out-
degree. For the initialization, we assume that the sets
Y, Z,B contain a special default element ∅, and that
yi(0) = zi(0) = bi(0) = ∅. The execution of the algorithm
and the evolution of the variables depends thus only on the
inputs x1, . . . , xn (where n is the number of nodes). We
will therefore say that the execution or the system starts on
x = (x1, x2, . . . , xn).

Function computation: In order to also include systems
asymptotically converging to a desired value, we assume that
the set Y of estimated answers is endowed with a distance.
This is not a loss of generality, as one can always use
the trivial distance function dist(x, y) = 0 if x = y, and
dist(x, y) = 1 if x 6= y. We say that the system converges to
the output y∗ ∈ Y if limt→∞ dist(yi(t), y

∗) = 0, for all i.
In the particular cases where Y is finite or where the trivial
distance function is used, convergence to the output y∗ is
equivalent to the existence of a time t∗ after which yi(t) = y∗

for all i and t ≥ t∗.
The objective of the computation is to evaluate a

certain function, which will naturally also depend on
the number n of nodes. Thus, we consider a family of
functions (fn)n=1,2,... : Xn → Y : (x1, x2, . . . , xn) →
fn(x1, x2, . . . , xn) of the inputs. Such a family of functions
associates thus one value in the output set Y to any
sequence of values of the input set. We say that an
algorithm (Ad)d=1,2,... (asymptotically) computes the
family of functions (fn)n=1,2,... if, for any strongly
connected network on n nodes (and associated incoming
port-numbering), and any values (x1, x2, . . . , xn), the
system obtained by executing that algorithm converges to
y∗ = fn(x1, x2, . . . , xn) when starting on (x1, x2, . . . , xn).
A family of functions is computable if there exists an
algorithm that computes it.

Since our goal is to establish fundamental limitations for
a model as general as possible, we do not impose any

restriction on the nature of the sets of internal memory states
Z and messages B, on their finite or infinite cardinality and
dimensions, nor on the update functions Ad defining the
algorithm.

III. FUNDAMENTAL LIMITATIONS

The first lemma reflects the arbitrary character of the node
identifiers we use when analyzing the system: since we can
change these identifiers without affecting the “real” system,
the functions computed and every property of the system
should be invariant under a permutation of these identifiers.

Lemma 1: If a family (fn)n=1,2... is computable, then
each fn is invariant under permutation of its arguments.

Proof: Many variations of this result appear in the
literature. We refer for example to [9] for a proof in a similar
context.

To take advantage of this invariance under permutation, we
define the list of occurrences (xnA

A , xnB

B , . . .) associated to
a vector x = (x1, x2, . . . , xn) as the sorted list of all values
xA, xB , . . . appearing in x, where each value also has an
associated superscript that indicates the number of times it
appears in x, which we call its “number of occurrences.” For
example, the list of occurrences corresponding to the vector
(p, u, p, r) is (p2, r, u). Observe that n =

∑
α nα. Note that

this notation implicitly assumes X to have a total order,
but one can verify that our results also hold without this
assumption. Lemma 1 implies that if a family (fn)n=1,2,...

is computable, then there exists an associated function f̃ that
takes as input a list of occurrences of elements of X , and
which satisfies f(x1, x2, . . . , xn) = f̃(xnA

A , xnB

B , . . .), for
any x = (x1, x2, . . . , xn) and associated list of occurrences
(xnA

A , xnB

B , . . .).
The next lemma is central to our argument. It shows that

when n ≥ 4, the value of a computable function does
not change when the number of occurrences of a value is
decreased by 1 provided that it remains positive.

Lemma 2: Let (fn)n=1,2... be a computable family of
functions and let f̃ be its associated representation. Let
(xnA

A , xnB

B , . . .) be a list of occurrences such that n =∑
α nα ≥ 4. For any value xK in the list for which nK ≥ 2,

there holds

f̃(xnA

A , . . . , xnK

K , . . .) = f̃(xnA

A , . . . , xnK−1
K , . . .) (2)

Proof: Take an arbitrary list of occurrences
(xnA

A , . . . , xnK

K , . . .) for which
∑
α nα ≥ 4 and nK ≥

2. We analyze the executions of an algorithm comput-
ing (fn)n=1,2... on the two networks G and G′ repre-
sented in Fig. 1 for some inputs x and x′ corresponding
to (xnA

A , . . . , xnK

K , . . .) and (xnA

A , . . . , xnK−1
K , . . .) respec-

tively, and show they produce the same result.
For the network G, we consider an input vector x ∈ Xn

for which x1 = xn = xK , while the remaining xi are
arbitrary but consistent with the list of occurrences. This is
always possible since nK ≥ 2. The input vector x′ ∈ Xn−1

G̃

1"
2" 1" 2"

1" 1"

G

1"

2" n%1"

n"

G̃

1"

2"

1" 1"

G

1"

2" n%1"G̃

1"
2" 1" 2"

1" 1"

G

1"

2" n%1"

n"

G̃

1"

2"

1" 1"

1"

2" n%1"

G’

Fig. 1. Networks on n and n− 1 nodes used to establish Lemma 2. The
labels next to each arrow correspond to the port numbers. Here, G̃ is an
arbitrary strongly connected network. When node 1 and n have the same
initial input in G, it is impossible for nodes to know whether they are in
network G or G′.

for G′ is then obtained from x by just removing xn. Its corre-
sponding list of occurrences is thus (xnA

A , . . . , xnK−1
K , . . .).

We denote by b′i, y
′
i and z′i the broadcast messages, esti-

mated answer, and internal state of node i in the network G′.
We now show by induction that for all t ≥ 0, there holds

[b, y, z]i(t) = [b′, y′, z′]i(t) for i = 1, . . . , n− 1
[b, y, z]n(t) = [b, y, z]1(t)

(3)
The case t = 0 follows directly from the initialization of all
these variables at ∅. Suppose now that the equality holds at
some time t ≥ 0 and let us prove it holds at time t+ 1.

Nodes 1, 2 . . . , n− 2 have the same in-neighbors and the
same port numbers in G and G′, and these in-neighbors have
sent the same messages at time t by the induction hypothesis.
Thus, nodes 1, . . . , n − 2 receive the same messages in G
and G′. Node n − 1 has n as in-neighbor in G and 1 as
in-neighbor in G′, with port number 1 in both cases. The
induction hypothesis (3) implies that bn(t) = b1(t) = b′1(t),
so that node n − 1 also receives the same message in G
and G′. By construction, there also holds xi = x′i for i =
1, . . . , n− 1. All this together with the induction hypothesis
(3) shows that every node i ∈ {1, . . . , n−1} is exactly in the
same situation at time t in G and G′ and computes, using (1),
the same new values: [bi, yi, zi](t+ 1) = [b′i, y

′
i, z
′
i](t+ 1).

Observe now that node n and node 1 both have as in-
neighbors in G node 2 with port number 1 and node n− 1
with port number 2, so that they always receive the same
messages. There holds moreover x1 = xn by construction
and [bn, yn, zn](t) = [b1, y1, z1](t) by the induction hypoth-
esis (3). Therefore, nodes 1 and n compute the same new
values, using (1), so that [bn, yn, zn](t+1) = [b1, y1, z1](t+
1), which establishes condition (3) for t+ 1, and thus for all
t ≥ 0.

Since the algorithm computes (fn)n=1,2..., every es-
timated answer yi(t) in G converges to f(x) =
f̃(xnA

A , . . . , xnK

K , . . .) and every estimated answer y′i(t) in
G′ converges to f(x′) = f̃(xnA

A , . . . , xnK−1
K , . . .). Because

yi(t) = y′i(t) holds for all t and i = 1, . . . , n − 1, this
establishes the equality in (2).

We now need a variation of Lemma 2 to treat some special
cases where the vector x contains only one or two values.

1"

1"

2"

1"
xA"

xB"

1"
1"

1"

1"
1"

2" 3"

4"
xA"

xA"xB"

xB"
1"

1"

2"

1"
xA"

xB"

1"
1"

1"

1"
1"

2" 3"

4"
xA"

xA"xB"

xB"

(a) (b)
Fig. 2. Networks and input values used to establish Lemma 3. Any
algorithm will compute the same value in both networks, (a) and (b).

Lemma 3: Let (fn)n=1,2... be a computable family of
functions and f̃ be its associated representation. For any
values xA, xB ∈ X , there holds
(i) f̃(x1A, x

1
B) = f̃(x2A, x

2
B),

(ii) f̃(x2A) = f̃(x4A).

Proof: The result is a instance of a relatively standard
argument in distributed computation, see for example [9,
Lemma 3.3]. It can be proved by induction, similar to the
proof of Lemma 2, using the two networks and inputs shown
in Fig. 2.

We say that a family of function (fn)n=1,2,... is order- and
multiplicity-independent if its value is entirely determined
by the set of values appearing in the input vector x (as
opposed to the order in which they appear and the number of
their occurrences). For example the minimum and maximum
functions are order- and multiplicity-independent, but the
average is not. Formally, the family of functions is order-
and multiplicity-independent if there exists a function fs :
2X → Y such that fn(x1, x2, . . .) = fs({x1, x2, . . . }) =
fs({ξ ∈ X : ∃i : ξ = xi}).

Theorem 1: If a family of function is computable accord-
ing to the model described in Section II then it is order- and
multiplicity-independent, i.e. its value only depends on the
set of input values {x1, x2, . . . } = {ξ ∈ X : ∃i : ξ = xi}.

Proof: We show that for any computable function,
there holds f̃(xnA

A , xnB

B , xnC

C , . . .) = f̃(x1A, x
1
B , x

1
C , . . .) (or

f̃(x2A) in the case where the list of occurrence contains a
single value). We consider three different cases.

Suppose first that a list of occurrence (xnA

A , xnB

B , xnC

C , . . .)
contains at least three distinct values. A repeated appli-
cation of Lemma 2 shows then f̃(xnA

A , xnB

B , xnC

C , . . .) =
f̃(x1A, x

1
B , x

1
C , . . .). Indeed, as long as nK > 1 for some

xK , there necessarily holds
∑
α nα > 3 because the other

values occur at least once, and we can apply Lemma 2 to
show that decreasing the number of occurrences of xK by 1
does not change the value of the function.

The case of a list of occurrences with two values requires
some additional care due to the condition

∑
α nα > 3 in

Lemma 2. Consider such a list (xnA

A , xnB

B). If nA = nB = 1,
there is nothing to prove, so we suppose nA + nB ≥ 3.
Applying twice Lemma 2 to the list (xnA+1

A , xnB+1
B), we

obtain f̃(xnA

A , xnB

B) = f(xnA+1
A , xnB+1

B). Moreover, each

value occurs at least twice. A repeated application of Lemma
2 shows then f(xnA+1

A , xnB+1
B) = f(x2A, x

2
B), from which

f(xnA

A , xnB

B) = f(x1A, x
1
B) follows directly thanks to Lemma

3.
Finally, suppose that the list of occurrences contains only

one value xA, so that nA = n. The trivial case nA = n = 1
is excluded from our model (see Section II). If nA > 4,
a repeated application of Lemma 2 shows that f̃(xnA

A) =
f̃(x4A). If nA = 3, the same result follows from a reverse
application of Lemma 2. Since Lemma 3 states that f̃(x2A) =
f̃(x4A), we have thus f̃(xnA

A) = f̃(x2A) for all nA > 1.
We have thus shown f̃(xnA

A , xnB

B , xnC

C , . . .) =
f̃(x1A, x

1
B , x

1
C , . . .) (or f̃(x2A) in case only one value

is present) holds for any computable family of functions,
which means they are all order- and multiplicity-independent.

Our proof crucially relies on nodes ignoring their out-
degrees, or more formally, on the update rule Ad being
independent from the node out-degree. We remark however
that this ignorance only plays a role for nodes 1, 2, n − 1,
and n in Lemma 2. Moreover, the proof would still hold if
the nodes knew that their out-degree was either 1 or 2. So
the fundamental limitations of Theorem 1 still hold if nodes
know their out-degree up to an uncertainty of 1, or even
in the somewhat artificial case where all nodes know their
exact out-degree except for four of them that know it up to
an uncertainty of 1.

IV. APPROXIMATE COMPUTATION

The fundamental limitations results of the previous section
are proved by showing that a computable family of function
cannot distinguish an input vector from a “neighboring one”
obtained by increasing/decreasing the number of occurrence
of a value by 1. This raises the question of the existence of
algorithms that approximate certain functions. They might
for example converge to f̃(xnA

A , xnB

B , xnC

C , . . .) + ε, where
the error ε could for example depend on the network but
be bounded by a constant independent of n. The following
proposition indicates there is very little hope of obtaining
approximation algorithms with substantive error bounds valid
for all networks: it shows that on some networks, no al-
gorithm can distinguish between certain arbitrarily different
inputs.

Proposition 1: For any integer k > 1 and distinct values
xA, xB in an arbitrary nontrivial input set X , there exists a
network G on 3 · 2k−1 + 4k − 6 nodes with in-/out-degrees
bounded by 2, and input vectors x, x̄ such that
(i) x contains 3 · 2k−1− 2 values xA and 4k− 4 values xB ,
and x̄ contains 3 · 2k−1−2 values xB and 4k−4 values xA,
(ii) For any algorithm for which the system converges to
some y∗ on the input x and ȳ∗ on the input x̄, there holds
y∗ = ȳ∗.

Proof: Consider the network G shown in Fig. 3, which
consists of two parts, L and T , each of them organized in
2k − 1 layers.

(…)$ (…)$

1$

1$ 1$

1$ 1$
1$ 1$

1$ 1$

2$

2$ 2$

T(1,1)

T(2,1) T(2,2)

T(3,1) T(3,2) T(3,3) T(3,4)

T(2k-3,1) T(2k-3,2) T(2k-3,3) T(2k-3,3)

T(2k-2,1) T(2k-2,2)

T(2k-1,1) L(2k-1,1)

L(2k-2,1) L(2k-2,2)

L(2k-3,1) L(2k-3,2)

L(3,2) L(3,1)

L(2,1) L(2,2)

L(1,1)

1$ 1$

1$ 2$

1$ 1$2$ 2$

1$

1$ 1$

1$

1$ 2$ 1$ 2$ 1$ 2$ 1$ 2$
1$

1$

2$ 2$

Fig. 3. Network used in Proposition 1. The labels next to each arrow
correspond to the port numbers.

In part L, each layer ` contains 2 nodes denoted by
L(`, 1) and L(`, 2), except for layers 1 and 2k − 1 that
contain only one node, L(1, 1) and L(2k−1, 1), respectively.
Part L contains thus 4k − 4 nodes. Each node in layers
` = 1, . . . k−1 has two in-neighbors, L(`+1, 1), L(`+1, 2),
with port numbers 1 and 2 respectively. Nodes in layers
` = k, . . . , 2k−3 have one in-neighbor, L(`+1, 1) for node
L(`, 1) and L(`+1, 2) for node L(`, 2), with port number 1.
Finally L(2k−2, 1) and L(2k−2, 2) both have L(2k−1, 1)
as unique in-neighbor, with port number 1.

In part T , layers ` =1, . . . , k have 2`−1 nodes
T (`, 1), . . . , T (`, 2`−1). Layers ` =k + 1, . . . , 2k − 1 have
22k−1−` nodes T (`, 1), . . . , T (`, 22k−1−`). One can verify
that part T contains 2k−1 + 2k−1−1 = 3 · 2k−1−2 nodes.
Each node L(`, j) of layers ` = 1, . . . k − 1 has two in-
neighbors, L(`+1, 2j−1) and L(`+1, 2j), with port numbers
1 and 2. In layers ` = k, . . . , 2k − 2, each node L(`, j) has
one in-neighbor L(`+ 1, dj/2e), with port number 1.

The two parts of the network are interconnected in the
following way: L(1, 1) is the in-neighbor of T (2k − 1, 1)
and T (1, 1) is the in-neighbor of L(2k − 1, 1), with port
number 1 in both cases. Observe that all nodes have in- and
out-degrees 1 or 2, and that the total number of nodes in G
is 3 · 2k−1 − 2 + 4k − 4 = 3 · 2k−1 + 4k − 6.

We define the inputs x and x̄ by letting xi = xA, x̄i = xB
for all nodes in part T of the network, and xi = xB , x̄i = xA
for all nodes in part B. Due to the number of nodes in L
and T , condition (i) is satisfied.

We now consider the execution on G of an arbitrary
algorithm starting on the inputs x and x̄. By an abuse of
notation, we denote by b̄i, ȳi and z̄i the value of bi, yi, and
zi in the execution starting on the input x̄. We show by
induction that for any layer `, t ≥ 0 and j1, j2 for which
these expressions are well defined, there holds:

(i) [b̄, ȳ, z̄]L(`,j1)(t) = [b, y, z]T (`,j2)(t),
(ii) [b, y, z]L(`,j1)(t) = [b̄, ȳ, z̄]T (`,j2)(t).

In other words, nodes cannot distinguish a situation where
they are in part T (resp. L) and the input was x from a
situation where they are in part L (resp. T) and the input
was x̄.

The two conditions clearly hold at time t = 0 due to the
initialization of the system and to the way that x and x̄ are
constructed. We now assume they hold at time t and prove
that condition (i) then holds at time t + 1. The proof of
condition (ii) follows a parallel argument and is omitted.

We first show that nodes involved in each instantiation
of condition (i) receive exactly the same messages. Observe
that any node in layers ` = 1, . . . , k − 1 of parts L and T
has two in-neighbors, both in the next layer ` + 1 of the
same part, with port numbers 1 and 2. Any node in layers
` = k, . . . , 2k − 2 has one in-neighbor, in the next layer of
the same part. It follows moreover from condition (i) that
every in-neighbor of nodes in layer ` = 1, . . . , 2k−2 of part
L has sent in the execution starting on x̄ the same message
as did every in-neighbor of nodes in the same layer in part T
in the execution starting on x. We now consider the special
case of layer 2k − 1. Node L(2k − 1, 1) has T (1, 1) as in-
neighbor, and node T (2k− 1, 1) has L(1, 1) as in-neighbor.
By condition (ii) at time t, the message broadcast by T (1, 1)
at time t of the execution starting on x̄, and the message
broadcast by L(1, 1) at time t of the execution starting on
x, are the same.

So, we have seen that all nodes in layer ` of part L receive
the same broadcast message in the execution starting on
x̄ as do the nodes in layer ` of part T in the execution
starting on x. It follows moreover from condition (i) that
they have the same internal state and estimated answer, so
that they compute by (1) exactly the same new values, which
establishes condition (i) at time t+1. Condition (ii) is proved
in the same way.

To conclude the proof, observe that a particular case of
condition (i) is ȳL(1,1)(t) = yT (1,1)(t). So if the algorithm
converges to y∗ when starting on x and ȳ∗ when starting on
x̄, we have

y∗ = lim
t→∞

yT (1,1)(t) = lim
t→∞

ȳL(1,1)(t) = ȳ∗.

Thus, the algorithm produces thus the same output on x and
x̄.

Proposition 1 shows that any approximation scheme would
in some cases compute the same values for inputs where the
number of occurrences of certain values can be arbitrarily
different. Moreover, the proof is based on an example
where the two indistinguishable situations involve the same
network, in which all out-degrees are either 1 or 2. Its
conclusion holds thus even if the algorithm depends on the
network on which it is deployed (but not on the specific
node), and on an estimate of the node out-degree whose error
is bounded by 1.

Note that Proposition 1 could be extended to a larger
variety of inputs; its proof can indeed directly be applied
as long as all nodes in the same layer of L have the same
input in x as the nodes in T have in x̄, and vice-versa.

V. APPLICATIONS AND EXAMPLES

A. Minimum computation

The family of function that returns the minimum of the xi
(assuming X admits a total order) is order- and multiplicity-
independent, and Theorem 1 does thus not contradict its
computability. In fact, it can be easily computed by a
classical flooding algorithm: At time 0 every node initializes
yi to its own value xi and broadcasts it. At each subsequent
time, each node sets the new value of yi to be the minimum
of its previous yi and of the values it received from its in-
neighbors. One can verify that yi = minxi holds for every
i after at most n time steps. Note that this requires the set
of possible broadcast messages B to be equal to the input
set X .

B. Voting, Averaging, and Statistics

In a voting problem, every node makes a choice xi among
a finite number (at least two) of options and the goal is to
determine the majority vote, i.e., a value taken by the largest
number of nodes i, perhaps together with a lexicographic
tie-breaking rule, see, e.g., [2]. The corresponding functions
clearly depends on the number of occurrences of the values
and are thus not computable in our model. Moreover, Propo-
sition 1 shows it is sometimes even impossible to distinguish
a situation of almost consensus in favor of one option from
a situation of almost consensus in favor of another one.

On the other hand, determining whether there is a full
consensus is order- and multiplicity-independent, as it
corresponds to checking whether the cardinality of the set
of input values is 1, which can be decided, for example, by
a flooding algorithm.

Many works in distributed computation address the prob-
lem of averaging node values in a distributed manner (see,
e.g., [5], [10], [14]). This can be achieved in many different
ways when communications are symmetric [17] and/or when
nodes know their out-neighbors or at least their cardinality
[6]. But the average is not an order- and multiplicity-
independent function because it depends on the multiplicity
of the different values. It is therefore not computable in our
model. The same holds true for almost all statistics, including
the variance, the median.

C. Distributed Optimization

Distributed optimization of a sum of functions is another
topic that has attracted interest recently; see, e.g., [1], [7],
[12], [13], [15], [16]) : Each node has a function gi : <m →
< with suitable convexity properties, and the goal is to find
in a distributed manner a minimizer of the sum of these
functions:

y∗ = arg min
y

n∑
i=1

gi(y).

To translate this problem in our context, we take the set of
functions <m → < as the input set X , and <m as the output
set Y . The input xi of the nodes are the functions gi, and
the family of functions (fn)n=1,2,... sends the sequences of

functions (g1, g2, . . . , gn) to a value in <m that minimizes
their sum. This function is not order- and multiplicity-
independent, because, in general, arg min (2gA + gB) 6=
arg min (gA + 2gB), unless the assumptions on the gi are
so strong that they make the problem trivial. Therefore, the
distributed optimization of a sum of functions cannot be
achieved in our model.

D. Set intersections

Suppose that every node has a set Si ⊂ <m, and the goal is
to find a vector y ∈ <m, in the intersection of these sets. This
does not directly correspond to the computation of a function
since the intersection of the Si may contain more than one
point, but the problem can be slightly modified to obtain
a unique solution, resulting in a well-defined function. The
node inputs are here the Si. The intersection of a collection
of sets is order- and multiplicity-independent, Si ∩ Si = Si,
and such functions satisfy therefore the necessary condition
of Theorem 1 for being computable in our model. We refer
in particular to Mou et al. [11] for a broadcast-compatible
algorithm that finds a point in the intersection of affine sets
of the form {u : Aix = bi}.

VI. NETWORKS AND (STOCHASTIC) MATRICES

In many works on distributed algorithms or in control
theory, the network is described by a matrix A ∈ <n×n.
Node i can then use the value Aijxj for each of its neighbor
j, or sometimes only the weighted average

∑
j Aijxj , or the

weighted sum of differences
∑
j 6=iAij(xj − xi), with the

xj often being real numbers or vectors. These matrices are
often further assumed to have some specific properties, such
as their columns and/or rows summing to one [5], [7], [10],
[15].

In the context of distributed algorithms, these values Aij
should in our opinion be considered as part of the algorithm
or as additional information provided by the designer, as
opposed to being inherent to the network. Indeed, while the
possibility for two nodes to communicate is an objective
fact that may depend on physical or technological constraints
(or designer choice), no physical or technological constraint
forces a specific value Aij or enforces conditions on these
values, except possibly in the cases where the interactions
consist in exchanging actual matter or energy. In particular,
as soon as communication is performed via exchange of
messages or via measurements, any node is free to multiply
the information it receives by an arbitrary constant.

Computation with such matrices A does not directly fit
our model, but can be cast in our model in several ways:

Aij as external information: A first possibility is to assume
the Aij are given as additional information to the nodes when
the network is established. This is not allowed in our model
and is akin to providing nodes with their exact out-degrees.
Thus, Theorem 1 does not apply here.

Aij selected by j: Second, one could assume that the
emitter j chooses Aij at time 0 and then simply broadcasts
the value Aij (or alternatively, multiplies the value of all its

messages by Aij). This is allowed in our model, but since j
broadcasts a unique message, all its out-neighbors i should
have the same Aij =: Aj , which j needs to have computed
at time 0 using only its input value and its in-degree. It is
therefore impossible to chose the Aij in a way guaranteeing
any nontrivial condition involving the columns of A such as∑
iAij = d+j Aj = 1 , as this would require node j to know

its out-degree d+j at time 0. It is also impossible to guarantee
conditions on the rows of A such as

∑
j Aij = 1 and a

fortiori,
∑
iAij = d

∑
iAji, as each node j should then have

information about the choices of the other in-neighbors of its
out-neighbor i. So algorithms relying on such conditions on
rows or columns cannot be cast in our model in that way,
and Theorem 1 does not apply to them.

Aij selected by i: In this case, node j broadcasts xj and
the receiver node i selects at time 0 a weight Aij , which is
again allowed in our model. In that case, constraints on the
columns of A cannot be guaranteed a priori, because they
involve choices made by the different out-neighbors of node
j, which generally have no way of directly communicating.
Algorithms relying on constraints on the columns of A can
thus not be cast in our model, and there is thus no contra-
diction between Theorem 1 and such algorithms successfully
computing more complex functions.

On the other hand, constraints on the rows of A can
be guaranteed, as all the elements of the ith row of A
are chosen by the same node i. In particular a classical
consensus algorithm of the form xi(t + 1) =

∑
Aijxj(t)

with Aij ≥ 0 and
∑
j Aij = 1 can be implemented in our

model. But then, Theorem 1 shows that such an algorithm
must compute a order- and multiplicity-independent function
if it computes a function at all. Proposition 1 shows moreover
that for any way of choosing the Aij that only uses the
information available to the nodes, such algorithms are
unable to distinguish between situations where, for example,
xi = 1 for almost all nodes, and xi = 0 for very few of
them, from reverse situations where xi = 0 for almost all
nodes and xi = 1 for very few of them.

VII. SUFFICIENT CONDITIONS FOR COMPUTABILITY

Theorem 1 shows that being order- and multiplicity-
independent is necessary for a family of functions to be
computable. One could naturally ask whether it is also
sufficient. The answer to this question depends on whether
the sets B of possible broadcast messages and Z of internal
memory states are given as constraints or can be chosen by
the designer.

If Z and B can be freely chosen, a flooding algorithm
allows computing any order- and multiplicity-independent
function in finite time, see, e.g., [3]. Every node would keep
broadcasting its value xi and the set of values it has already
received from its in-neighbors, taking only once into account
those appearing multiple times. After at most n steps, it
would know all the values present in the network and could
directly compute the value of the function. Since nodes do
not know n, it would actually update at every time-step an

estimate of the answer based on the information already
received, and this estimate would reach the correct value
in at most n time steps.

But, this approach requires being able to store and broad-
cast simultaneously all the values appearing in the network
(Actually being able to send one element of X at the time
is sufficient, as nodes could just sequentially send all the
values they have received one by one). Depending on the
nature of the set B of possible broadcast messages and Z
of internal memory states, this may not always be possible.
For example in works on distributed optimization where each
node i holds a local function gi, it is reasonable to assume
that only vectors of real numbers can be transmitted and not
the whole function. Flooding would thus be impossible in
such a context. Another issue is related to the sizes of the
sets. Suppose all sets are finite. For very large n, the flooding
algorithm may require storing information about the presence
or absence in the network of all possible input values in
X , which requires a number of bits proportional to the
cardinality of X , and thus a cardinality card(Z) ≥ 2card(X).

To summarize, if the designer can freely chose Z and B,
including infinite sets, then every order- and multiplicity-
independent family of functions is computable. But if there
are cardinality limitations on the sets Z and B, then the exact
conditions for computability may be much more complex,
and are beyond the scope of this work.

VIII. CONCLUSIONS

We have analyzed a model of distributed computation in
synchronous deterministic networks where nodes can only
broadcast the same message to all their out-neighbors, and
do not (initially) know how many out-neighbors they have.
We have shown that only a restricted class of functions on
the node inputs can be computed on such networks: the
order- and multiplicity-independent functions, whose value
only depend on which input values are present in the system,
but not on how many times they appear. Our arguments can
be directly extended to mixed systems involving both wired
and broadcast communications.

These results shows that in order to be able to compute
more general functions of the node inputs, including most
of those mentioned in Section V, the system should violate
at least one of our assumptions in Section II. Moreover,
the algorithm should rely on the elements that violate those
assumptions. In particular, the algorithm should explicitly or
implicitly use (a) the node out-degree (or some equivalent
information), (b) node identifiers, (c) randomization, or (d)
asynchronous updates (e.g., rely on some specific properties
of the sequence of updates or the random law governing it).

The precise way of using these aspects and how much
each of them would help enlarging the class of computable
functions are beyond the scope of this work.

REFERENCES

[1] Mohammad Akbari, Bahman Gharesifard, and Tamás Linder.
Distributed online convex optimization on time-varying directed
graphs. preprint: http://www.mast.queensu.ca/˜bahman/
2015-MA-BG-TL.pdf, 2015.

[2] Florence Bénézit, Patrick Thiran, and Martin Vetterli. The distributed
multiple voting problem. IEEE Journal of Selected Topics in Signal
Processing, 5(4):791–804, 2011.

[3] Paolo Boldi and Sebastiano Vigna. Computing vector functions on
anonymous networks. In Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, page 277, 1997.

[4] Paolo Boldi and Sebastiano Vigna. Fibrations of graphs. Discrete
Mathematics, 243(1):21–66, 2002.

[5] Kai Cai and Hideaki Ishii. Average consensus on arbitrary strongly
connected digraphs with time-varying topologies. IEEE Transactions
on Automatic Control, 59(4):1066–1071, 2014.

[6] Alejandro D Dominguez-Garcia and Christoforos N Hadjicostis. Dis-
tributed matrix scaling and application to average consensus in directed
graphs. IEEE Transactions on Automatic Control, 58(3):667–681,
2013.

[7] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual aver-
aging for distributed optimization: convergence analysis and network
scaling. IEEE Transactions on Automatic control, 57(3):592–606,
2012.

[8] Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju,
Tuomo Lempiäinen, Kerkko Luosto, Jukka Suomela, and Jonni
Virtema. Weak models of distributed computing, with connections
to modal logic. In Proceedings of the 2012 ACM Symposium on
Principles of distributed computing, pages 185–194, 2012.

[9] Julien M Hendrickx, Alex Olshevsky, and John N Tsitsiklis. Dis-
tributed anonymous discrete function computation. IEEE Transactions
on Automatic Control, 56(10):2276–2289, 2011.

[10] Franck Iutzeler, Philippe Ciblat, and Walid Hachem. Analysis of
sum-weight-like algorithms for averaging in wireless sensor networks.
IEEE Transactions on Signal Processing, 61(11):2802–2814, 2013.

[11] Shaoshuai Mou, Ji Liu, and A. Stephen Morse. A distributed algorithm
for solving a linear algebraic equation. preprint arXiv:1503.00808v1,
2015.

[12] Angelia Nedić and Alex Olshevsky. Stochastic gradient-push for
strongly convex functions on time-varying directed graphs. preprint
arXiv:1406.2075, 2014.

[13] Angelia Nedić and Alex Olshevsky. Distributed optimization over
time-varying directed graphs. IEEE Transactions on Automatic Con-
trol, 60(3):601–615, 2015.

[14] Attilio Priolo, Andrea Gasparri, Eduardo Montijano, and Carlos
Sagues. A distributed algorithm for average consensus on strongly
connected weighted digraphs. Automatica, 50(3):946–951, 2014.

[15] Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Push-
sum distributed dual averaging for convex optimization. In Proceed-
ings of the 51st IEEE Conference on Decision and Control (CDC),
pages 5453–5458, 2012.

[16] Chenguang Xi, Qiong Wu, and Usman A Khan. Distributed gradient
descent over directed graphs. preprint, 2015.

[17] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average
consensus with least-mean-square deviation. Journal of Parallel and
Distributed Computing, 67(1):33–46, 2007.

[18] Masafumi Yamashita and Tsunehiko Kameda. Computing on anony-
mous networks I. Characterizing the solvable cases. IEEE Transactions
on Parallel and Distributed Systems, 7(1):69–89, 1996.

