
Stable Linear Approximations to
Dynamic Programming for Stochastic

Control Problems with Local Transitions

Benjamin Van Roy and John N. Tsitsiklis
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA 02139

e-mail: bvr@mit.edu, jnt@mit.edu

Abstract

We consider the solution to large stochastic control problems by
means of methods that rely on compact representations and a vari
ant of the value iteration algorithm to compute approximate cost
to-go functions. While such methods are known to be unstable in
general, we identify a new class of problems for which convergence,
as well as graceful error bounds, are guaranteed. This class in
volves linear parameterizations of the cost-to- go function together
with an assumption that the dynamic programming operator is a
contraction with respect to the Euclidean norm when applied to
functions in the parameterized class. We provide a special case
where this assumption is satisfied, which relies on the locality of
transitions in a state space. Other cases will be discussed in a full
length version of this paper.

1 INTRODUCTION

Neural networks are well established in the domains of pattern recognition and
function approximation, where their properties and training algorithms have been
well studied. Recently, however, there have been some successful applications of
neural networks in a totally different context - that of sequential decision making
under uncertainty (stochastic control).

Stochastic control problems have been studied extensively in the operations research
and control theory literature for a long time, using the methodology of dynamic
programming [Bertsekas, 1995]. In dynamic programming, the most important
object is the cost-to-go (or value) junction, which evaluates the expected future

1046 B. V. ROY, 1. N. TSITSIKLIS

cost to be incurred, as a function of the current state of a system. Such functions
can be used to guide control decisions.

Dynamic programming provides a variety of methods for computing cost-to- go
functions. Unfortunately, dynamic programming is computationally intractable in
the context of many stochastic control problems that arise in practice. This is
because a cost-to-go value is computed and stored for each state, and due to the
curse of dimensionality, the number of states grows exponentially with the number
of variables involved.

Due to the limited applicability of dynamic programming, practitioners often rely
on ad hoc heuristic strategies when dealing with stochastic control problems. Sev
eral recent success stories - most notably, the celebrated Backgammon player of
Tesauro (1992) - suggest that neural networks can help in overcoming this limita
tion. In these applications, neural networks are used as compact representations
that approximate cost- to-go functions using far fewer parameters than states. This
approach offers the possibility of a systematic and practical methodology for ad
dressing complex stochastic control problems.

Despite the success of neural networks in dynamic programming, the algorithms
used to tune parameters are poorly understood. Even when used to tune the pa
rameters of linear approximators, algorithms employed in practice can be unstable
[Boyan and Moore, 1995; Gordon, 1995; Tsitsiklis and Van Roy, 1994].

Some recent research has focused on establishing classes of algorithms and compact
representation that guarantee stability and graceful error bounds. Tsitsiklis and Van
Roy (1994) prove results involving algorithms that employ feature extraction and in
terpolative architectures. Gordon (1995) proves similar results concerning a closely
related class of compact representations called averagers. However, there remains
a huge gap between these simple approximation schemes that guarantee reasonable
behavior and the complex neural network architectures employed in practice.

In this paper, we motivate an algorithm for tuning the parameters of linear com
pact representations, prove its convergence when used in conjunction with a class
of approximation architectures, and establish error bounds. Such architectures are
not captured by previous results. However, the results in this paper rely on addi
tional assumptions. In particular, we restrict attention to Markov decision problems
for which the dynamic programming operator is a contraction with respect to the
Euclidean norm when applied to functions in the parameterized class. Though
this assumption on the combination of compact representation and Markov deci
sion problem appears restrictive, it is actually satisfied by several cases of practical
interest. In this paper, we discuss one special case which employs affine approxima
tions over a state space, and relies on the locality of transitions. Other cases will
be discussed in a full length version of this paper.

2 MARKOV DECISION PROBLEMS

We consider infinite horizon, discounted Markov decision problems defined on a
finite state space S = {I, .. . , n} [Bertsekas, 1995]. For every state i E S, there is
a finite set U(i) of possible control actions, and for each pair i,j E S of states and
control action u E U (i) there is a probability Pij (u) of a transition from state i to
state j given that action u is applied. Furthermore, for every state i and control
action u E U (i), there is a random variable Ciu which represents the one-stage cost
if action u is applied at state i.

Let f3 E [0,1) be a discount factor. Since the state spaces we consider in this paper

Stable Linear Approximations Programming for Stochastic Control Problems 1047

are finite, we choose to think of cost-to-go functions mapping states to cost- to-go
values in terms of cost-to-go vectors whose components are the cost-to-go values
of various states. The optimal cost-to-go vector V* E !Rn is the unique solution to
Bellman's equation:

Vi*= min. (E[CiU]+.BLPij(U)Vj*), ViES. (1)
uEU(t) jES

If the optimal cost-to-go vector is known, optimal decisions can be made at any
state i as follows:

u*=arg min. (E[CiU]+.BLPij(U)l--j*), ViES.
uEU(t) jES

There are several algorithms for computing V* but we only discuss the value itera
tion algorithm which forms the basis of the approximation algorithm to be consid
ered later on. We start with some notation. We define the dynamic programming
operator as the mapping T : !Rn r-t !Rn with components Ti : !Rn r-t !R defined by

Ti(V) = min. (E[CiU]+.BLPij(U)Vj), ViES. (2)
uEU(t) jES

It is well known and easy to prove that T is a maximum norm contraction. In
particular ,

IIT(V) - T(V')lloo :s; .BIIV - V'lIoo,
The value iteration algorithm is described by

V(t + 1) = T(V(t)),
where V (0) is an arbitrary vector in !Rn used to initialize the algorithm. It is easy
to see that the sequence {V(t)} converges to V*, since T is a contraction.

3 APPROXIMATIONS TO DYNAMIC PROGRAMMING

Classical dynamic programming algorithms such as value iteration require that we
maintain and update a vector V of dimension n. This is essentially impossible when
n is extremely large, as is the norm in practical applications. We set out to overcome
this limitation by using compact representations to approximate cost-to-go vectors.
In this section, we develop a formal framework for compact representations, describe
an algorithm for tuning the parameters of linear compact representations, and prove
a theorem concerning the convergence properties of this algorithm.

3.1 COMPACT REPRESENTATIONS

A compact representation (or approximation architecture) can be thought of as a
scheme for recording a high-dimensional cost-to-go vector V E !Rn using a lower
dimensional parameter vector wE !Rm (m «n). Such a scheme can be described by
a mapping V : !Rm r-t !Rn which to any given parameter vector w E !Rm associates
a cost-to-go vector V (w). In particular, each component Vi (w) of the mapping is
the ith component of a cost-to-go vector represented by the parameter vector w.
Note that, although we may wish to represent an arbitrary vector V E !Rn, such a
scheme allows for exact representation only of those vectors V which happen to lie
in the range of V.
In this paper, we are concerned exclusively with linear compact representations of
the form V(w) = Mw, where M E !Rnxm is a fixed matrix representing our choice
of approximation architecture. In particular, we have Vi(w) = Miw, where Mi (a
row vector) is the ith row of the matrix M.

1048 B. V. ROY, J. N. TSITSIKLIS

3.2 A STOCHASTIC APPROXIMATION SCHEME

Once an appropriate compact representation is chosen, the next step is to generate
a parameter vector w such that V{w) approximates V*. One possible objective is
to minimize squared error of the form IIMw - V*II~. If we were given a fixed set
of N samples {(iI, ~:), (i2' Vi;), ... , (i N, ~:)} of an optimal cost-to-go vector V*, it

seems natural to choose a parameter vector w that minimizE's E7=1 (Mij w - ~;)2.
On the other hand, if we can actively sample as many data pairs as we want, one
at a time, we might consider an iterative algorithm which generates a sequence of
parameter vectors {w(t)} that converges to the desired parameter vector. One such
algorithm works as follows: choose an initial guess w(O), then for each t E {O, 1, ... }
sample a state i{t) from a uniform distribution over the state space and apply the
iteration

(3)

where {a(t)} is a sequence of diminishing step sizes and the superscript T denotes
a transpose. Such an approximation scheme conforms to the spirit of traditional
function approximation - the algorithm is the common stochastic gradient descent
method. However, as discussed in the introduction, we do not have access to such
samples of the optimal cost-to-go vector. We therefore need more sophisticated
methods for tuning parameters.

One possibility involves the use of an algorithm similar to that of Equation 3,
replacing samples of ~(t) with TiCt) (V(t)). This might be justified by the fact that
T(V) can be viewed as an improved approximation to V*, relative to V. The
modified algorithm takes on the form

(4)

Intuitively, at each time t this algorithm treats T(Mw(t)) as a "target" and takes
a steepest descent step as if the goal were to find a w that would minimize IIMw
T(Mw(t))II~. Such an algorithm is closely related to the TD(O) algorithm of Sutton
(1988). Unfortunately, as pointed out in Tsitsiklis and Van Roy (1994), such a
scheme can produce a diverging sequence {w(t)} of weight vectors even when there
exists a parameter vector w* that makes the approximation error V* - Mw* zero at
every state. However, as we will show in the remainder of this paper, under certain
assumptions, such an algorithm converges.

3.3 MAIN CONVERGENCE RESULT

Our first assumption concerning the step size sequence {a(t)} is standard to stochas
tic approximation and is required for the upcoming theorem.

Assumption 1 Each step size a(t) is chosen prior to the generation of i(t), and
the sequence satisfies E~o a(t) = 00 and E~o a 2 (t) < 00.

Our second assumption requires that T : lRn t-+ lRn be a contraction with respect
to the Euclidean norm, at least when it operates on value functions that can be
represented in the form Mw, for some w. This assumption is not always satisfied,
but it appears to hold in some situations of interest, one of which is to be discussed
in Section 4.

Assumption 2 There exists some {3' E [0, 1) such that

IIT(Mw) - T(Mw')112 ::; {3'IIMw - Mw'112, Vw,w' E lRm.

Stable Linear Approximations to Programming for Stochastic Control Problems 1049

The following theorem characterizes the stability and error bounds associated with
the algorithm when the Markov decision problem satisfies the necessary criteria.

Theorem 1 Let Assumptions 1 and 2 hold, and assume that M has full column
rank. Let I1 = M(MT M)-l MT denote the projection matrix onto the subspace
X = {Mwlw E ~m}. Then,
(a) With probability 1, the sequence w(t) converges to w*, the unique vector that
solves:

Mw* = I1T(Mw*).

(b) Let V* be the optimal cost-to-go vector. The following error bound holds:

IIMw* - V*1I2 ~ (1 ;!~ynllI1V* - V*lloo.

3.4 OVERVIEW OF PROOF

Due to space limitations, we only provide an overview of the proof of Theorem 1.

Let s : ~m f-7 ~m be defined by

s(w) = E [(Miw - Ti(Mw(t)))MT] ,

where the expectation is taken over i uniformly distributed among {I, .. . , n}.
Hence,

E[w(t + l)lw(t), a(t)] = w(t) - a(t)s(w(t)),
where the expectation is taken over i(t). We can rewrite s as

s(w) = ~(MTMW - MTT(MW)) ,

and it can be thought of as a vector field over ~m. If the sequence {w(t)} converges
to some w, then s (w) must be zero, and we have

MTMw MTT(Mw)

Mw = I1T(Mw).

Note that

III1T(Mw) - I1T(Mw')lb ~ {j'IIMw - Mw'112, Vw,w' E ~m,

due to Assumption 2 and the fact that projection is a nonexpansion of the Euclidean
norm. It follows that I1Te) has a unique fixed point w* E ~m, and this point
uniquely satisfies

Mw* = I1T(Mw*).

We can further establish the desired error bound:

IIMw* - V*112 < IIMw* - I1T(I1V*) 112 + III1T(I1V*) - I1V*112 + III1V* - V*112
< {j'IIMw* - V*112 + IIT(I1V*) - V*112 + III1V* - V*1I2
< t3'IIMw* - V*112 + (1 + mv'nIII1V* - V*lloo,

and it follows that

Consider the potential function U(w) = ~llw - w*II~. We will establish that
(\1U(w))T s(w) 2 ,U(w), for some, > 0, and we are therefore dealing with a

1050 B. V. ROY, J. N. TSITSIKLIS

"pseudogradient algorithm" whose convergence follows from standard results on
stochastic approximation [Polyak and Tsypkin, 1972J. This is done as follows:

(\7U(w)f s(w) ~ (w - w*) T MT (Mw - T(Mw))

~ (w - w*) T MT(Mw - IIT(Mw) - (J - II)T(MW))

= ~(MW-Mw*)T(MW-IIT(MW)),

where the last equality follows because MTrr = MT. Using the contraction as
sumption on T and the nonexpansion property of projection mappings, we have

IlIIT(Mw) - Mw*112 IIIIT(Mw) - rrT(Mw*)112
::; ,6'IIMw - Mw*1I2'

and applying the Cauchy-Schwartz inequality, we obtain

(\7U(W))T s(w) > 1
-(IIMw - Mw*ll~ -IIMw - Mw*1121IMw* - IIT(Mw)112)
n

!:.(l - ,6')IIMw - Mw*II~·
n

>

Since M has full column rank, it follows that (\7U(W))T s(w) ~ 1'U(w), for some
fixed l' > 0, and the proof is complete.

4 EXAMPLE: LOCAL TRANSITIONS ON GRIDS

Theorem 1 leads us to the next question: are there some interesting cases for which
Assumption 2 is satisfied? We describe a particular example here that relies on
properties of Markov decision problems that naturally arise in some practical situ
ations.

When we encounter real Markov decision problems we often interpret the states
in some meaningful way, associating more information with a state than an index
value. For example, in the context of a queuing network, where each state is one
possible queue configuration, we might think of the state as a vector in which each
component records the current length of a particular queue in the network. Hence,
if there are d queues and each queue can hold up to k customers, our state space is
a finite grid zt (Le., the set of vectors with integer components each in the range
{O, ... ,k-l}).

Consider a state space where each state i E {I, ... , n} is associated to a point
xi E zt (n = k d), as in the queuing example. We might expect that individual
transitions between states in such a state space are local. That is, if we are at
a state xi the next visited state x j is probably close to xi in terms of Euclidean
distance. For instance, we would not expect the configuration of a queuing network
to change drastically in a second. This is because one customer is served at a time
so a queue that is full can not suddenly become empty.

Note that the number of states in a state space of the form zt grows exponentially
with d. Consequently, classical dynamic programming algorithms such as value
iteration quickly become impractical. To efficiently generate an approximation to
the cost-to-go vector, we might consider tuning the parameters w E Rd and a E R
of an affine approximation ~(w, a) = wT xi + a using the algorithm presented in
the previous section. It is possible to show that, under the following assumption

Stable Linear Approximations to Programming for Stochastic Control Problems 1051

concerning the state space topology and locality of transitions, Assumption 2 holds

with f3' = .; f32 + k~3' and thus Theorem 1 characterizes convergence properties of

the algorithm.

Assumption 3 The Markov decision problem has state space S = {1, ... , kd }, and
each state i is uniquely associated with a vector xi E zt with k ~ 6(1 - (32)-1 + 3.
A ny pair xi, x j E zt of consecutively visited states either are identical or have
exactly one unequal component, which differs by one.

While this assumption may seem restrictive, it is only one example. There are many
more candidate examples, involving other approximation architectures and partic
ular classes of Markov decision problems, which are currently under investigation.

5 CONCLUSIONS

We have proven a new theorem that establishes convergence properties of an al
gorithm for generating linear approximations to cost-to-go functions for dynamic
programming. This theorem applies whenever the dynamic programming operator
for a Markov decision problem is a contraction with respect to the Euclidean norm
when applied to vectors in the parameterized class. In this paper, we have described
one example in which such a condition holds. More examples of practical interest
will be discussed in a forthcoming full length version of this paper.

Acknowledgments

This research was supported by the NSF under grant ECS 9216531, by EPRI under
contract 8030-10, and by the ARO.

References

Bertsekas, D. P. (1995) Dynamic Programming and Optimal Control. Athena Sci
entific, Belmont, MA.

Boyan, J. A. & Moore, A. W. (1995) Generalization in Reinforcement Learning:
Safely Approximating the Value Function. In J. D. Cowan, G. Tesauro, and D.
Touretzky, editors, Advances in Neural Information Processing Systems 7. Morgan
Kaufmann.

Gordon, G. J. (1995) Stable Function Approximation in Dynamic Programming.
Technical Report: CMU-CS-95-103, Carnegie Mellon University.

Polyak, B. T. & Tsypkin, Y. Z., (1972) Pseudogradient Adaptation and Training
Algorithms. A vtomatika i Telemekhanika, 3:45-68.

Sutton, R. S. (1988) Learning to Predict by the Method of Temporal Differences.
Machine Learning, 3:9-44.

Tesauro, G. (1992) Practical Issues in Temporal Difference Learning. Machine
Learning, 8:257-277.

Tsitsiklis, J. & Van Roy, B. (1994) Feature-Based Methods for Large Scale Dynamic
Programming. Technical Report: LIDS-P-2277, Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology. Also to appear in Machine
Learning.

