
Call Admission Control and Routing in Integrated Service Networks
Using Reinforcement Learning

Peter Marbach
LIDS

MIT, Room 35 -307
Cambridge, MA, 02139

email: marbach@mit.edu

Oliver Mihatsch�

Siemens AG
Corporate Technology, ZT IK 4

D-81730 Munich, Germany
email: oliver.mihatsch@

mchp.siemens.de

John N. Tsitsiklis
LIDS

MIT, Room 35-209
Cambridge, MA, 02139
email: jnt@mit.edu

Abstract

In integrated service communication networks, an impor-
tant problem is to exercise call admission control and rout-
ing so as to optimally use the network resources. This
problem is naturally formulated as a dynamic programming
problem, which, however, is too complex to be solved ex-
actly. We use methods of reinforcement learning (RL), to-
gether with a decomposition approach, to find call admis-
sion control and routing policies. We compare the perfor-
mance of our policy with a commonly used heuristic pol-
icy.

1 Introduction

The call admission control and routing problem arises in
the context where a telecommunication provider wants to
sell its network resources to customers in order to maxi-
mize long term revenue. Customers are divided into differ-
ent classes, called service types. Each service type is char-
acterized by its bandwidth demand, its average call holding
time and the immediate reward the network provider ob-
tains, whenever a call of that service type is accepted. The
control actions for maximizing the long term revenue are to
accept or reject new calls (Call Admission Control) and, if
a call is accepted, to route the call appropriately through
the network (Routing). The problem is naturally formu-
lated as an average reward dynamic programming problem,
which, however, is too complex to be solved exactly. We
use the methodology of reinforcement learning (RL) to ap-
proximate the differential reward of dynamic programming.
Furthermore, we pursue a decomposition approach, where
the network is viewed as consisting of link processes, each
having its own differential reward. This has the advantage,
that it allows a decentralized implementation of the train-
ing methods of RL and a decentralized implementation of
the call admission control and routing policies. Our method
learns call admission control and routing policies which out-
perform the commonly used heuristic “Open-Shortest-Path-

�Author to whom correspondence should be addressed.

First” (OSPF) policy.

In some earlier related work, we applied RL to the call ad-
mission problem for a single communication link in an in-
tegrated service environment. We found that in this case,
RL methods performed as well, but no better than, well-
designed heuristics. Compared with the single link prob-
lem, the addition of routing decisions makes the network
problem more complex and good heuristics are not easy to
derive.

2 Call Admission Control and Routing

We are given a telecommunication network consisting of
a set of nodes N � f�� � � � � Ng and a set of links L �
f�� � � � � Lg, where link l has a a total capacity of B�l� units
of bandwidth. We support a setM � f�� � � � �Mg of differ-
ent service types, where a service typem is characterized by
its bandwidth demand b�m�, its average call holding time
����m� (here we assume that the call holding times are
exponentially distributed) and the immediate reward c�m�
we obtain, whenever we accept a call of that service type.
A link can carry simultaneously any combination of calls,
as long as the bandwidth used by these calls does not ex-
ceed the total bandwidth of the link (Capacity Constraint).
When a new call of service type m requests a connection
between a node i and a node j, we can either reject or ac-
cept that request (Call Admission Control). If we accept
the call, we choose a route out of a list of predefined routes
(Routing). The call then uses b�m� units of bandwidth on
each link along that route for the duration of the call. We
can, therefore, only choose a route, which does not violate
the capacity constraints of its links, if the call is accepted.
Furthermore, if we accept the call, we obtain an immediate
reward c�m�. The objective is to exercise call admission
control and routing in such a way that the long term revenue
obtained by accepting calls is maximized.

We can formulate the call admission control and rout-
ing problem using dynamic programming (e. g. Bertsekas,
1995). We will use the following notation: S denotes the

p. 1

state space, � is the set of all possible events, and U is the
set of decision/control actions. The state xt � S at time t
consists of a list for each route, indicating how many calls
of each service type are currently using that route. Events
� � � which incur state transitions, are arrivals of new calls
and call terminations. The decision/control ut � U applied
at the time t of an arrival of a new call is to decide, whether
to reject or accept the call, and, if the call is accepted, how to
route it through the network. The objective is to determine
a policy

� � S � �� U

that assigns decisions to a state and event, so as to maximize
the average reward

v��� � lim
N��

�

EftNg
E

�
N��X
k��

g�xtk � �k� utk� j �

�

associated with policy �. Ef�g is the expectation op-
erator, tk is the time when the kth event happens, and
g�xtk � �k� utk� is the immediate reward associated with the
state xtk , the event �k and the decision utk .

A policy �� is optimal if

v���� � v���

for every other possible policy �. We denote the average
reward associated with an optimal policy �� as v�.

3 Reinforcement Learning Solution

RL methods solve optimal control (or dynamic program-
ming) problems by learning good approximations to the op-
timal differential reward h�, given by the solution to the
Bellman optimality equation for average reward problems.
For the call admission control and routing problem, the
Bellman optimality equation takes the following form

v�E�f� jxg� h��x� �

E�

�
max
u�U�x�

�g�x� �� u� � h��x��	

�
� x � S�

h��
x� � ��

where v� is the optimal reward, U �x� is the set of control
actions available in the current state x, � is the time when
the first event � occurs, x� is the successor state and
x is
the state representing the empty network. Note that x� is a
deterministic function of the current state x, the control u
and the event �. In our setting, there is an unique solution
to the Bellman optimality equation.

RL uses a compact representation �h��� �� and �v to learn and
store an estimate of h���� and v�, respectively. Temporal-
difference (TD()) algorithms for average reward problems
(Tsitsiklis & VanRoy, 1997) can be used to train �h��� �� and
�v. In the optimistic version of these algorithms, on each

event �k, �h��� �k� is both used to make decisions and to up-
date the parameter vector �k. In the call admission control
and routing problem, one has only to choose a control ac-
tion when a new call requests a connection. In such a case,
�h��� �� is used to choose a control action according to the
formula

u � arg max
u�U�x�

h
g�x� �� u� � �h�x�� ��

i
(1)

This can be expressed in words as follows.

Decision Making: When a new call requests a connection,
use �h��� �� to evaluate, for each permissible route, the suc-
cessor state x� we transit to, when we choose that route, and
pick a route which maximizes that value. If the sum of the
immediate reward and the value associated with this route is
higher than the value of the current state, route the call over
that route; otherwise reject the call.

Usually, RL uses a global feature extractor f�x� to form
an approximate compact representation of the state of the
system, which forms the input to a function approximator
�h��� ��. Using the temporal-difference algorithm TD(0), the
update at the kth event takes the following form

�k � �k�� �
kdkr�
�h�f�xtk�� �� �k����

�vk � �vk�� � �k�g�xtk � �k� utk�� �tk � tk����vk����

where

dk � g�xtk � �k� utk�� �tk � tk����vk�� �
�h�f�xtk �� �k���� �h�f�xtk�� �� �k����

k and �k are small step size parameters, and utk is the con-
trol action chosen according to the decision making rule (1)
described above.

Here we pursue an approach where we view the network as
being composed of link processes. Furthermore, we decom-
pose immediate rewards g�xtk � �k� utk� associated with the
kth event, into link rewards gl�xtk� �k� utk� such that

g�xtk � �k� utk� �
LX
l��

gl�xtk� �k� utk��

We then define, for each link l, �hl�fl�x��� �l, and �vl, which
are interpreted as an estimate of the differential reward,
and the average reward, respectively, associated with link
l. Here, fl defines a local feature, which forms the input
to the differential reward associated with link l. We use the
functions �hl�fl�x��� �l, and �vl, to obtain an approximation
of h��x�, and v�, respectively, by computing the sums

LX
l��

�hl�fl�x�� �l�� and
LX
l��

�vl�

On each event, we update �vl and the parameter vector �l of
link l, only if the event is associated with the link. Events

p. 2

Table 1: Service Types for the 4 Node Network.

Service type m 1 2 3

Bandwidth demand b�m� 1 3 5
Average holding time ����m� 10 10 2
Immediate reward c�m� 1 2 50

associated with a link l are arrivals of new calls which are
potentially routed over link l and termination of calls which
were routed over the link l. The update rule of the parameter
vector �l is very similar to the TD(0) algorithm described
above

�l�k � �l�k�� �
l�kdl�kr�l
�hl�fl�xtl�k���� �l�k����

�vl�k � �vl�k�� �

�l�k�gl�xl�tk � �l�k� utk� � �tl�k � tl�k����vl�k����

where

dl�k � gl�xtl�k� �l�k� utl�k�� �tl�k � tl�k����vl�k�� �

�hl�fl�xtl�k�� �l�k����

�hl�fl�xtl�k���� �l�k��� (2)

l�k and �l�k are small step size parameters and tl�k is the
time when the kth event �l�k associated with link l occurs.
Whenever a new call of a service of type m is routed over
a route r which contains the link l, the immediate reward gl
associated with the link l is equal to c�m��
r, where
r is
the number of links along the route r. For all other events,
the immediate reward associated with link l is equal to 0.

The advantage of this decomposition approach is that it al-
lows decentralized training and decentralized decision mak-
ing. Furthermore, we observed that this decomposition ap-
proach leads to much shorter training times for obtaining
an approximation for h� than the approach without decom-
position. All these features become very important if one
considers applying methods of RL to large integrated ser-
vice networks supporting a fair number of different service
types.

Decomposing complex systems into subsystem, which
are then solved independently, is a popular approach in
systems-engineering. In general, when a system is decom-
posed into smaller subsystems a “modeling error” is in-
troduced. This is due to the interaction/coupling between
the subsystems which is suppressed by the decomposition.
However, the hope is that the ability to find better solutions
for the individual subsystems compensate this “modeling
error” and that the resulting control policy compares favor-
able to the one obtained by solving the entire system.

0

1

2

3

Figure 1: Telecommunication Network Consisting of 4 Nodes
and 12 Unidirectional Links.

4 Experimental Results

In this section we present experimental results of two case
studies involving a network with 4, and 16 nodes, respec-
tively.

For both cases, we compare the policy obtained through
RL with the commonly used heuristic OSPF (Open Shortest
Path First). For every pair of source and destination nodes,
OSPF orders the list of predefined routes. When a new call
arrives, it is routed along the first route in the corresponding
list, that does not violate the capacity constraint; if no such
a route exists, the call is rejected.

For the RL approach, we use a quadratic approximator,
which is linear with respect to the parameters �l , as a com-
pact representation of �hl. Other approximation architectures
were tried, but we found that the quadratic gave the best re-
sults with respect to both the speed of convergence and the
final performance. As inputs to the compact representation
�hl, we use a set of local features, which we chose to be
the number of ongoing calls of each service type on link l.
There are approximately ��� � ���� and ��� � ����	 different
feature configurations for the 4 node and 16 node network,
respectively. Note that the total number of possible states is
even higher.

We obtained the final control policies of both case studies
after � � ��	 iteration steps.

4.1 Network with 4 Nodes
In this section, we present experimental results obtained for
the case of an integrated service network consisting of 4
nodes and 12 unidirectional links. There are two different
classes of links with a total capacity of 60 and 120 units of
bandwidth, respectively (indicated by thick and thin arrows
in Figure 1). We assume a setM � f�� �� �gof three differ-
ent service types. The corresponding bandwidth demands,
average holding times and immediate rewards are given in

p. 3

0 50 100 150 200 250
reward per time unit

Average Reward

potential reward
reward obtained by RL
reward obtained by OSPF

0 5 10 15 20 25 30 35 40 45 50

1

2

3

percentage of calls rejected

se
rv

ic
e

ty
p

e

Comparison of Rejection Rates

OSPF policy
RL policy

Figure 2: 4 Node Network: Comparison of the Average Rewards and Rejection Rates of the RL and OSPF Policies.

0 10 20 30 40 50 60 70 80 90 100

1

2

3

percentage of calls routed on direct and alternative paths

se
rv

ic
e

ty
p

e

Routing (OSPF)

direct link
alternative route no. 1
alternative route no. 2

0 10 20 30 40 50 60 70 80 90 100

1

2

3

percentage of calls routed on direct and alternative paths

se
rv

ic
e

ty
p

e

Routing (RL)

direct link
alternative route no. 1
alternative route no. 2

Figure 3: 4 Node Network: Comparison of the Routing Behaviour of the RL and OSPF Policies.

Table 1. Note that the calls of type 3 are much more valu-
able than the one of type 1 and 2. Call arrivals are modeled
as independent Poisson processes, with a separate mean for
each pair of source and destination nodes and each service
type. Furthermore, for each source and destination node
pair, the list of possible routes consists of three entries: the
direct path and the two alternative 2-hop-routes.

This case study is characterized by a high traffic load and by
calls of one service type having a much higher immediate
reward than calls of the other types. We choose this setting
to determine the potential of our optimization algorithm.

The results of the case study is given in Figure 2 (Perfor-
mance) and Figure 3 (Routing Behaviour). We give here a
summary of the results.

Performance Comparison: The policy obtained through
RL gives an average reward of 212, which as about ���

Table 2: Service Types for the 16 Node Network.

Service type m 1 2 3 4

Bandwidth demand b�m� 1 2 3 4
Av. holding time ����m� 1.25 1.25 1.25 1.25
Immediate reward c�m� 0.25 1 6 15

higher than the one of 141 achieved by OSPF. Furthermore,
the RL policy reduces the number of rejected calls for all
service types. The most significant reduction is achieved for
calls of service type �, the service type, which has the high-
est immediate reward. Figure 2 also shows that the average
reward of the RL policy is close to the potential average re-
ward of 242, which is the average reward we would obtain
if all calls were accepted. This leaves us to believe that the

p. 4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4: Telecommunication Network Consisting of 16 Nodes.

RL policy is close to optimal. Figure 3 compares the routing
behavior of the RL control policy and OSPF. While OSPF
routes about ���� ��� of all calls along one of the alter-
native 2-hop-routes, the RL policy uses alternate routes for
calls of type 3 (about ���) and routes calls of the other two
service types almost exclusively over the direct route. This
indicates, that the RL policy uses a routing scheme, which
avoids 2-hop-routes for calls of service type 1 and 2, and
which allows us to use network resources more efficiently.

4.2 Network with 16 Nodes
In this section, we present experimental results obtained for
a network consisting of 16 nodes and 62 unidirectional links
(see Figure 4). The network topology is taken from Green-
berg & Srikant (1997). The network consists of three dif-
ferent classes of links with a capacity of 60, 120 and 180
units of bandwidth, respectively. We assume four differ-
ent service types. Table 2 summarizes the corresponding
bandwidth demands, average holding times and immediate
rewards. Again, call arrivals are modeled by Poisson pro-
cesses. The arrival rates for each pair of source and des-
tination nodes are published in the paper of Greenberg &
Srikant (1997). Since the length of each link (in miles) is
also mentioned in the above paper, we use this informa-
tion to compute the list of possible routes. For each pair
of source and destination nodes, it contains a maximum of
six shortest path routes ordered by their path length.

The results of the case study are summarized by Figure 5
(Performance) and Figure 6 (Routing).

Performance Comparison: The OSPF policy almost ex-
clusively routes all calls over the shortest path. This leads
to an average reward of about 4254. The rate of rejected
calls is positive for all service classes. The two most valu-

able service types 3 and 4 receive the highest rejection rate.
In contrast, the RL policy comes up with a very different
routing scheme that uses alternative paths for all types of
services. Now, the rejection rates for calls of type 1, 3 and
4 vanish whereas that for service class 2 increases. The RL
policy rejects these calls in a strategic way, i. e. RL is not
forced to do so by the capacity constraint. Instead, it explic-
itly reserves bandwidth for the most valuable calls of type
3 and 4. The average reward of 4349 obtained through the
RL policy is about 2.2% higher than the one achieved by
OSPF. A more significant performance measure illustrating
the power of the RL policy is the so-called lost average re-
ward. It is defined as the difference between the potential
average reward of 4438 and the actual one achieved by the
current policy. RL reduces the lost average reward by about
52% compared with OSPF. This leaves us to believe that
RL is close to optimal.

5 Conclusion

The call admission control and routing problem for inte-
grated service networks is naturally formulated as an aver-
age reward dynamic programming problem, albeit one with
a very large state space. Traditional dynamic programming
methods are computationally infeasible for such large scale
problems. We use reinforcement learning, based on TD���
for average reward problems (Tsitsiklis&Van Roy, 1997),
combined with a decomposition approach, which views the
network as consisting of link processes. This decomposition
has the advantage that it allows decentralized decision mak-
ing and decentralized training, which reduces significantly
the time of the training phase. We presented a solutions
for example networks with about ���� and ����	 different

p. 5

3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500
reward per time unit

Average Reward

potential reward
reward obtained by RL
reward obtained by OSPF

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

percentage of calls rejected

se
rv

ic
e

ty
p

e
Comparison of Rejection Rates

OSPF policy

RL policy

Figure 5: 16 Node Network: Comparison of the Average Rewards and Rejection Rates of the RL and OSPF Policies.

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

percentage of calls routed on direct and alternative paths

se
rv

ic
e

ty
p

e

Routing (OSPF)

shortest path
alternative route no. 1
alternative route no. 2
alternative route no. 3
alternative route no. 4
alternative route no. 5

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

percentage of calls routed on direct and alternative paths

se
rv

ic
e

ty
p

e

Routing (RL)

shortest path
alternative route no. 1
alternative route no. 2
alternative route no. 3
alternative route no. 4
alternative route no. 5

Figure 6: 16 Node Network: Comparison of the Routing Behaviour of the RL and OSPF Policies.

feature configurations. The case study involving a network
with 16 nodes showed the capacity of RL to learn complex
control policy which use strategic call rejections. Such poli-
cies are difficult to obtain through heuristics. More compu-
tational experiments are needed to determine if this method
is useful for truly large scale networks.

References: Bertsekas, D. P. (1995) Dynamic Pro-
gramming and Optimal Control. Athena Scientific, Bel-
mont, MA.

Bertsekas, D. P., Tsitsiklis, J. N. (1996) Neuro-Dynamic
Programming. Athena Scientific, Belmont, MA.

Greenberg, A., Srikant, R. (1997) Computational Tech-
niques for Accurate Performance Evaluation in Multirate,

Multihop Communication Networks, IEEE/ACM Transac-
tions on Networking.

Tsitsiklis, J. N., Van Roy, B. (1997) Average Cost Temporal-
Difference Learning, Lab. for Info. and Decision Systems
Report LIDS-P-2390, Massachusetts Institute of Technol-
ogy, Cambridge, MA.

p. 6

