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Conditions for Finiteness of a Constructive Algorithm 
for Determining Stability 

JOHN N. TSITSIKLIS 

Ahstracr --In earlier papers [ 11, [2], a methodology for deciding: on the 
stability of a system of nonlinear differential equations was proposed. Tbis 
methodology reduced the problem to a test of boundedness of all finite 
products of a given finite set of matrices. This paper investigates further 
the issue of whether the algorithm will terminate in finitely many sleps and 
obtains some new conditions, concentrating on the case where the system 
being tested is unstable. 

I. INTR~DUCTI~N 

Brayton and Tong have proposed in [l] and [2] a constructive 
algorithm for determining the stability properties of a nonlinear 
time-invariant differential equation. They show that under certain 
conditions the .problem may be reduced to the study of the 
“stability of a finite set of matrices”, a concept to be defined 
below. They then proposed an algorithm that solves the latter 
problem and which is equivalent to constructing a Lyapunov 
function for the original differential equation. The range of 
potential applications of this algorithm is quite broad. It can be 
used, for example, in the study of switching systems, meaning 
linear systems such that the A matrix may undergo sudden 
changes (either random or deterministic). 

Given the importance of this algorithm, it is natural to ask 
under what conditions it will be constructive (i.e., it terminates 
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after a finite number of steps) and is, therefore, implementable in 
a computer. Some sufficient conditions are given in [l] and [2]. In 
this paper we obtain more conditions for the finiteness of the 
algorithm. 

The termination of the algorithm is very closely linked to the 
properties of subsets of e’ that are left invariant under multipli- 
cation by a set of matrices. Most of the results in this paper 
involve characterizations of such invariant subsets. 

Definition 1: A set of n by n complex matrices &! is stable if for 
every neighborhood of the origin U c e’, there exists another 
neighborhood of the origin V such that MV c U,VME @*, where 
&* is the semigroup of matrices generated by & (i.e., the set of all 
finite products of matrices in &). 

If W c P, let X[ W] be the convex hull of W. 
Theorem I: Given a finite set ~={M,,,M,;~~,M,,~,) of m 

distinct n by n complex matrices. Let W, c (3” be a bounded, 
convex and symmetric polyhedral neighborhood of the origin. 
Define, for k > 0 

4=x/ fowl,] (1.1) 

where j s (k - l)(mod m). Then & is stable if and only if W* = 
UFO Wi is bounded. 

Proof See [l], p. 227. 
Brayton and Tong’s algorithm consists of constructing the set 

W*. We should point out that if W is a convex polyhedron it is 
uniquely determined by the finite set E[ W] of its extreme points. 
The algorithm is finite if and only if W* can be constructed in a 
finite number of steps. In particular, a necessary condition for 
finiteness is that W*, as well as Wi, i = 1,2 . . . are convex poly- 
hedra. Concerning the first step of the algorithm (equation (1.1)) 
the following result is proved in [ 11: 

Theorem 2: Let M be a matrix whose eigenvalues have magni- 
tude 1X( M)I < 1; then, for any bounded neighborhood of the 
origin R, there exists some J  such that UzoM’R = U&M’R. 

In order to complete the discussion, we must consider what 
happens if A4 is stable but has eigenvalues with 1 Xi 1 = 1. In that 
case, it is necessary for finiteness that M has no eigenvalue equal 
to e”(B E [0,2a]) with 8/2+r7 irrational. However, this condition 
is not sufficient. (For an example, see [2, p. 11241.) 

Concerning the second step of the algorithm, we have, when & 
is stable [2]: 

Theorem 3: If a set & of matrices is stable and there exists a 
positive k such that ]Xi(M)IG k < 1 for all ME a*, then the 
algorithm will terminate “stable” in a finite number of steps. 

Similarly with the case of the first step, it is easy to prove the 
following necessary condition for finiteness: If there exists some 
ME &*, and an eigenvalue h of M such that X = exp[i@] and 
19/2s is irrational, then the algorithm is not finite. 

‘Nowdefineaset0asfollows:8E0ifandonlyifO~B~2n 
and exp[ie] is an eigenvalue of some ME@*. Then, if the 
algorithm terminates, 8/2a has to be rational, VB E 0. We also 
have the following result: 

Proposition I: If the algorithm is finite, then 0 is a finite set. 
Proof: Suppose that BE 0 and 8/2n is rational and has 

been written as an irreducible ratio n/d of two integers. It is then 
easy to show that W* has at least d extreme points. On the other 
hand, finiteness of the algorithm means. that W* has finitely 
many extreme points. Because there are only finitely many ra- 
tional numbers in [0, I] whose denominator is less or equal than a 
finite number, it follows that 0 is a finite set. n 
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As a conclusion, if the algorithm is constructive, then the set of 
eigenvalues of matrices in @ * has to lie either in a subset of the 
complex plane whose closure does not intersect the unit circle 
(asymptotically stable systems) or intersects it at finitely many 
points corresponding to angles with rational 19/n. 

II. STOPPING CRITERIAWHEN&ISNOT STABLE 

If & is unstable, then W* is unbounded and it cannot be 
constructed in finitely many steps. In that case, we expect that 
there will be some way to detect unbounded growth and terminate 
the algorithm. Brayton and Tong have proved that if one of the 
two conditions presented below is met while the algorithm is 
implemented, then we may terminate the algorithm and conclude 
that & is unstable. However, this does not answer the question 
whether the algorithm is finite or not, because there is no 
guarantee that one of these stopping conditions will be eventually 
met. This issue is investigated in this section. 

(ICI): First Instability Criterion [ 1, p. 2281 
If there exists a k such that OWenOW, =0 then W* is un- 

bounded. (3 W is the boundary of W.) 
(IC2): Second Instability Criterion [2, 9. 11231 
Let & be a set of m matrices. Suppose that k 2 m. Let 

(where (W), is the interior of W and - is used to denote the 
difference of two sets). Suppose that there exists some J such that 
for each “new point” yE NJ, there exists an “interior point” 
x E Z, and some ME &* such that y = Mx. Then & is unstable. 

We assume that each ME d is stable, but & is unstable, and we 
are looking for necessary and sufficient conditions, in terms of 6? 
so that the algorithm eventually terminates when one of the 
above two stopping tests is used. For this, we need a sequence of 
preliminary results. 

Lemma I: If a set V* c 6?” is convex, unbounded and symmet- 
ric,thenthereexistsax~V*,suchthatx#OandrxEV*,Vr~R. 

Proof: Omitted. 
Proposition 2: Suppose that W* (as defined in Theorem 1) is 

unbounded. Let W, be the closure of W*. Then, either W* = 6?’ 
or W, is isomorphic to V*@(?“-“, for some closed and bounded 
m-dimensional convex sets V*. 

Proof: Let U be the set of vectors x~ efl such that rxE 
W*,VrE R. Let 

d=suPIlxl:xEW,] 
inf{Ix]:x@W,} ’ 

If xE W,, then 

I’ I 5 =IxI inf{]xl: xB Wo} 
sup{]x]: XE W,} =Ginf{Ix]:x@Wo}. 

Therefore, ix/d E W,. Now suppose that z E U and rE R. Then, 
rdzE U and in particular rdz E W,. Therefore, there exists a se- 
quence {w,} of points of W. and a sequence { il4,} of matrices in 
&* such that Mnxn -+ rdz. Then, M,,(ix,/d) + riz. Since ix,/dE 
W, and since W, is closed, we have irzE W,. This implies that 
iz E U whenever z E U and consequently that czE U,VzE CT, 
VCE e. 

Now let z,EU,z,EU. Then, 2cz,,2cz,E W*,QcE& By con- 
vexity of W*, c(z, + z,)EU,VcE e. This shows that U is a 
subspace of e’ and is therefore isomorphic to eflprn for some m. 
If m = 0, then W* = 6?” and we are done. 

Now, suppose that m # 0. Let Q  be the orthogonal comple- 

ment of U and let V* G  QflWc. Then, V* is closed and is equal to 
the intersection of two convex and symmetric sets. Therefore, it is 
also convex and symmetric. By construction of V*, V* NJ = (0) 
and there is no XE V* such that x # 0 and rxE V*,VrE R. Then, 
by Lemma 3, V* is bounded. 

We now have to show that U and V*, as constructed above, 
satisfy V*@U= W,. Let x,EV* and x,EU. Then, nx,EU, Vn 
and (1--l/n)x,+(l/n)(nx,)EW, by convexity. The above se- 
quence of points converges to x, + x2 as n + co. Since WC is 
closed, x, + x,E W,. Therefore, W,>V*@U. 

Consider now some x E W,. Let x = x, + x2 where x,E U and 
x, belongs to the orthogonal complement of (I. Then, - nx,E U, 
Vn and by convexity of W, we have (I-l/n)(x, +x,)+ 
(l/n)(- nxz) E W,. We let n + 00 and since W, is closed, we 
conclude that x, E W,. Therefore, x, E V* and W, C V* @U. n 

Proposition 3: If W, is isomorphic to V*@enem, with m # 0, 
then there exists a basis for c?” such that every ME 62 can be 
written as 

&,f= Ml1 0 [. 1 M21 M22 

and the set {P, M: ME a} is a stable set of matrices, where P, is 
the projection onto the subspace generated by the first m coordi- 
nates. 

Proof: Since W, is isomorphic to V*@enpm, there exists a 
basis such that V* belongs to the subspace generated by the first 
m basis vectors. Using this basis, partition the matrix M as 
follows: 

M= 2’ M’2 I 1 21 M22 

Let P2 be the projection on the subspace generated by the last 
n - m basis vectors. Then, P2x E W,,Vx E en which implies that 
MP,xE Wc,QxE (!?” and, therefore, P,MP,xE V*,VxEe”. But 
this is another way of saying that 

[ I c l Ml2 xEV* 
00 ’ 

VXEC?. 

Since V* is bounded, we must have M,, = 0. The stability of the 
set of matrices P, M follows from the fact that this set leaves the 
bounded set V* invariant. n 

Proposition 3 shows that W* = 6?, except for some rather 
special cases that correspond to systems that may go unstable 
without having all modes go to infinity. It turns out that this is 
the class of systems for which the termination of the algorithm is 
uncertain. . 

Proposition 4: If W* = en, then the stopping criterion ICI is 
met after finitely many steps. 

Proof: If ICI is never met, there exists, for any k, a point 
x,E tlw,nClW,. Since W, is an increasing sequence of sets, it 
follows that X,E aq,Vi < k. Therefore, the sequence of compact 
sets aW, is decreasing and has the finite intersection property. 
This implies that n&a W, # 0’ which contradicts the fact W* = 
en. n 

Proposition 5: If W* = e”, then IC2 is met after finitely many 
steps. 

Proof: As pointed out in [2, p. 11231, if &? is unstable, if IC2 
is used and if the algorithm does not terminate, then there exists 
some xj’ W which does not become interior to any later con- 
structed W, i > i. However, this contradicts the assumption 
uzjw; = en. n 

Lemma 2: If & is a stable set then aW* naWo #0. 
Proof: Let kW={kw: WE W}. If aW*naW,=0, then 3k 
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> 1: k W, C W*. From the definition of W*, W* = UwE &. MW, 
and since 8 leaves W* invariant W* = UiUEd. MW*. Now, since 
kWo c W, W*>U~E,.MWo = k(U,,,,MW,) and W*IkW* 
which is a contradiction because we had assumed that k > 1. w 

Proposition 6: If W*. is isomorphic to V*@f?-“, m + 0 then 
ICI is never met. 

Proof Assume that the change of basis suggested 'by Pro- 
position 3 has been made and let V, be the projection of W, on 
the subspace generated by the first m coordinates (V, = P, W,). 
Then, UE,V, = V* and it is easy to check that the sequence { Vk} 
is generated by the constructive algorithm when the set {E’, M: M 
E a} is used (and viewed as a set of matrices that operate on the 
m-dimensional subspace) and the initial convex neighborhood of 
the origin is taken to be V,. Since {P, M: ME &‘,} is a stable set 
(by Proposition 3), we have aV&laV* #0 (by Lemma 2). 

Let x E aV,naV* and let z E W, be a point whose projection is 
x. Then, it is easy to see that ZE aWo and z E aW*. Therefore z is 
interior to no W, and ICI is never met. n 

Propositions 4 and 6 contain the necessary and sufficient 
conditions that the algorithm terminates in a finite number of 
steps for an unstable system, when the stopping criterion is ICl. 
We have also shown that W* = (.?” is a sufficient condition for 
termination when IC2 is used. However, it is unclear what the 
necessary conditions for termination are, when IC2 is use’d. 
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Synthesis ,of Generalized Interdigital Directionall 
Couplers 

RAMAMURTY NEDUNURI 

A bstrac~ --In this paper a new kind of directional coupler is inlroduced 
and a method of synthesizing such couplers is described. The directional 
coupler described in this paper can be constructed in the generalized 
interdigital form. 

I. INTRODUCTION 

In [I] Rhodes has developed the theory of generalized interdig- 
ital two-port networks, and in [2] he has described a method of 
synthesizing generalized interdigital linear-phase filters. In this 
paper we show that a generalized interdigital four-port network 
can be used as a directional coupler. Also, we describe a method 
of synthesizing such directional couplers. 
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Fig. 1. Generalized interdigital four-port network. (a) m even. (b) m odd. 
(Conductor 0 is short-circuited to ground at the far end and conductor X is 
short-circuited to ground at the near end.) 

P&3 

Fig. 2. X-plane equivalent circuit of the generalized interdigital four-port 
network. 

II. SYNTHESIS PROCEDURE 

The generalized interdigital four-port network is shown in Fig. 
1. Each half of this skew-symmetric structure is a conventional 
interdigital network without nonadjacent coupling. Coupling be- 
tween the two sets of conductors is through slots in a coupling 
plate located between the two portions. The X-plane equivalent 
circuit of the four-port network is shown in Fig. 2 [2].’ The 
analysis of the symmetrical four-port network of Fig. 2 may be 
based on the concept of even- and odd-mode networks [3]. To 
construct these two-port networks we first bisect the symmetrical 
four-port network into halves along the line of symmetry XX. 
The even-mode network is the two-port network obtained when 
the cut terminals of one of the halves are open-circuited, and the 
odd-mode network is the two-port network obtained when the 
cut terminals are short-circuited. Using the new complex- 
frequency variable z = p + & = tanh (ap/2),2 we can represent 
the even- and odd-mode networks in the forms shown in Fig. 3. 
Let 

‘Here A is the distributed complex-frequency variable defined by X = y + jSl 
= tanh ap, where p = (r + jw is the true complex-frequency variable and a is 
the delay time of the transmission line. 

*Forp= jw we haveh = jQ= jtanaw and z = jp= jtan(aw/2). Therefore, 
for real frequencies we have Q = tan ao and p = tan(aw/2). 
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