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Guaranteed  Robustness Properties of 
Multivariable Nonlinear Stochastic 

Optimal Regulators 
JOHN N. TSITSIKLIS AND MICHAEL ATHANS, FELLOW, IEEE 

Abstract -We  study  the robustness of optimal  regulators  for  nonlinear, 
deterministic and stochastic  multiinput dynamical systems, under  the as- 
sumption that all state  variables can be measured. We  show that, under 
mild assumptions, such nonlinear  regulators  have  a  guaranteed infiite gain 
margin; moreover,  they  have  a  guaranteed 50 percent  gain  reduction margin 
and a 60 degree  phase margin in each feedback  channel,  provided  that  the 
system is hear in the  control  and  the  penalty  to  the  control is quadratic, 
thus  extending  the  well-known properties of LQ regulators to nonlinear 
optimal  designs. These results are also valid for  infinite horizon, average 
cost, stochastic  optimal control problems. 

R 
I. INTRODUCTION 

EGULATOR  design for dynamical  systems is usually  per- 
formed on the basis of a  nominal  model of the plant to be 

controlled.  Modeling  errors are unavoidable and, in fact, often 
desirable  because  they  may  result in simpler  designs. It is  there- 
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fore essential  that the regulator  based on the nominal  model is 
robust; that is, it preserves its qualitative  properties  (namely, the 
stability of the closed-loop  system) in the  face of modeling  errors. 

The robustness and sensitivity to modeling  errors of controlled 
linear systems has been  extensively  studied in the past [2], [6]. 
The  robustness  (stability  margins) of regulators has been  tradi- 
tionally  described in terms of  gain and  phase  margins,  although 
more  recent  approaches [3], [9],  [12] focus on the  singular  values 
of the return difference or of the inverse return difference  matrix. 

One of the  most  appealing  features of optimal  linear quadratic 
(LQ)  regulators are their  guaranteed  stability  margins.  Namely, 
LQ regulators  remain  stable  when  the  control  gains  are  multi- 
plied by any  number  greater than 1/2.  They  also  have  guaranteed 
phase  margins of 60  degrees  [I],  [13], [14], [16].  These results can 
be obtained directly  by  appropriately  manipulating  the  associated 
Riccati  equation  [13]. 

A recent paper by  Glad [5] has shown that gain margins of 
optimal regulators  for  nonlinear  systems  can  be  derived  from the 
associated  Hamilton-Jacobi-Bellman (HJB) equation, under 
suitable assumptions. This result  ties  nicely  with  the  results on 
LQ regulators  because the Riccati  equation  is a direct  conse- 
quence of the HJB equation  associated  with  LQ  problems.  How- 
ever,  the  results of [5] are only applicable to single-input, de- 
terministic  systems, perturbed by  memoryless  nonlinearities,  thus 
allowing  only  derivation of gain  margin  results; no phase  margin 
results were  derived in [5]. 

In this paper we derive  general  robustness  margins of optimal 
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regulators for multiinput  nonlinear  systems.  Our  results  are  valid 
for both deterministic and stochastic  systems  (controlled diffu- 
sion processes). In contrast to [5 ] ,  we  allow dynamical  (i.e., not 
just memoryless) perturbations inside  the  loop  and obtain, as a 
corollary,  a  generalization of the  phase  margin  results of [13]. In 
particular, we  show (Theorem 3) that the  robustness  margins of 
LQ regulators  (including the 60 degree  phase  margin)  hold for 
optimal regulators of any  nonlinear plant which is linear  in  the 
control, provided that the cost functional contains a quadratic 
control penalty. 
In the  stochastic  case, we consider two distinct classes of 

controlled  processes. 1) Those  for  which  the state can be  steered 
to  an equilibrium point (assumed to be  the origin). Such  is  the 
case for diffusion  processes in which  the  intensity of the  noise 
decreases to zero as the  equilibrium  point  is  approached. We then 
consider  the  associated  infinite  horizon,  expected total cost, opti- 
mal control problem. 2) Those  for  which  the intensity of the  noise 
is  allowed to be  everywhere  positive.  (The LQG problem  with 
perfect  observations  is  an  example.) In that case no control  law 
can achieve  finite total cost; we consider,  however,  the  associated 
infinite horizon,  expected  average  cost,  optimal control problem. 
We  then  derive  the  same  results,  provided that stability  is now 
given  an appropriate meaning: that no sample path converges to 

We reiterate that the  above  robustness  results  are  only  valid  for 
nonlinear  optimal control problems in which  all state variables 
can be measured  exactly and can  be  used in the  implementation 
of the  nonlinear  feedback  regulator.  Robustness  properties of 
nonlinear stochastic  regulators that arise  when  only  noisy  mea- 
surements of output variables  are  available are not addressed in 
this paper; they  remain  the  subject of future research. Also, we 
only  address  robustness  issues  with  respect to plant variations, 
reflected at the input of the  plant.  Although  more  general plant 
variations  are  conceivable, this has become  a standard way of 
parameterizing plant uncertainty, at least in the literature on 
linear  systems. 

infinity. 

II. PROBLEM FORMULATION 

Notation: Throughout this paper, scalar  functions will be indi- 
cated  by  lower  case letters; vector  functions  by  lower  case  bold 
face letters; matrix  functions  by  upper  case  letters. For any 
vector  function f we will use subscripts  (e.g., f,) to denote its 
scalar  components. For any  scalar  function f of a  vector input x, 
we let af /ax  denote the  transpose of the  gradient of f (a  row 
vector). 

Case A - Deterministic  Optimal Control 

Consider  the  controlled  deterministic  system 

where x, u are n- and m-dimensional state and  control  vectors, 
respectively, and f is a  continuous  function  from R"+" into R" 
such that f(0,O) = 0. A control  law is a  measurable  function k:  
R" - R"' such that the  closed-loop  equation 

has a  unique  solution,  for  all x. E R". (If k ( . )  is not continuous 
some  more  care  may  be  needed in defining  what is meant  by  a 
solution to (2); see [4].) Let I: R" - R and h: R" - R be 
nonnegative  measurable  functions  denoting  the  penalties to the 
state and  the  control,  respectively,  satisfymg I(0) = h(0) = 0. We 
consider  the  performance  criterion 

The  general  dynamic  programming  conditions  for  optimality  for 
such control problems  are well  known  and  easy to establish 
formally.  However,  for our purposes, we do not  need to concern 
ourselves  with  the particular assumptions that can  guarantee 
existence of optimal 'control laws or that the  Hamilton- 
Jacobi-Bellman (HJB) equation is satisfied.  Such  issues are 
treated, for  example, in [4] for finite horizon  problems.  We will 
assume  instead that the data of the control problem  are  suffi- 
ciently  well-behaved to guarantee that no complication will arise. 
(For certain types of control  problems,  Assumption l a  below 
may fail to  hold,  for  example if V is not everywhere  differentia- 
ble;  however, it seems that robustness  results  may  be  proved  even 
if (4) fails to hold on some  subset of the state space,  e.g., on the 
subset  where V is not differentiable.) In particular, we assume  the 

Assumption la:  There  exists an optimal  control law k ( - ) .  
Moreover,  the  optimal  cost-to-go  (value)  function V: R" - R is 
continuously  differentiable  and  satisfies  the HJB equation 

following. 

av < - ; i ; . ( x ) * f ( x , u ) + h ( u ) + l ( x ) ,  V x E R " ,  V u E R " .  

(4) 

Finally, V( x) > 0, Vx # 0 and l i m i n f l l X l l  - ,V(x)  > 0. 

Case B-Stochastic  Optimal Control: Total  Cost 

Consider  the  perfectly  observed  controlled  diffusion  process 

d x ( r ) =  f ( x ( t ) , u ( t ) ) d t + Z ( x ( t ) ) d w ( t ) ;  x(O)=x,, 

( 5 )  

where x, u,  f are as in Case A, except that f is  now  allowed to 
be any  measurable function; Z(x) is a  measurable n X n matrix 
function, w(t) is a standard n-dimensional  Brownian  motion, 
and x. is the initial state. We also  assume that w( t )  is  defined on 
some  probability  space (Q,  9 , P )  and we denote  by 6 the 
smallest  o-field in 9 such that w ( r )  is e-measurable, for  all 
r < t .  

A control law  is  a  measurable  function k :  R" - R" such that 
the  stochastic  differential  equation 

d x ( t ) = f ( x ( t ) , k ( x ( t ) ) ) d t + z ( x ( t ) ) d w ( t ) ;  x(0)=xo 

(6 )  

has  a  unique  solution in the Ito sense [15]. We consider  the 
performance  criterion 

where I( e) and h( e) are as for  Case A. Let Z'(x) denote  the 
transpose of Z(x). Let A ( x )  = (1/2)Z(x)ZT(x) and a l j ( x )  be 
the i ,  j t h  entry of A( x). We define  a  differential operator L" by 

As in the  deterministic  case, we will assume  the  following. 
Assumption Ib: There exists an optimal  control law k ( . ) .  

Moreover,  the  optimal  cost-to-go  (value)  function I/: R" --f R is 
twice  continuously  differentiable and satisfies  the  HJB equation 
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O = ( L " ' " ' V ) ( x ) + h ( k ( x ) ) + I ( x )  
< ( L ' V ) ( x ) + h ( u ) + I ( x ) ,   V x E R " ,   V ~ E R " ' .  

(9) 

Finally, V ( x )  > 0, Vx # 0 and liminf ~ ,V(x)  =- 0. 
Conditions  under  which  Assumphon l b  is  satisfied  may  be 

obtained along  the  lines of [4], [7], [lo] and  they  need  not concern 
us here. 

Case C - Stochastic Optimal Control:  Average  Cost 

Let everythng be as in  Case B above,  except that the  perfor- 
mance  criterion  is  modified to be 

J3= T-03 lim ~ E [ l ~ l ( x ( r ) ) + h ( a ( t ) ) d t ] .  1 (10) 

We also require that {x: I ( x )  < c }  is bounded,  for  any constant 
c. Assumption l b  must  then  be  modified as follows [8]. 

Assumption IC: There  exists an optimal control law k ( . ) ,  a 
constant g, and a  function I/: R" --f R which  is  twice continu- 
ously  differentiable and satisfies  the HJB equation 

g =  ( L " ( ~ ) V ) ( X ) + h ( k ( X ) ) + l ( X )  
< ( L ' ~ ) ( x ) + h ( u ) + l ( x ) ,  V x E R " ,  V u E R " .  

(11) 
Suppose that the  optimal  regulator a( t )  = k(  x( t ) ) ,  for  any of the 
problems A, B, or C above, is perturbed to a( t )  = Q ( k (  x( .)))( t ) ,  
as in  Fig. 1. We are  interested in the  stability of the new 
closed-loop  system  under  suitable  assumptions on Q,. The  per- 
turbation Q may be simply  a  memoryless  nonlinearity,  in  which 
case we can  make  statements about the  gain  margins of the 
optimal regulator. It can also be  a  causal  dynamical operator 
(e.g.,  a  linear  time-invariant  system); in particular if Q corre- 
sponds to a  pure  phase  shift, we can make  statements about the 
phase  margins of the  optimal  regulator. 

We  now proceed to define  the  class of admissible perturbations 
Q. Let k(  .) be a control law for any of the  problems A, B, or C. 
Let .Ai denote  the  set of measurable  m-dimensional  time  func- 
tions from [O,oo) into R .  An admissible  perturbation Q, of k ( -) is 
a  map  from .At into Jt such that: 

Case A  (Deterministic  Systems): There  exists  some a ( - )  E A 
such that: 

i) the  differential  equation (1) has a  unique  solution x(.), 

Cases B and C  (Stochastic Systems): There  exists  a  measurable 
ii) u ( t )   = c p ( k ( x ( . ) ) ) ( t ) ,  Vt. 

stochastic  process u( t )  defined on (SZ,F,P) such that: 
i) u( t )  is adapted to {e}, 
ii) the  stochastic  differential equation (5) has  a  unique  solu- 

iii) for  any  sample path, u ( f )  = @ ( k ( x ( - ) ) ) ( f ) .  
tion x(.), 

Assumption 2: Let .Ao = { a ( . )  E dl: J z h ( u ( ~ ) )  d~ < 03). 
Then, Q, maps Jf, into .Atkt,. (For example, if h is a quadratic 
function, Q, must  map L2 into L2.) 

The  solution x ( t )  of either (1) or (5), when u ( t )  is  given as in 
the  above  definition, will be  called  the  "trajectory of the per- 
turbed  closed-loop  system." 

Our first result  is  a  multiloop  generalization of [5, Theorem 31 
which  also  covers  stochastic  control  problems. It shows that 
optimal regulators  have  an  infinite  gain  margin,  provided that the 
following  condition is satisfied. 

I 
U 

c i  = f(x,u) 

- 
Fig. 1. The perturbed closed-loop system. 

Assumption 3: i) f(x, u )  is differentiable  with  respect to u,  for 
any fixed x E R". ii) For any  fixed X E  R", a E R", i E 
{l;- ., m } ,  either 

or 

Assumption 4: For each f ,  there  exist  functions Gi( ., t ) :  R + R 
such that 

~ , ( u ( . > ) ( t ) = ( 9 1 ( u l ( t ) , t )  ,...,9m(u,(f),t))T, 
VU( .) E A. (14) 

Moreover,  these  functions  satisfy,  for  each t ,  the  sector  condition 
(Fig. 2) 

c 2 < c + , ( c , t ) ,   V c E R ,   V i .  (15) 

In other words,  the perturbation Q, corresponds to a  memoryless 
nonlinearity and, in particular, to a gain increase. 

Theorem I :  Consider  the  optimal  control  problems A, B, C 
and let  Assumptions la, lb,  IC, respectively, as well as Assump- 
tion 3, hold and suppose that h ( u )  = C:="=,,(ui), for appropriate 
scalar  functions h, such that hi (u i )  > 0, V u ,  # 0. Let Q, be an 
admissible perturbation of  a  correspondmg  optimal  control  law, 
satisfymg  Assumptions 2 and 4, and let x ( t )  denote the  trajec- 
tory of the  perturbed  closed-loop  system.  Then, 

Case A (Deterministic  Problems): l im, , ,x ( t )  = 0. 
Case B (Stochastic Total Cost Problem): lim, 3 0 ~ ( f )  = 0, al- 

Case C (Stochastic  Average  Cost Problem): No sample path 

Thus,  in  all  cases  the  perturbed  nonlinear  closed-loop  system 

most  surely. 

converges to infinity,  almost  surely. 

remains  stable. 
Proof: AU proofs  can  be  found in the  Appendix. 

Let us comment  briefly on the  meaning of stability for the 
average  cost  case. Our result  states that no sample path converges 
to  infinity, whch is equivalent to saying  that  for  every  sample 
path there  exists  a  bounded  set K and a  sequence t ,  converging 
to infinity, such that x(t,) E K ,  V n .  This does not mean that 
sample paths are  bounded. For typical  average  cost  problems 
(e.g.,  for  the LQG problem  with  perfect  observations),  sample 
paths are  unbounded,  almost  surely,  even if an  optimal  control 
law is used. 

We  now  discuss  the  crucial  Assumption 3. Theorem 1 remains 
true  even if f(x, .) is not differentiable,  provided that Assump- 
tion 3ii) is  appropriately  modified, as in [5] (although  the  more 
general  version  is  more  obscure).  However,  the  proof of Theorem 
1 reveals that it cannot be  significantly  further  weakened.  As- 
sumption 3 essentially  guarantees that the  (expected)  direction of 
motion  is still a  descent  direction  (with  respect to the  value 
function V )  under  an arbitrary gain  increase.  Given  the  impor- 
tance of Theorem 1, it is  a natural question to find particular 
cases  for  which  Assumption 3 holds.  Glad [5] provides  the 
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\ 
Fig. 2. A memoryless gain increase. 

example  (for  the  single input case) 

f(x, .) = f V x ) +  b ( x ) f  Y x ,  u )  (16) 

where f ' :  R" --* R", b: R " H  R", f ': R n i l -  R and  where 
f *(x, -) is monotonic in u,  for any  fixed x. Interestingly  enough, 
the above  example  covers all cases  allowed  by  Assumption 3 and 
a  similar  characterization  can  be also obtained for  the  multiinput 
case. This is the  subject of the  next  theorem, in which we assume 
that f is twice  continuously  differentiable  with  respect to u 
because this allows  a  significant  simplification of the  proof. 

Theorem 2: Let f be twice continuously  differentiable  with 
respect to u,  for  any  fixed x. Then, f satisfies  Assumption 3ii) if 
and only  if, for any  fixed x, it is of the  form 

4 
f ( u ) = b O +  b k f k ( u )  (17) 

k = l  

where f k :  R m  R. Moreover,  for  any  component ui of u, at 
most  one of the scalar  functions f may  depend on u;.  Finally, 
each  function f is either increasing in u;, for  all u, or decreas- 
ing in u;, for all 11. (That is the  scalar  functions f k  satisfy 
themselves  Assumption 3. However,  the  way that components  are 
split to form  the  sum in (17)  may  change  with x.) 

As in [5] more  assumptions on the  dynamics  are  needed to 
obtain more  specific  robustness  margins. In what  follows we 
assume that the  dynamics  are  linear in the  control. 

Assumption 5: f(x, u )  = fo(x)+ F ( x ) u ,  where fo: R" - R" 
and P ( x )  is  a n x m matrix  function,  for  each x E R". 

The next  assumption  describes  the  set of perturbations @ that 
will  be  allowed. It may  seem  counterintuitive as stated below in 
its full generality. In fact, it is a  generalization of the  conditions 
imposed in either [5] or [13]  as will be shown  later. 

Assumption 6: i) h ( - )  is continuously  differentiable. ii) There 
exists  some E > 0 such that for  any  measurable  m-dimensional 
time  function u( .), and for  any t > 0, 

(18) 

Theorem 3: Consider  the  optimal  control  problems A, B, C 
and let  Assumptions la,  lb, IC, respectively, as well as Assump- 
tion 5, hold.  Let @ be  an  admissible perturbation of a corre- 
sponding  optimal  control  law,  satisfymg  Assumptions  2  and  6, 
and let x ( t )  denote the  trajectory of the  perturbed  closed-loop 
system.  Then: 

Case  A  (Deterministic Problems): lim + ,x( t )  = 0. 
Case B (Stochastic  Total Cost Problems): l i m + m x ( t )  = 0, al- 

most  surely. 
Case  C  (Stochastic  Average Cost Problems): No sample path 

converges to infinity,  almost  surely. 
Thus, in all cases  the perturbed nonlinear  closed-loop  system 

remains  stable. 
In order to apply  Theorem 3, one mainly  needs to verify that 

Assumption  6  holds. This is done below for certain particular 
problems.  Proposition 1 shows that the  robustness  margins of LQ 
regulators  generalize to nonlinear  systems  which  are  linear in the 
control and in which  the  penalty to the  control is quadratic. 

Proposition 1: Suppose that h ( u )  = Cr=lrju; (r, > 0) and let @ 
be  a  linear  time  invariant  system  with  diagonal  transfer  matrix 
whose  nonzero  entries are proper, stable rational functions, 
and, for  some E >  0, Re[+;(jo)]>1/2+ E ,  Vw. Then,  Assump- 
tion 6  holds  (possibly  with  a  different E). The condition 
Re [ ( p i  ( j w  )] 2 1/2 + E is satisfied, in particular, if for  some E > 0: 

i) Q, is  a  memoryless  gain,  larger than  1/2 + E, in each 
channel,  or 

ii) @ is a  pure  phase shift, smaller than 60- E degrees at all 
frequencies, in each  channel. 

Proposition 1 showed that Theorem 3 generalizes  the LQ gain 
and phase  margin  results of [13]. The  next  proposition  shows that 
the  same  theorem  generalizes  the  single-input  results of [5] as 
well. 

Proposition 2: Suppose that h ( u )  = Cr=lh ;( u i )  and let @ be a 
memoryless  nonlinearity  such that 

u;+;(uj)2u;-(l-€)- u;h; (u ; )  , V u , €  R ,  V i .  (20) 
ahi 
-(%) aui 

Moreover,  assume that ui( d h j / d u i ) ( u j )  > 0, V u ,  f 0. Then As- 
sumption 6 is satisfied. 

Proposition  2  may  provide us with  gain  reduction  margin 
results. As an application,  let h,(u; )  = u:", for  some  positive 
integer n .  Inequality (20)  becomes 

u;+ ; (u ; )  2 u: 1- - ( L E )  

which  shows that the  stronger we penalize  large inputs ( n  large), 
the  worse  become  the  gain  reduction  margins, as should  be 
expected. 

IV. CONCLUSIONS 

This paper demonstrates that under  suitable  assumptions non- 
linear optimal  multiinput  deterministic or stochastic  dynamic 
systems  have  certain  guaranteed  robustness  properties,  which 
may  be  expressed as guaranteed  gain and phase  margins.  These 
properties generalize  the  known  robustness  results of optimal 
regulators for linear  systems  with  respect to quadratic perfor- 
mance  criteria. In particular it is shown that if the  nonlinear 
dynamic  system  is linear in the  control  variables  and  there is a 
quadratic penalty on the  control  variables in the  associated  cost 
functional,  then  the  resulting  nonlinear  feedback  design has a 
guaranteed infinite positive  gain  margin,  a - 6 dB  gain  reduction 
margin, and a 60  degree  phase  margin  property. 

Such  guaranteed  robustness  properties  are  obtained  from  the 
Hamilton-Jacobi-Bellman equation associated  with  the nonlin- 
ear optimal control problems. 
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APPENDIX 

This Appendix contains all proofs for Section 111. 
Lemma 1: 
Case A: Given  some x(0) E R" and a  time  function u(r ) ,  let 

x( t )  be the corresponding solution of (l), assuming that  it exists. 
Assume that ~ ~ [ I ( x ( T ) ) + ~ ( u ( T ) ) ] ~ T < o ~ .  Then, l im, , ,x ( t )  
= 0. 

Case B: Given  some x(0) and  a  stochastic  process u ( t ) ,  
adapted to e, let x ( t )  be the  corresponding  solution of (3, 
assuming that it exists.  Assume that lo"[ I( x( 7 ) )  + h ( u (  T ) ) ]  dT < 
x ,  almost surely, and  that sup,V( x( t)) < OC, almost  surely. Then 
lim, , =x( t )  = 0, almost  surely. 

Pro08 
Case A: Let P ( t ) = I P o ( l ( x ( ~ ) ) + h ( u ( 7 ) ) ) d ~ .  Then, r i ( t ) >  

V ( x (  t ) ) ,  since V is the optimal cost-to-go  function.  Clearly, 
lim,,,V(t) = 0, which  implies that l i m r - J ( x ( t ) )  = 0. By As- 
sumption la, it follows that h, - =x( t )  = 0. 

Case B: a)  We first  consider  the  case  where 

also holds. With $'( t )  defined as for Case  A, it is  easy to see that 
l im , , ,E[  V ( [ ) l e ]  = 0, as.  Moreover,  the  definition of V im- 
plies that E [ V ( f ) l q ] ~ V ( x ( t ) ) ,  which  shows that V ( x ( t ) )  con- 
verges to zero and, using  Assumption lb, x ( t )  must  converge to 
the origin. 

b) We  now  consider the general  case.  Given the initial state 
x(0) and  some M > 0, N > 0 let 

d T  B N 

or v ( x ( t ) >  2 M}. 

If the above  set is empty,  let Tu,,, = 03. We  now define a  new 
control law c1 by 

i r ( t )  = 
t TUN 

where k ( . )  is  an optimal control  law  and  let a(.) be  the  trajec- 
tory that results  when ir is  used.  Then, 

G M + N  

Therefore,  by part a), lim, - ,i( t )  = 0, almost  surely.  Let a,w.v = 
{ W  E Q: T w x  =03}. For all w we have . i -( t)= x ( t ) ,  V t .  
Hence, l i m , , x ( t )  = 0, for  almost all w E Q,,4,hr, V M ,  N .  On the 
other hand, the  assumptions of the  lemma  imply  that  almost all 
w E D also  belong to a,$,,, for some M ,  N ,  and the  desired  result 
follows. w 

Proof  of Theorem I :  We  follow  the approach of [5 ] .  Fix  some 
x E R". Then, by  Assumption 3, dV/ax(x) . f (x ,u)  is  either 
increasing or decreasing, as a  function of ui .  Assume it is 
increasing. From either (4), (9), or (11) corresponding to Cases  A, 
B, C, respectively,  we obtain 

av 
ax -(x>.f(x,k(x))+h(k(x))dax(x).f(x,u)+h(u), 

av 

(AI) 

for all u that differ  from k ( x )  in the ith component  only. It 

follows that k , ( x )  d 0 because  otherwise 

h i (k i ( x ) )>hz (O)  

and 

-(X).f(X,k(x))~~(X).f(X,k*(x)) av ax av 
where k: (x )  = 0, k,*(x) = k j ( x ) ,  j # i, which  would contradict 
(Al). Similarly, we conclude that k i ( x )  2 0, whenever W,/ax(x) 
.f(x, u )  is  decreasing as a function of ui. 

Assumption  4  implies that ( p i (  k i ( x ) ,  t )  > k , ( x )  whenever 
k ,  (x) 2 0 and (pi ( ki  (x), t ) d k ,  (x), otherwise.  Together  with  the 
preceding  discussion we conclude that 

av 
ax -(.)'f(X,+(k(x),t)) ;j;-(x).f(x,k(x)). 

av 

From now on, let x ( t )  denote the  trajectory of the perturbed 
closed-loop  system and let u ( t )  = $ ( k ( x ( t ) ) ) .  

Case A (Deteministic Problem): From inequality (A2) and (4) 
we obtain 

dV av 
Z ( X ( t ) )  = ~ ( x ( t ) ) . P ( x ( t ) ~ ~ ( k ( x ) , t ) )  

d,,(.(t)).P(x(s>~k(x(t))) av 
= - z ( x ( r ) ) - h ( k ( x ( f ) ) ) d o .  

Integrating (M), we obtain 

and therefore, / F [ ~ ( x ( ~ ) ) + ~ ( ~ ( x ( T ) ) ) ] ~ T < c o .  In view  of As- 
sumption 2, the last inequality also gives jo"h (a (  7 ) )  dT < 03. The 
desired  result  then  follows  from  Lemma 1. 

Case B (Stochastic Total Cost Problem): From  inequality (A2) 
and (9) we obtain 

( L " W ) ( X ( t ) ) <  (L""""V)(x( t ) )  

= - l ( x ( f ) ) - h ( k ( x ( t ) ) ) .  (A4) 

Applying  the Ito formula [15] to (A4), it follows that V ( x ( t ) )  is a 
positive  supermartingale,  converges  almost  surely [ll]  to a ran- 
dom variable V, and,  in particular,  sup,V(x( t ) )  < w, almost 
surely.  The Ito formula also yields 

E [ l b ( I ( x ( . ) ) + h ( k ( x ( . ) ) ) ) d 7 ]  Q w 4 9 ) - E [ v ( x ( t ) ) l  

d V(x (0 ) ) .  ( W  

Taking  the limit, as t + ca, we obtain / ~ ( Z ( X ( T ) ) +  
h ( k ( x ( 7 ) ) ) )  dT < 00, almost  surely.  Then  invoke  Assumption 2 
and use  Lemma 1 (as in the proof for Case A) to complete  the 
proof. 

Case C (Stochastic Average Cost Problems): Similarly  with  (A5) 
we obtain 

Dividing  by t and  using  Fatou's  lemma [15] we obtain 
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Therefore, liminft+m(l/t)/iZ(x(T)) dT < co, almost  surely, 
which, in view  of Assumption IC, implies the last  part of the 
theorem. 

Proof of Theorem 2: The proof  of  sufficiency is trivial, so we 
concentrate on the proof of necessity.  Since  the  theorem  has to be 
proved for each x separately, we assume that a particular x has 
been  fined and we drop the  dependence on x from our notation. 

Assume,  without  loss of generality, that there is no i such that 
a f / a u , ( u )  is identically zero. For any i ,  let Hi = { a f / a u , ( u > :  
u E R”} .  If there  exist u1,u2 such that d f / a u , ( u l )  and 
a f / a u i (  u 2 ,  are not collinear, then  there  exists a vector a such 
that a f / a u , ( u l ) - a  r o and a f / a u i ( u 2 ) . a  0, thus con- 
tradicting Assumption 33 .  Therefore, H, is contained in some 
one-dimensional subspace of R“, which  may  be  represented by 
some nonzero vector 6, E Hi. 

We  now partition the set {l; - . , m } of components of u into a 
set of  classes A, ; .  e ,  A, ,  as follows: two components i ,  j will 
belong to the same class if and only if bi is collinear to b.. 

Since a f / a u ,  is collinear to b,, so must  be a2f /au,  duj. By 
interchanging the order of differentiation, we conclude that either 
i and j belong to  the same  class, or d2f /au,   du-(u)  = 0, V U .  
Based on this observation, the representation (14 follows im- 
mediately. The fact that  the functions f k  must  themselves  satisfy 
Assumption 3ii) is also straightforward. 

Proof of Theorem 3: From any one of the formulas (4), (9), 
or (ll), corresponding to Cases A, B, C, respectively, we obtain, 
by differentiating with  respect to u, 

- ( k ( x ) ) + - ( x ) * F ( x )  ah av = 0. 
an ax  

Let x( t ) ,  u ( t )  be the trajectories of the state and the control 
resulting from the perturbed closed-loop  system.  Let, for conve- 
nience, 

Case A (Detem’nistic Problems): Using (4) and (AS) 

We  now 
obtain 

integrate (AlO),  use  (A9) and take  the  limit as t + 03 to 
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and the desired  result  follows  from  Lemma 1, as in the  proof of 
Theorem 1. 

Case B (Stochastic TotaI Cost Problem): Similarly  with  (AlO), 
we obtain from  (9) and (AS), 

( L ” “ ) V ) ( x ( t ) ) = - Z ( x ( t ) ) - c ( t ) .  (MI) 

We  now integrate (All) and  use  the Ito rule to obtain, for 
O s t G T ,  

J w ~ ( T ) ) l 9  l - V ( X ( r ) ) ~ - E [ ~ 7 C ( T ) d T l 9 ] .  

Given that c ( t )  is adapted to {q}, it follows that 

E [ v ( X ( T ) ) + / ~ C ( T )  0 ~ T ~ s P ; ]  < v ( ~ ( ~ ) ) + J I c ( ~ )  0 dT 

which  shows that V ( x ( r ) ) +  / ~ c ( T )  d~ is a (positive) super- 
martingale and therefore  converges.  Hence, V( x( I ) )  has bounded 
sample paths. From  (A9), (All), and  the Ito rule we obtain 

E[ld(r(x(.))+fh(k(.(.))))d7] 

~ E [ I d ( z ( X ( T ) ) + C ( T ) ) d T ] ~ l / ( X ( O ) ) ,  V t > 0 .  (A12) 

In view of Assumption 2, / ? ( Z ( X ( T ) ) +  ~ ( u ( T ) ) )  dT < 00, and the 
desired  result  follows  from  Lemma 1. 

Case C (Stochastic Average Cost Problem): Similarly  with 
(A12)  we obtain 

E ?(x(T)) dT < v(x,)+gt,  vt> 0.  [a 1 
This is the  same inequality as (A6) in the  proof of Theorem 1 and 
the rest of the proof is the  same as in Theorem 1. 

Proof of Proposition I :  The proof of the first statement is 
immediate from Parseval‘s  theorem. See also [13,  p.  1771. The 
next statements are [13,  Corollaries 4 and 51. 

Proof of Proposition 2: It is trivial to check that the in- 
tegrand in the left-hand side of (18) will be  nonnegative for all T ;  
hence (18) is satisfied. w 
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Qptimal Control of a Queueing System 
with Two Heterogeneous  Servers 

Asbact-The problem  considered is that of optimally  controlling  a 
queueing  system  which consists of a common  buffer or queue served by two 
servers.  The  arrivals to the  buffer are Poisson and  the semen are both 
exponential, but Rith dflerent mean  service times. It is shown that the 
optimal policy which minimizes  the  mean sojourn time of customers in the - 1“ 
system is of threshold type. The  faster  server should be fed  a  customer x 
from the  buffer  whenever  it  becomes  available for service,  but  the  slower 
sewer should be utilized if and  only if the queue  length exceeds  a readily 
computed  threshold  value. Fig. 1. Queueing  system. 

Buffer 

I. INTRODUCTION 

T HE queueing  system  shown in Fig. 1 is  considered.  Arrivals 
to the buffer form  a  Poisson  process of rate A.  The  buffer  is 

served  by  two  servers with different mean  service  times. The 
service  time of a  customer at server i is exponentially  distributed 
with rate parameter 1.1) ( i  =1,2). Without  loss of generality we 
assume p 1  > p 2 .  To ensure  stability we shall  also  assume that 
X < p l  +pz. We wish to  minimize  the  mean sojourn time of 
customers in the  queueing  system.  Note  that  the sojourn time = 
waiting  time in  buffer+ service  time. By Little’s  theorem [l], this 
is  equivalent to minimiting the  mean  number of customers in the 
system. 
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If server i is  available (i.e., idle)  and  the  buffer is nonempty 
(i.e.,  there  is  a  customer  waiting for service)  should  a  customer 
from  the  buffer be provided to server i? We  show that the 
optimal policy  governing  the  dispatching of customers  from  the 
buffer  to an avaiIabIe  server is of threshold fype, i.e.,  the faster 
server,  whenever it  is available  and  whenever  the buffer  is non- 
empty,  should  be  dispatched  a  customer, but the  slower  server 
should be dispatched a customer only when, at the instant of 
dispatching, the number of customers  in the buffers  exceeds  a 
certain  readily  computed threshold value. 

This problem,  which  is  a  generalization of the M / M / 2  queue 
incorporating different service rates at the two  servers,  was  first 
posed  by  Larsen [2], who also conjectured that the optimal policy 
is of threshold  type,  and  proceeded to do a  detailed  performance 
analysis of policies of threshold  type.  The  motivation  €or  the 
queueing  system  considered  here  lies in its application to the 
dynamic  routing  problem in computer  systems  or  communication 
networks. For example,  what  is  here  called a “server,”  could  be a 
communication  line  over  which  messages  can  be  sent.  The “senice 
time”  alluded to in this paper is  then just the  time  taken for the 
message to traverse  the  line.  Messages arriving at the  buffer then 
have  to  be  routed  over  one of several  communication  lines.  each 
with  a  different  mean  transmission  delay,  and  the  goal now is to 
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