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We study a single product inventory system with nonnegative setup cost in which the

demand is a continuous random variable but orders are restricted to be integer valued.

Optimal policies, when there are no setup costs, have a nice form. However, we show that,

when the setup costs are nonzero, optimal policies may have a very counterintuitive form

without any particular structure. We obtain a bound for the increase in costs resulting from

the restriction of orders to be integers and define a suboptimal policy whose performance is

within that bound.

(INVENTORY SYSTEMS; PERIODIC REVIEW; CONTINUOUS DEMAND; DIS-

CRETE ORDERS)

1. IntraAKtiMi

We consider a periodic review, stochastic, single product inventory model with nonnegative setup cost in

which the demands in each period are independent random variables with known distribution functions.

However, although the demand is allowed to take a continuous range of values, we constrain the amounts

being ordered to take only integer values. The physical justification for this model is the following: Suppose

that a warehouse has a relatively large demand for a particular product but the unit of that product is

relatively small. In that case the demand and the stock levels may be accurately described by continuous

variables. On the other hand, suppose that, for various reasons, the warehouse may not order arbitrary

amounts of this product because it is being sold by a wholesale supplier only in quantities which are integer

multiples of a certain minimum quantity. (Ccmsider, for example, a warehouse selling light bulbs which are

packed by the wholesale supplier in boxes containing 100 of them.) If the minimum size of an order is of a

different order of magnitude from the unit of the product and a substantial fraction of a typical order, then

the order levels should be modelled as discrete variables.

An extensive literature exists on the single or multi-product inventory control problem when all variables

are continuous (Arrow et al. 1958, Bertsekas 1976, Kalin 1980, Schal 1976, Veinott 1966). In general, optimal

policies for the single product problem are well known to be characterized by two numbers s and S, with

s < S, and have the foUowing form: If the current stock is higher than the threshold s do not order; if lower,

order such an amount to reach the tar^t level S. For our model, when the setup cost K is zero, c^timal

policies are similar to those obtained for the continuous model except that the target level is replaced by a

target interval (Veinott 1965).

For the case where K >0, however, we show, by means of an example, that q>tinial policies do not have

any nice form, in general. In particular, the optimal order may be an increasing function of the stock level

(in the vicinity of some point) which contrasts sharply with the prt^rties of optimal policies for the

inventory control problems Uiat have been analyzed in the literature.

In the last section, a particular suboptimal policy is considered and bounds for the distance from

optimality of that particular policy are derived. This policy approximates, in some sense, the optimal policy

for the inventory control problem with continuous orders and may be computed much more easily than the

exactly optimal policy.

2. Model DescriptioD

We model our system as follows: Let X/^ be the stock available at the beginning of
the kth period. Let û  £ .J^Q « {0 ,1 , . . . } be the quantity ordered (assumed to be
immediately delivered) at the beginning of the kth period. Let Wĵ  be a sequence of
independent, nonnegative and bounded random variables, denoting the demand
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during the A:th period. Let L;̂ (-) be a function representing the storage cost of the
items that remain unsold at the end of the kth period plus the cost due to unfilled
demand during the A:th period (shortage cost). A ftarticular choice of L^ which is often
assumed is

i^k(y) = Km!ix{O,y} +;,,max{0, -y), (1)

where Â  siadp^ are the storage and shortage costs per unit of the product, respectively,
and/ = X;t + "* "~ *•'*• We only assume in the sequel that L^ is convex and goes to oo
as l/l goes to oo. Let ĉ^ > 0 be the ordering cost per unit of the product and Â  > 0 a
fixed cost incurred each time a nonzero order is placed. In order to obtain a nontrivial
problem we assume that

lim LJx) + c.x = 00. (2)

If L^ is given by (1) this is equivalent to the assumption
We assume that excess demand is backlogged and filled as soon as additional

inventory becomes available. To represent backlogged demand, we allow Xĵ  to take
negative values as well. We then have -Xt+i = x̂^ + «jt — ŵ  and the cost functional to
be minimized, for the A -̂period problem, is £[2t-(kt"* ••" f^^i^k) "*" ^t(-** + "* ~
Wjt)], where ^(M^) = 1 if Û  > 0, zero otherwise and £[•] denotes expected value. We
have implicitly assumed, for simplicity, that the unfilled demand at the end of the Nih
period is lost and that the leftover stock x^ has no value. Unlike Veinott (1%5), our
results remain true if an arbitrary, convex terminal cost L^^X/^) is assumed.

Let JJ^ix) be the optimal cost-to-go starting from the beginning of the ^th period,
the stock level being x and let

J^{x,u) = c,« + K8{u) + E[L,{x + u - w )̂ + JU,{x + « - w,)]. (3)

The dynamic programming equations are

inf y^(x,«). (4)

By means of a standard inductive dynamic programming argument, it is possible to
show (when K = 0) that there exists a sequence [S^] of real numbers such that the
policy «*(x) given, as a function of the stock level x^, by

[n if J C t e [ S t - n , S t - n + 1 ) , «»1,2 , . . . ,

is optimal. The proof essentially consists of showing inductively that J*{x) has the
following property: J^{x + 1) - J*{x) is a nondecreasing function of x.

The policy prescribed above has an appealing form: There exists a target set
[S^^,Sk + 1) which is a unit interval and orders are placed so that the stock level falls
into that set. If the current stodc is larger than the threshold S^, no order is placed.
This policy is the same as the one derived in Veinott (1965) under slightly more
restrictive conditions and for this reason we omit the proof. If the minimum size of the
orders is decreased, the length of the target set decreases accordingly and, in the limit,
we would recover the solution of the standard problem with continuous orders and
zero setup cost

3. Optinal P(«kto Wh« ^ > 0

Optimal policies for inventory control problems usually obey the following rule: If it
is optimal to order an amount u when the stock level is x, then Uie optimal order from



1252 JOHN N. TSITSIKLIS

a level y < x should be at least as much as u. In more precise terms, there exists an
optimal policy {uj;{x), k = 0,\, . . . ,N- \) such that w (̂x) is a nonincreasing func-
tion of X, for any k. This property holds for the standard inventory model with
continuous orders and nonnegative setup cost, since it is known that optimal policies
are {s, S) policies. The only requirement is that K does not vary with time. The same
property holds when the orders are restricted to be integer valued and the fixed cost is
zero (see the previous section). It is, therefore, rather surprising that this property no
longer holds for our model when the fixed cost is nonzero. We present below a
three-stage example for which no optimal policy is monotonic.

EXAMPLE. Consider a three-stage model with time-invariant parameters and deter-
ministic demand, given by:

(a) Li^iy) = L{y) = l^l, Vik. That is, £<.(•) has the form (1) with K=Pk = 1-
(b) K = 2.2, ĉ  = 0, V*.
(c) The demand \^>^. is equal to 0.6 (for each time k), with probability 1.
For the last stage {k - 2), it is easy to see that, iox x> -1.6, it is optimal to order

nothing. Therefore, Jl{x) = L{x - 0.6) = |;c - 0.6|, x > - 1.6.
To find an optimal policy at time A: = 1, we form E\L(x - w) -I- J\{x — w)] =

\x - 0.6| + |x - 1.2|, X > - 1 (see Figure 1). We can see from Figure 1 that an optimal
policy is given by

X > -0.65,
x e ( - 1 , - 0 . 6 5 ) .

The cost-to-go function J*ix) is plotted in Figure 2, for x > — 1.
We now evaluate an optimal policy at time 0, for the states x= -0.05 and

X = -0.2. Using (3), we have
/o(x = -0.05, « = 0) = 0 -h 0.65 -I- Jf{-0.65) = 3.75,
j^x = -0.05, M = 1) = 2.2 + 0.35 -I- /f(0.35) = 3.65,
JJ^x - -0.05, « = 2) = 2.2 -(- 1.35 -I- yr(1.35) = 4.45.

Higher values of u do not need to be considered and we obtain «J(—0.05) = 1. Also,
j^x = -0.2, « = 0) = 0 + 0.8 + /f(-0.8) = 3.6,
J^x - -0.2, M = 1) = 2.2 + 0.2 + /f(0.2) = 3.8,
Jo(x = -0.2, « = 2) = 2.2 + 1.2 + yf(1.2) = 4.0.

Again, higher values of u do not need to be considered and we conclude that
uS(-0.2) = 0. This shows that no optimal policy uS can be monotonic.

It should be stressed that the surprising behavior of optimal policies occurs in the
above example even though the model is stationary. Moreover, since cost-to-go
functions depend continuously on k, p, it is easy to see that the nonmonotonicity of
optimal policies is retained, even il h or p are slightly perturbed in either direction.
Consequently, there exist examples displaying nonmonotonicity, with either h> p or
h<p.

-1 -aes -t -ae -0.65

FIGURE 1 FiouitE2
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4. Sidxqitiiiiai Pfriides and Comparison with the Continuous Model

In this section we compare the optimal cost-to-go functions of the models with

continuous and discrete orders. In the course of this comparison, we evaluate the

performance of a particular (suboptimal) policy for the discrete model. We allow K to

take any nonnegative value.

We assume that the slope of L^ is bounded and lei A,B be nonnegative constants

such that - AA < L^{x + A) - L^{x) < BA, Vx e /?, A > 0. In particular, if L,^ is

given by (1), we may let A = maxj^(/>,,}, B - max^[h^). Let J^ix^) be as defined in §2

and let J*{x) be the optimal cost-to-go, starting at the ^̂ th stage, when the control

variable u is allowed to take any nonnegative real value. Clearly then, J*{x) < J*{x),

V;t G /?. Let u^ix) be an optimal policy for the continuous problem. We augment the

state of the system by introducing a new state variable y E. R with dynamics j^^+i

= /*: + «*(j*) - w^. A: = 0,1, . . . , iV - 1, initialized by y^ = XQ. SO defined, [y^) is

the trajectory that would be foUowed if the optimal continuous order policy was used.

Fix some X G [0,1). We define a policy u^ix,^, y^) for the discrete problem as follows:

u^{x,,,y^) is the unique nonnegative integer such that x^ + M^(x^,7t) ef/^ +

"(J t ) - ^. 7* + "*(>"*) + 1 - X). This policy represents the discrete order policy de-

rived from the continuous order policy by rounding to an integer, either above or

below. The rounding is determined by the parameter A.

LEMMA 1. ul{x^^,y^) is well defined. When this policy is used, the corresponding

trajectory {(x^, y^):k'=O,\,. . . ,N) of the augmented state is such that x^ G [ j ^ - X,

y^ + 1 -X) for all k.

PROOF. The proof is by forward induction on k. For k = 0,Xo = yo and XQ G [JQ -

\ , Jo + 1 - X). Now suppose that x^ G [7^ - X, j ^ + 1 - X). Then jĉ  < j ^ + 1 - X im-

plies that a unique nonnegative integer ul{x^,y,,) exists such that M*(JC*, J*)+Jc*

;̂  -I- 1 - X + Ukiy^))- Moreover,

. A) - v̂* e U - X

Let /o(^o) be the cost of the A^-stage problem corresponding to policy

and assume that Ci; = c is independent of k.

THEOREM 1.

Joixo) < M^o) + (1 - ^)c + Nmax{XA,(l - X)B } . (5)

PROOF. The first inequality follows from the fact that the enlargement of the range

of the control variables cannot increase the costs. The second is immediate because

policy {u^(x^, Jjfc)} cannot be better than an optimal policy for the discrete model. We

concentrate on tfie third inequality. We have

k-0

fc-o

,y,)) + L,(x, + uj:(x,,y,)) .

J
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Observe that if Ui,()>^) = 0, then u^ix^, y^) = 0. Therefore,

( ) < 2 mMyk)), (6)
k-O k~0

with probability 1. Observe also that

N-\ N-\ N-\ N-l

yo+ 2 "k()'k)=yN+ 2 »̂ *' ^o+ 2 "*K.7*) = ŷv+ 2 ^k-
* - 0 * - 0 * - 0 A-0

Since XQ = JQ and since x^ - y^ < I - X, we obtain

c 2 "*(^*. A) < ^ 2 " (̂A) + <̂ (i -^ ) . (7)

with probability 1. Finally, using Lemma 1 and the definition of ^4,5, we obtain

- \)B } . (8)

Putting inequalities (6), (7) and (8) together, taking expectations and adding them
appropriately, we obtain the last inequality in (5). Q.E.D.

The above theorem provides us with a family of bounds for JQ, one for each value
of X. We now look for a tight bound. Assuming that A'̂  is large enough so that NA > c,
the quantity (1 - X)c + NmdCK{\A,{\ -K)B) achieves its minimum (as X varies in
[0,1)) when \y4 = (1 - \)B, i.e. A = B/{A -I- B). We may then rewrite (5) as

0 < /o*(̂ o) - Jti^o) < - ^ c + N - ^ . (9)

Inequality (9) gives an upper bound for the increase in costs when orders are restricted
to be integer valued. Moreover, we have constructed a policy u^, with X = B/{A + 5)
which, although suboptimal, stays within that bound. Policy M̂  in some sense approxi-
mates the optimal policy u,^ for the continuous model and may be obtained from it in a
straightforward manner. The advantage of this approach lies in the fact that (in view
of the discussion in §3) an optimal policy ŵ  for the discrete model may be unstruc-
tured and harder to compute than u^ and u^.

A similar approach may be taken for infinite horizon problems. Assume that all
parameters are time invariant. For the average cost criterion, let g* and g* be the
optimal average costs for the discrete and the continuous problems, respectively. Then,
(9) becomes 0 < g* - #* < AB/{A + fi). Finally consider a discounted cost criterion
with discount factor a G [0,1) and let J*,J*he the corresponding infinite time horizon
costs for the discrete and continuous the time problems, respectively. Then, the same
steps as in the proof of Theorem 1 lead to
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