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A Lemma on the Multiarmed  Bandit  Problem 

JOHN N. TSITSIKLIS 

Abstract-We  prove  a  lemma on the  optimal  value function for the 
mdtiarmed  bandit  problem  which  provides  a  simple  direct  proof of 
optimality of writeoff policies. This, in turn,  leads to a new  proof of 
optimality of the index  rule. 

I. THE MAIN RESULT 

We consider the multiarmed  bandit  problem  which has been the subject 
of considerable  interest  recently [1]-[3]. We start by introducing the 
notation to  be employed. 

There are Nprojects;  at any  time,  each  project i has  a  state  denoted by 
xi. We use the vector x defined  by x = (XI, . . . , x") to denote the joint 
state of all projects.  At  each  time 1 we  have the options  of  retiring  and 
receiving  a  retirement  reward cr'M (where a E (0, 1) is the discount  rate) 
or work  on one of the projects (say, project i). With this latter  action,  we 
receive  a  reward crfRi(xi) (the  functions R i  are assumed  bounded); 
moreover the state of project i changes tof'(xi, w'), where7 is a known 
function and wi is  a random disturbance  whose  probability  distribution 
depends  only on xi. Concerning the projects  other  than i, their  state does 
not  change. The objective is  to find a policy  (which  determines  which 
project is to be  worked on, given the current state  of  all  projects) so that 
the expected  infinite  horizon  discounted  reward  is  maximized. 

We denote by V(x, M )  this optimal reward, as a  function  of the joint 
initial state x and the retirement reward M. We also consider the optimal 
reward  functions for two auxiliary  armed  bandit  problems.  Namely,  we 
let Vi(xi, M )  be the optimal  reward for the  problem  in  which  the  only 
available  options are to retire or to work on project i. We also denote by 
Ui(y i ,  M )  the optimal reward for a  problem  in  which  the  available 
options are to retire or to work on any  project  other  than  project i and 
where y i  denotes the joint state of all projects  other  than  project i. 

Our main  result is the following. 
Lemma 1: V(x, M )  5 Vi(xi, M )  + Ui(y i ,  M )  - M. 

Proof: Without  any  loss of generality we assume  that i = 1 .  Notice 
that x = (x1, y'). We define  recursively functioy V,, V:, U t ,  for n 2 0 
asfollows:weletVo(x,M) = V ; ( X I , M )  = U ~ ( Y ~ , M )  = ~ , f o r a l l x ,  
X I ,  y'. Also, 

Vnnll(xI,  yl, M)=max {M, RYx')+crEIVn',Cfl(xl, w9. MI, 
max{RJ(xj)+aE[V.(xl, FJ(Y ' ,  w, M)Il} (1) 
I* 1 

where Fj(y ' ,  wj) is a vector with all components equal to those of y ' ,  
except for the component  with superscriptj which  becomes  equal tof'(xj, 
wj). Similarly, 

V:-,(x', M)=n-mx { M ,  A'(x ' )+aE[V:Cf ' (x l ,  W I ) ,  w11. (2) 
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U;+,(y ' ,  M)=max { M ,  max{R'(xJ)+aE[U;(FJ(yl, wj), M ) ] } ] .  
J * l  

(3) 

These are easily  recognized to  be the equations  for  the  successive 
approximation  algorithm for the original  and the two auxiliary  multiarmed 
bandit  problems,  respectively.  Because  of  the  boundedness  assumption on 
the Ri's, it  follows [4] that VA, VI, and Ui converge to V, VI, and U' ,  
respectively. It is therefore sufficient to prove  that 

V,W, Y l ,  M)s v;w, w +  Ujl(Yl, M ) - M  (4) 

holds for all n, X I ,  y ' .  
Equation (4) is  trivially true for n = 0. Assume  it  is true for some n; 

we will demonstrate its validity for n + 1 as well. We first  notice  that 
VA(xI, M )  2 M ,  UA(y', M )  2 M ,  VA(xl, M )  5 VAAl(xl, M )  and 
UA(y', M )  5 UA+l(y' ,  M )  which  follow  from (2), (3) and  a 
straightforward  induction.  As  a  consequence,  we  have 

a[U: (y ' ,  M ) - I M l U ; ( Y 1 ,  M ) - M I U ; r , ( Y ' ,  M)-M (5 )  

and 

a[V;(xl, M)-M]= V; (X ' ,  M)-MSV;+,(X', M ) - M .  (6) 

Using (1)-(3) and the induction  hypothesis  we  obtain 

V"+I(XI, Y ' ,  M) 

 ma^ { M ,  R'(xl)+aE[U:(y', M)+V;Cf1(x ' ,  w ' ) ,  M)-1M], 

max{R'(x')+aE[U;(FJ(yl, IVY), M)+ VA(X', W-IM]}}. (7) 
It' 

We will  show  that all terms in the right-hand side of (7) are less or equal 
than V!,+~(XI, M )  + U A + ~ ( J J I ,  M )  - M .   his is  certainly true for the 
first term, which  is  equal to M because of the  inequalities Vl + 2 M and 
UA,' 2 M .  Using (5 ) .  the second term is bounded above by R ' ( x l )  + 
a ~ [ ~ i ( f l ( x l ,  w~), M ) ]  + ~ b + ~ ( y ' ,  M )  - M: this  expression  is in 
turn bounded  above by V i -  I(xl, M )  + U:- ' ( y l ,  M )  - M because  of 
(2). Concerning  the  last term, we  use (6) to obtain, for any j # 1 ,  the 
bound R/ (x j )  + aE[UA(Fi( y ' ,  wj), M)] + V ; + I ( X ' ,  M )  - M, this 
expression  is  again  bounded  above by VA+l(x ' ,  1M) + UA+l(y', M )  - 
M,  because of (3). 

It is  obvious  from the method of the proof  that  Lemma  1  admits  the 
following  generalization.  Let {SI, S2) be a partition  of  the  set  of  projects. 
Let z l ,  z2 be  vectors  having as components  the  states  of  the  projects in the 
sets 9 ,  S2,  respectively.  Let U'(zl, M ) ,  U(zz ,  M )  be the optimal 
reward  functions  when  we are allowed to either  retire or work on a  project 
in  the set SI, S2, respectively. Then, 

V ( x ,  M)s uyz1, M)+ L " ( Z 2 ,  M) -M.  

II. OPTIMALITY OF WRITEOFF POLICIES 

A write off policy has been  defined  by Whittle [l] as any  policy  "in 
which  project i is  written off (i.e.,  abandoned)  when  first  its state x' enters 
a  writeoff set Si. One continues as long as there are projects  which  have 
not  been  written off, working  only on those  projects;  one  retires as soon as 
all projects are written off. While it is  known  that  writeoff  policies are 
optimal (this is  a  consequence  of the index  rule [1]-[3]) no direct  proof  of 
this fact was known. However, we show  below  that  this is a  simple 
consequence  of  Lemma 1 .  

Let us define Si  = {xi:Vi(x', M )  = M ) .  Suppose  that the state x of 
the  projects  is  such  that xi E Si .  It  follows  from  Lemma 1 that V ( x ,  M )  
5 Ui(yi,  M ) .  The reverse inequality  is also trivially true. It  follows  that 
V(x, M )  = U'( y', M ) .  Equivalently, there exists an optimal  policy  such 
that one never  works on project i, w-henever xi  E S i .  On the other hand, if 
for some project i, xi  S i ,  then V(x, M )  2 Vi@', M )  > M ,  which 
shows  that  it  is  not  optimal to retire. We thus  conclude  that there exists  a 
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writeoff policy (with the writeoff sets Si as defined above)  which is 
optimal. 

m. O N  THE PROOF  OF  THE INDEX RULE 

For any project i we define its index mi (as a function of its state x i )  by 
m j(xi) = min { m: Vi(xi, m )  = m }  . The index rule states that a policy is 
optimal if and only if it  never works on a project whose  index is less than 
M and whenever it works on a  project, then  this project has the largest 
index  among  all projects. Several proofs of this result are known  [1]-[3]. 
The proof given by Whittle is essentially based on the equality V(x, M )  
= B - 1; ni aVi(xi,  m)/am dm. However,  a fairly indirect argument 
is used  to prove this equality. On the other hand, Whittle demonstrates 
that this equality could be proved directly if there was a direct proof of 
optimality of  writeoff policies. Since such a proof  has  been  given in the 
previous section,  it can be combined  with the arguments in [l] for  a new 
and fairly short proof of  the  index rule. 

REFERENCES 

[ I ]  P. Whittle, Optimization  Over Time. New York: Wiley, 1982. 
[2] I. C. Gittins, "Bandit processes and dynamic allocation indices," J. Royal 

[3] P. P. Varaiya, J .  C. Walrand, and C. Buyukkoc, "Extensions of the multiarmed 
Statisf. Sac., B, vol. 41. pp. 148-1a,  1979. 

bandit problem: The discounted case," IEEE Trans. Automat.  Contr., vol. AC- 
30, pp. 426-439, 1985. 

[4] D.  P. Bertsekas, Dynamic Programming and Stochasric Control. New York: 
Academic. 1976. 

Adaptive Stabilization of Single-Input  Single-Output 
Delay Systems 

MOHAMMED  DAHLEH AND WILLIAM E. HOPKINS, JR. 

Abstract-For  the  problem of adaptive  stabilization of linear systems 
with  unknown,  noncommensurate, real delays, the existence of a smooth 
controller  that  regulates  the  output to zero is proven.  The  assumptions 
imposed on the  system  are  natural  generalizations of the  familiar 
minimum  phase  and  relative  degree one conditions in  nondelay  systems. 

I. INTRODUCTION 

The problem of adaptive stabilization of linear systems with  unknown 
high-frequency gains has received a  great deal of attention in the past  few 
years. Nussbaum  [6]  showed that it  is possible to construct a smooth 
nonlinear controller which stabilizes any scalar system  in  the absence of 
any  knowledge  of the sign of the high-frequency gain. This idea  was  used 
by Willems and  Byrnes [I to obtain a smooth nonlinear controller capable 
of stabilizing any nth  order single-input, single-output, minimum phase 
system  with relative degree  one. Morse [4] showed  how  to  use the 
idea  of  Nussbaum  to construct controllers for  nth-order systems with 
unknown relative degree not exceeding two. Mudgett  and Morse [5] 
extended the results to systems with arbitrary, but  known relative degrees. 

This note addresses the problem of extending the previous results to a 
special class of  delay systems. It will  be  shown that the simple controller 
of [7] is capable of stabilizing a  large class of  delay systems with  unknown 
coefficients. Conditions are imposed on the transfer functions of  these 
systems  which are similar to relative degree one  and  minimum  phase 
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conditions. This result suggests that it  may  be possible to treat many 
infinite-dimensional linear systems with techniques presently used  only 
for  finitedimensional systems. 

II. THE ADmm CONTROL PROBLEM 

The systems considered in this note are assumed to be modeled by the 
transfer function 

g(s, e-%, e - s h z ,  . . ., e-%)= / 
n m  (1) 

s n +  2 sn-jaie-shi 
j = I  1=0 

where bo, bj., hi, a;, m 2 0, n 2 1 are unknown constants satisfying bo 
f 0,O = ho < hl < h~ < . < h,. Extending the usual definition of 
relative degree to be the  difference between the highest power of s in the 
denominator and the highest power of s in the numerator, it is clear that g 
is  of relative degree one. Generalizing the standard minimum phase 
condition, assume  all the zeros of s"-] + Cy:: C E O  s"-'- jbje  have 
negative real parts.  The problem then is  to construct a continuous 
controller which  will drive the output of the system to  zero. In the next 
section it will be shown that one such controller is 

i -sh. 

u=N(Ik(f)Ok(t)y(f) 

- k(t)=y(t)Z 
d 
df 

where N(x):R+ + R (called a Nussbaum gain) is any locally Lipschitz 
function satisfying 

The proof that this controller stabilizes the system will be given in three 
steps. The first is the decomposition of the system into  a feedback 
configuration with a  first-order system in the forward loop and a stable 
system  in the feedback loop. The second step is to generalize results on Lp 
stability of linear time-invariant systems to include systems governed by 
functional differential equations. (The theorem that will  be given here is 
more general than needed for  the stability analysis, since it includes the 
case of  an infinite number of delays.) The final step is the stability analysis 
where the properties of the Nussbaum gain will  be  used  to  show that the 
output converges to zero as t tends to infinity. 

m. STABJLrrV ANALYSIS 

The transfer function (1) can be written as g = b d / p  where p ,  q are 
polynomials  in s, e-'V. Treating  the  exponentials  in p and q as parametee 
and  using  the division algorithm, p can be written asp = q(s + E ~ o  (a; 
- b',)e-'bi) + w' where w' is  a polynomial of degree  at most n - 2.' 
Therefore, the transfer function may be rewritten 

1 g,b" - 
[ ' + 4  

where w = w'/bo, degree (w) < degree (q), and r = s + Cy=o (a', - 
bj)e-"*I. Thus, the system can be represented in the feedback form of Fig. 
1. This configuration permits the system to be described by the 

I The degree is defined to be the highest power of s, treating the exponentials as 
parameters. 
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