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INTRACTABLE PROBLEMS IN CONTROL THEORY*

CHRISTOS H. PAPADIMITRIOUf AND JOHN TSITSIKLIS"

Abstract. This paper is an attempt to understand the apparent intractability of problems in decentralized
decision-making, using the concepts and methods of computational complexity. We first establish that the
discrete version of an important paradigm for this area, proposed by Witsenhausen, is NP-complete, thus
explaining the failures reported in the literature to attack it computationally. In the rest of the paper we
show that the computational intractability of the discrete version of a control problem (the team decision
problem in our particular example) can imply that there is no satisfactory (continuous) algorithm for the
continuous version. To this end, we develop a theory of continuous algorithms and their complexity, and
a quite general proof technique, which can prove interesting by themselves.
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1. Introduction. Most classical problems arising in the fields of optimization and
control are, in a very real sense, "easy to solve". By this we mean that there are
computational procedures with satisfactory performance, which can be used to compute
the solution of such problems. Naturally, a lot of effort is being devoted to finding
more and more efficient algorithms which exploit any special structure present, but
usually there is nofundamental intractability to be overcome. For example, in a nonlinear
optimal control problem (under some smoothness assumptions) a solution can always
be obtained by discretizing the problem with a dense enough grid and then using the
discrete dynamic programming algorithm. Roughly speaking, the accuracy e of the
solution so obtained is inversely proportional to the number of points in the grid and
such algorithms require time which is a polynomial function of 1/e. The situation is
similar in many other classical problems such as nonlinear optimization or numerical
integration of partial differential equations. In fact, in some extremely favorable cases
(when, for example, the problem can be reduced to the evaluation of some analytic
function), the computation time is polynomial in the logarithm of 1/e, or, even better,
the solution can be expressed in closed form.

On the other hand, certain problems that arise in the field of decentralized decision
making and control have defied all attempts for the development of realistic algorithms
or representations of their solution. (It has been customary to refer to such problems
as nonclassical control problems.) Witsenhausen’s counterexample in decentralized
control [Wi] is a paradigm. This problem can be viewed as a simple two-stage stochastic
optimal control problem without perfect recall of the measurements. In contrast to
related control problems with perfect recall, for which optimal decision rules are linear
and easy to compute, the optimal decision rules for Witsenhausen’s problem are
provably nonlinear, and it is nontrivial to even show that they exist [Wi]. Despite
persistent efforts, a representation of the optimal solution to this problem or an efficient
algorithm to compute its solution has never been found. Ho and Chang [HC] took a
closer look at the discrete version of this problem. They considered the "most reason-
able" approaches to the construction ofan efficient algorithm, and provided a discussion
explaining why such approaches fail. However, this could not rule out the possibility
that some other approach might lead to an efficient algorithm, or, more importantly,
that an efficient solution for the continuous problem is possible.
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This increase in difficulty in going from the centralized to the distributed problem
is usually attributed to a loss of convexity; however, no formal explanation of this
phenomenon had been attempted. On the other hand, some recent work has related
the complexity of decentralized control, somewhat loosely, with the Theory of Compu-
tational Complexity [GJ], [PS]. These results indicate that the discrete versions of
some seemingly simple problems in decentralized decision making (unfortunately, so
far excluding Witsenhausen’s counterexample) are computationally intractable (NP-
complete or worse) [PT], [TA], [GJW], [Pa], ITs], thus providing objective measures
for the difficulty of the discrete problems. Nevertheless, the above research left open
the issue of the intractability of the (more interesting) original continuous problems. In
general, it is not automatically true that if a discrete version of a problem is hard, then
the continuous problem is also hard. A classical example here could be linear program-
ming, which can be solved in polynomial time, despite the fact that its discrete
version--integer programmingmis much harder.

In this paper we address and in many ways settle the issues raised above. In 2
we discuss the few available results on the complexity of discrete nonclassical control
problems. More importantly, we prove that the discrete version of Witsenhausen’s
counterexample is NP-complete, thus explaining the lack of progress on it, and the
failures reported in [HC]. Ttie goal of the remaining sections is to relate the complexity
of discrete and continuous problems. In particular, we show that complexity results
for a discrete problem can be used to prove the nonexistence of realistic (i.e., polynomial
in the desired accuracy) algorithms for classes of continuous problems. We chose to
proceed in terms of a specific example, the static team decision problem [MR], [Ra];
however, our proofs define a methodology by which similar results can be proved for
other problems as well. In 3 we make precise the notion of an algorithm that solves
a continuous problem. We observe that there are several possible such notions. We
also describe the main construction used in the rest of the paper, whereby from any
instance of the discrete version of a decision problem we construct an instance of its
continuous counterpart, which is provably closely related to the discrete one. In 4
we show our main results, linking the difficulty of nonclassical control problems (the
team problem in particular) to the theory of computational complexity. For three
different notions of "efficiently solvable continuous problem" we present evidence that
the team problem is not. These negative results depend on P NP and some related
conjectures from Complexity Theory. Finally, in 5 we discuss our results; we also
place them into perspective by contrasting them to other theories of complexity for
continuous problems [TW], [TWW], [YN], [Ko].

2. The complexity of discrete nonclassical problems. In this section we consider
the computational complexity of the discrete versions of some representative non-
classical control problems: the static team decision problem [MT], IRa], the discrete
version of Witsenhausen’s counterexample in stochastic control [Wi], as well as some
nonclassical control problems in Markov chains. The main new result is that the discrete
version of Witsenhausen’s problem is NP-complete. For convenience, we restrict to
problems involving two agents only; problems with more agents are bound to be at
least as hard.

The discrete static team decision problem. We define below the discrete version of
the team decision problem of Marschak and Radner, called DTEAM. The problem is
the following: Each one of two agents observes a separate integer random variable ki,

1, 2, 1 <_- ki _<- N and makes a decision ui /(k), ui { 1, , M} based on his own
information only. Then a cost c(kl, k2, 3/1(kl), y2(k2)) is incurred. The problem consists
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of finding decision rules that minimize the expected cost. For simplicity, we take all
pairs (k, k2) in the given range to be equiprobable.

An instance I -(N, M, c, K) of DTEAM consists of positive integers N, M (the
cardinalities of the observation and decision sets), a nonnegative integer K, and an
integer valued cost function c: {1, , N}2 x { 1, , M}2 - Z. For any pair Yl, 3’2 of
functions 3’i: { 1, , N} { 1, , M}, define their cost to be

N N

J(T,, T:)- Y Y c(k,, k:, Tl(kl), 5,:(k:)).
kl=l k2--1

The optimal cost is defined to be

J*(I) min J(l,
TI,T2

By "solving" this instance, we mean deciding whether J*(I)<-_ K, or not.
We let SDTEAM (for Simple DTEAM) be the special case of DTEAM restricted

to instances for which K -0, M- 4 and the range of c is {0, 1}.

Complexity theory. At this point is seems appropriate to introduce some basic
notions from complexity theory. See [GJ], [HU], [PS] for more complete and formal
treatments.

Most of the discrete problems that we deal with in this paper will be of the
language recognition kind, that is, problems ofdeciding whether a given string (encoding
some combinatorial object) belongs to a fixed set of strings or not. In DTEAM, for
example, the string encodes the integers M, N, and K, and the table of the cost function.
The question is whether this string is in the set of strings (language) that encode
instances of DTEAM in which the optimum cost is below K.

Our precise choice of a model of computation is not very critical. We could choose
any variant of the Turing machine, or the random access machine models which appear
to be much closer to actual computers [AHU]. All such choices are essentially equivalent
(modulo a polynomial), as long as they are basically realistic. This latter clause excludes
models which, for example, assume real arithmetic with infinite precision at unit cost
per operation. Any model, whose units of computation can be achieved within a
constant amount of time with constant hardware, is "realistic" in the above sense.

In the interest of differentiating between "easy" and "hard" problems, let us define
P to be the class of all such problems that can be solved by an algorithm in a number
of steps which is a polynomial in the length of the input string. Some well-known
"hard" problems, including the satisfiability problem for Boolean formulas and the
traveling salesman problem (with a limit on the cost of .the tour, as in the definition
of DTEAM), are not known, neither believed, to be in P; they belong, however, in
another class, called NP (for nondeterministic polynomial). A problem is in NP if,
whenever a string encodes a "yes" instance, there is a polynomially short and poly-
nomially easy to check "certificate" that testifies to this. A "no" instance has no such
certificate. For example, in the traveling salesman problem, the certificate is the shortest
tour, of cost less than the set limit; in DTEAM the optimum decision rule that achieves
cost K or less; and so on. Another, equivalent way to define NP is in terms of problems
that can be solved in polynomial time by nondeterministic Turing machines (hence the
name NP).

Is P-NP? This turns out to be the central open question in Complexity Theory
today. It is widely believed that P NP, that is, that P is a proper subset of NP, but
no proof exists (or is in sight). However, even in the absence of a definite answer to
this question, for certain problems in NP we have quite convincing evidence that they
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are indeed intractable. What has been shown is that these problems are NP-complete.
This means that all problems in NP reduce in polynomial time to these. Hence,
NP-complete problems are "the hardest problems in NP", in the sense that, if P is not
NP, then the NP-complete problems will be the first to be intractable, of nonpolynomial
complexity. A great variety of some of the hardest and most stubborn computational
problems from combinatorics, optimization, logic, number theory and graph theory
have been shown to be NP-complete (including the traveling salesman problem and
the satisfiability of Boolean formulas; see [GJ] for a complete census, circa 1979). The
usual way that a new problem is shown NP-complete is to reduce a known NP-complete
problem to it. We shall see a rather involved example shortly.

Problem SDTEAM is known to be NP-complete [PT]. In fact, it follows easily
from our proof that SDTEAM remains NP-complete even if the instances are restricted
so that we know that the optimum cost is either zero or one, and we must decide which
of the two. (This is done by taking any instance with M 3ma case which is already
NP-complete [PT]mand adding to each pair of observations a choice which can
guarantee an overall cost of one). We shall use this fact in our proofs.

In our analysis of the complexity of nonclassical control problems, we shall also
refer to complexity classes above P and NP. In analogy to polynomial-time computation,
one can study the exponential-time analog, that is, problems solvable within a number
of steps that grows as 2on, for some constant c. We let EXP and NEXP denote the
corresponding deterministic and nondeterministic complexity classes. Also, we let
DEXP and NDEXP be the analogous classes for doubly exponential complexities, that
is, growths of the form 2tEn. These complexity classes are not, of course, nearly as
practically important as P and NP, but they too are unresolved puzzles: It is not known
whether EXP NEXP or DEXP NDEXP (although we expect that inequality holds).
What is known, however, is that P NP implies EXP NEXP, which in turn implies
DEXP NDEXP (see [HU] for the standard arguments needed to show this).

Witsenhausen’s counterexample revisited. Witsenhausen’s counterexample is the
following problem [Wi]:

minimize E[K(T(x))2+(t(X + y(x)+ t;)+ x + y(x))2],

with respect to all measurable real valued functions y, 15 of a single variable, where
x, v are independent, normal, zero mean random variables (with given variance) and
K a nonnegative constant. (Notice that this is not a (discrete) computational problem
of the kind we introduced in the previous subsections. For more formal treatment of
continuous computational problems, see the next section.) As was pointed out in the
introduction, a representation of an optimal solution to this problem or an efficient
algorithm has never been found. Of course, an algorithm can always be constructed
as follows" discretize the densities of the random variables x, v and constrain the
decision rules y, to have finite range; then solve the discretized problem by exhaustive
enumeration. However, this is unsatisfactory because the number of decision rules that
have to be enumerated is exponential in the cardinality of the allowed range of the
decision rules. It is this discrete problem that was studied by Ho and Chang [HC]
with very little success. We explain this persistent record of failures by proving below
that the discretized version of Witsenhausen’s problem, as defined by Ho and Chang,
is NP-complete.

Let us now define formally the discrete problem of interest:
Problem WITSENHAUSEN: Given probability mass functions f, g:Z Q for

integer variables x, v and integer constants K, B are there functions y, 8: Z- Z such
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that
J(y, ) ,[y(x)+ K(x + y(x)+ (x+ y(x)+ v))] <- ?

THEOREM 1. WITSENHAUSEN is NP-complete.
Proof We first introduce a variation of the problem ofthree-dimensional matching

(3DM) [GJ]"
3DM: Given a set S and a family F of subsets of Smof cardinality three---can

we subdivide F into three subfamilies Co, C1, C2 such that a) subsets in each family
are disjoint; b) the union of the subsets in Co equals S?

LEMMA 1. 3DM is NP-complete.
Sketch. We basically use the construction in the standard proof that the (less

restricted) version of 3DM, in which the sets in C1, C2 are not required to be disjoint,
is NP-complete [GJ], [PS]. In that proof we construct, for each Boolean formula with
three literals per clause, an instance of 3DM, such that there is a subfamily Co as
described in 3DM iff the formula was satisfiable. It is not hard to observe, however,
that, once a subfamily Co exists, the remaining sets of the instance can be subdivided
into two subfamilies of disjoint sets.

To prove Theorem 1, we reduce 3DM to WlTSENHAUSEN. Suppose that we
are given an instance S, F of 3DM, where S {1,. ., m}, F {S,. ., S,}. Without
loss of generality, assume that n =< m. We now construct an instance of WlTSEN-
HAUSEN. There will be 3n values of the random variable x with nonzero probability
and M 1 + 4nu + 3n such values for v, where [x/3h m + 1 ]. All these values will
be taken equiprobable. To complete the construction, we need to specify the sets
X ={x,..., x3,}, V= {v,..., vM} of values with nonzero probability. Concerning
the constants B, K, we let B (3 n m)/3 riM, K 3nM(B + 1). To define the actual
integers with nonzero probabilities, we need a lemma:

LEMMA 2. There are n distinct integers O<-z <-... <--Zn<--_3?l4 such that
(a) All the differences zp- zq are distinct.
(b) Any difference (z,+-z,)-(zj+-zj) is distinct from any difference in (a).
Proof We define Zk, 1 <--k <-n, recursively. Let z 0 and assume that z,..., Zk,

k < n, have been constructed and Zk <-3k. In order to pick a value for Zk+, notice
that it has to obey only the following constraints: (i) Zk+ > Zk, (ii) Zk+I--Z Z--Z,
l <--_j, p, q <- k), (iii) (Zk+--Zk)--(Z+--Z)Z--Z, (l<-j,p,q<-k+l). (Some of the

constraints in (iii) hold automatically.) So, Zk+ has to avoid at most 3k4/ k + (k + 1)3 <
3ka+9ka<3(k+1) values. Therefore, there exists an integer less than or equal to
3(k + 1)a whose value can be assigned to Zk+.

Notice that, given n, the integers z,..., z, can be constructed recursively in
polynomial time by means of the procedure suggested by the proof of Lemma 2. Let
us assume that such a sequence zl,..., z3, has been constructed. Moreover, let us
multiply each element of the sequence by 4, so that the expressions which are distinct
by Lemma 2 are different by at least 4.

We now complete the construction ofthe sets X, V. The set X contains 3 n elements;
each element x X is associated to a set S F and an element jik Si, where jig
(i 1,. , n; 1, 2, 3) denotes the kth element of S. We then let

(2.1) Xa-)+k 3mZa-)+k + 3j,k.

The set V contains the element 0; also for any consecutive elements x, x+ of X
corresponding to the same set (that is, i= 1, 2(mod3)), V contains the numbers
x+-x+p, pU={-,,-,+l,...,-2,-1,1,2,...,9-1,,}. Finally, V contains
the numbers 3m(A+z), i= 1,2,... ,3n, where A=3zan; this completes the con-
struction.
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Let us put together a few facts, for future reference:
LEMMA 3. (a) Iffor some y, 6, we have J(y, 6) <-_ B, then I(x)l <-- , x x.
(b) 7he expressions Ixi xjl, Ix,- xj + Xp Xql, Ix,+1- x,- x+ + x + xp Xq], (1 <=

1, j 1, p, q <= n) are either zero or no smaller than 3 m. For large enough m, 3m > 4v + 2.
(c) Ixi-xjl<-3mA-2 u, for large enough m.

Proof. (a) If for some x X we have ly(x)l > u, then

u2 3n-m
j(%

3nM 3riM

(b) We use (2.1), the inequality jik =< m and the fact that the magnitudes of the
corresponding expressions involving the z’s instead of the x’s are either zero or at
least four; we obtain in the second case, for example, [Xi+l--Xi--Xj+ " Xj + Xp--Xq]
12m-9m 3m. Finally notice that increases only as the square root of m, which
also proves part (c).

The following lemma completes the proof of the theorem.
LEMMA 4. (S, F) is a "yes" instance of 3DM if and only if there exist y, 6 such

that J( y, 6 )<= B for the above constructed instance of WITSENHAUSEN.
Proof If Suppose that there exist y, 6 such that J(y, 6)-< B. Then, in particular,

K(x+y(x)+6(x+y(x)+v))2/3Mn<=B, VxX, VvV. Therefore, ]x+y(x)+
6(x+y(x)+v)lZ<=B/(B+l)<l, which implies that x+y(x)+6(x+y(x)+v)=O,
x X, /v V. Let x x. Then, using Lemma 3(a, b), we have

+ + v)- + + v’)l
>-Ix,-
->_3m-2v>0,

which shows that

(2.2) x,+y(x,)+v#xj+y(xj)+v’ Vv, v’V, Vx,,xjX, x,#xj.

Let x, x+ be two consecutive elements of X corresponding to the same set S.
Inequality (2.2) must hold for v’= 0 and v x+ x + p,
y(x+), Vp U. Consequently, either y(x)= y(x+), or ly(x)-y(x+)l> v, which
would contradict Lemma 3(a). Therefore y takes the same value on those elements of
X corresponding to the same set S. We denote this value by y(Sj).

Inequality (2.2) must also hold when x, xj correspond to the same element k S
belonging to different subsets Sp, Sq; that is, x 3mz + 3 k, x 3mz + 3 k. Let v
3re(A+ z), v’= 3m(A+ zi). Inequality (2.2) becomes y(x) # y(x), which implies
")/( Sp k ")/( Sq ), whenever Sp

Notice that (by our choice of B), y(x) can be nonzero for at most 3n m elements
of X. Moreover, at most one y(x) per element of S {1,..., m} can be zero; thus,
y(x) must be nonzero for exactly 3n- m elements; for those elements, [y(x)l 1. Let
Co (respectively, C, C2) be the family of subsets of F for which y(Sp) 0 (respectively,
y(Sp) 1, y(Sp) 1). By the discussion in the last paragraph, subsets within the same
family have to be disjoint. Moreover, y(x)=0 for exactly m elements, which shows
that Co covers S exactly and we have a "yes" instance of 3DM.

Only If Conversely, suppose that we have a "yes" instance of 3DM and let Co,
C1, C2 be the desired families of subsets. We construct 3’ by letting y(x)=0 (respec-
tively, 1, -1) if x corresponds to an element of a subset Sp Co (respectively, C1, C2).
Since Co is a cover to $, y(x)=0 for exactly m elements x6X. Consequently,
E[y2(x)] 1/(3nM)(3n-m)= B. It remains to show that 6 can be chosen so that
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x + y(x) + $(x + y(x) + v) 0, Vx X, Vv V. For this it is sufficient to prove that
xi+y(xi)+v x+y(xj)+v’, whenever xixj and for all v, v’ V. So, suppose that
the desired inequality does not hold for some x, x, v, v’. We will derive a contradiction,
but we will have to consider the various possible cases for v and v’.

(i) v v’= 0. If x + y(x) x + y(x), then Ix- xl -< 2, which contradicts Lemma
3(b).

(ii) v=0, v’=x/l-x+p, pc U. Then

(2.3) [(x,- Xj)--(X/+ Xl) --[ ’)/(Xj)- ")/(Xi)-- Pl 2,+ 2 < 3m,

which implies, by Lemma 3(b), that x-x= xt+-x. It follows that i= l+ 1, j= l;
therefore, y(x)= y(x) and, using (2.3), p 0, which is a contradiction.

(iii) V=Xp+l-X,+p, v’=xt+-xt+p’,p,p’ U. Then

IXi- Xj + Xp+ Xp X/+ "- "ll ’)/(Xj) ")/(Xi)- P -- p’l < 2,+ 2 < 3m,

which implies that x- xj + Xp+ Xp x/ + x 0. So, one of the following must hold:
x Xp, x Xl or Xp Xl. If xi Xp, it follows that x xt (and conversely); in either
case, we obtain Xp/ Xl/l and Xp xt; therefore, x x, which is a contradiction.

(iv) v=0, v’=3m(A+zt). Then, Ix,-xl=ly(xj)-y(x,)+3m(A+z)>=3mA-2,
which contradicts Lemma 3(c).

(v) v xt+ Xl + p, p U, v’ 3m(A + Zp). Then,

IXi Xj + Xl+ Xll "--I’)/(Xj) y(Xi) pt.q_ 3m(A+ Zp) >= 3mA- 2- ,,
which contradicts Lemma 3(c).

(vi) v 3m(A+ Zp), v’= 3m(A+ Zq). Let x 3mzi + k, x. 3mz.i + k’. Then, 3mlz
z+z,,-zl=13(k’-k)+r(x)-,r(x,)l. If z,-z+z,,-z=O, then 2_->lr(x,)-y(x)l=
31k- k’l, which implies k k’. Therefore, y(xi) y(x), which is a contradiction because
y takes different values when x, x correspond to the same element of S. Therefore,
12m <-]zi- zj + Zp Zql _<-3m + 2, which is also a contradiction. This completes the proof
of the lemma and the theorem.

Decentralized and output control of imperfectly observed Markov chains. By simply
observing that Witsenhausen’s counterexample and the static team decision problem
are at the root of several problems in decentralized control, we obtain some interesting
Corollaries of Theorem I. For example, one might be interested in formulating and
studying problems of decentralized control of Markov chains. However, a single stage
of such a problem would require the solution of a static team decision problem and
NP-completeness (or worse) follows.

One could also formulate a problem of output control of a Markov chain, similar
to the problem studied in [LA] under linear quadratic Gaussian assumptions: that is,
the decision at time k would be constrained to be a function only of the observation
made at time k (no recall). In fact, problem WlTSENHAUSEN is a two-stage output
control problem for a Markov chain and NP-completeness follows. The two-stage
output control problem can be also easily seen to contain as a special case the problem
ofminimum distortion quantization which is also NP-complete [GJW]. Infinite horizon
average cost versions of that problem can be also easily shown to be NP-complete.
Finally, problems of causal coding and control of Markov chains, as defined in [WV],
are also NP-complete for the same reasons.

3. Continuous problems and algorithms.
Continuous problems and their complexity. Our final aim is to derive complexity

results for continuous problems. Unfortunately, there is no standard model of computa-
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tionuor complexity measure--for such problems. In this subsection we shall discuss
various notions of computation and complexity pertaining to continuous problems. A
comparison of our framework and other existing work on the complexity of continuous
problems appears in the last section.

In an instance of a typical continuous problem, we are given a finite set F
{fl," , f,} of real functions (without loss of generality, with domains some power of
the unit interval) and we are asked to evaluate (usually approximately) a functional
G(F) R of these functions. For example, fl, , f, may be the boundary conditions
for a partial differential equation and G(fl,’" ,f,) the value of the corresponding
solution at a specific point. Closer to our concerns in this paper, we can define the
continuous counterpart of the DTEAM problem mentioned in the previous section.
In an instance of this problem, we are given a function c: [0, 1 ]4_.> [0, 1 ], assigning a
cost to each combination of observations y, Y2 [0, 1] and decisions y(y), T2(Y2)
[0, 1 ]. (Notice that we are assuming, for simplicity, that the probability distribution is
uniform over [0, 1].) The goal is to compute the functional .l*(c) defined by

J*(c) inf c(y, Y2, T(Y)T2(Y2)) dya dy2.
1,T2

We shall be interested in the special case of this problem in which the function c is
Lipschitz continuous with Lipschitz constant 1 (with respect to the max norm on R4),
as a representative of those special cases that we can hope to solve efficiently. Without
such "smoothness" conditions, no realistic solution of continuous problems is possible,
for simple information-theoretic considerations. We call the continuous version of the
DTEAM problem with the Lipschitz condition the Lipschitz continuous team problem,
or LCTEAM. That is, LCTEAM is the set of all instances, as described and restricted
above. It should be obvious that a host of problems of continuous nature are amenable
to similar formalization.

There are several possible notions of what it means for an algorithm to solve such
a problem, and, equally important, the complexity of its operation. The subtle part is
defining the sense in which the continuous functions f are "given". We examine a
number of such approaches below.

Oracle algorithms. Continuous problems of the type defined above can often be
solved by an algorithm which operates as follows: The input of the algorithm is a
positive real e, and the output is an approximation of the functional with error at most
e. Every time that the algorithm needs the value of a function f at some point x, this
is done as follows: The algorithm submits x (a rational point), and an integer k to an
oracle for f, and the oracle gives back the k most significant digits of the answer f(x).
The algorithm is "charged" for this service k steps, plus of course the time it took to
construct x up to the desired precision. We say that an oracle algorithm solves a
continuous problem II in polynomial time if, for every instance I of II there is a
polynomial p such that the algorithm solves I within accuracy e in time PI(1/e).

Uniformly polynomial oracle algorithms. There is a stronger notion of efficiency,
which requires that the polynomial be independent of the instance L We call algorithms
with this property uniformly polynomial. Notice that is a much stronger notion than
that of plain polynomial-time oracle algorithms.

Note" The distinction between polynomial and uniformly polynomial algorithms
has no counterpart in the context of combinatorial (discrete) problems, since in discrete
problems the instance plays the role of both e and I in the above definitions. It-is,
however, meaningful for continuous problems. For example, consider the problem in
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which we are given one Lipschitz continuous function f over [0, 1], and we are asked
to compute G(f) infxto.llf(x). A straightforward discretization leads to an algorithm
with time requirements O(Ky/e), where Ky is the Lipschitz constant of f; so, this is
a polynomial algorithm. On the other hand, O(K//e) is also a lower bound and since
this problem contains instances with arbitrarily large Lipschitz constants, no uniformly
polynomial algorithm exists.

Uniformly hard instances. One way to show that a continuous problem has no
polynomial-time oracle algorithm at all is to exhibit an instance for which no poly-
nomial-time oracle algorithm exists; such instances are called uniformly hard. Naturally,
for discrete problems there are no hard single instances.

Instance-specific algorithms. We obtain an interesting variant of the concept of
oracle algorithms by considering single instances of the problem II. In each instance
I, we just wish to compute a number, namely G(F). We could ask the question, is
this number polynomial-time computable, in the sense that we can compute it within
accuracy e in time polynomial in 1/e by an ordinary algorithm (involving no oracles).
This is a meaningful question only if the functions f are themselves polynomial-time
computable, in that the value f(x) can be computed in time which is polynomial in
the accuracy in which x is given, and the desired accuracy.

Iterative algorithms. In numerical analysis or mathematical programming we are
often interested in convergent iterative algorithms. These differ from the class of
algorithms we introduced above in that they do not take e as an input, and they never
halt. Rather, from time to time they produce output values Gi(F), 1, 2,.. which
are increasingly accurate approximations of G(F). We may call an iterative algorithm
polynomial if there is a polynomial p such that, for every instance, at time p(1/e), the
most recent output value is accurate, within e. It is clear that if a polynomial iterative
algorithm exists, there also exists a uniformly polynomial algorithm for the problem.
In fact the converse also holds [9]: take a uniformly polynomial algorithm and run it
with e 2-k, k 1, 2,. .. The resulting algorithm is a polynomial iterative algorithm.
For this reason, we shall not consider iterative algorithms any further.

3.7. The basic construction. Our method of connecting the complexity of the
continuous version of the TEAM problem to the (much better understood) complexity
of the discrete one, is based on the following lemma and construction:

LEMMA 5. For each instance I of the SDTEAM problem we can define a function
Cl:[O, 1 ]4 [0, 1 such that:

(i) Function cl is Lipschitz continuous (with Lipschitz constant 1), and thus it

defines an instance of LCTEAM.
(ii) The optimum J*(Cl) equals 1/20N4 if the optimum of I was 1, and 0 if it was

0 (recall for that instances of SDTEAM these are the only possibilities; N is the number
ofpossible observations in I).

(iii) For any I and k-bit numbers yl, Y2, U, U2, and any > 0, the most significant
bits of cl(y, Y2, u, u2) can be computed in time polynomial in k, l, and the size of I.

Proof. Let us first define a function a:[0, N] [0, 1/N] as follows:
1

x- [xJ if x- [xJ <--"-N’

a(x)= [x]-x if[x]-x<=--,
1- otherwise
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a(x)

n n+|

FIG.

X

(see Fig. 1), and define q(Yl, y2) (1/(1 1/N)E)a(yl)a(y2). Notice that q has Lipschitz
constant 4/N, and that its integral over [0, N]2 is one.

Let us now recall the cost function of the discrete instance /, call it
d: { 1, 2,. ., N} x {1, 2, 3, 4} {0, 1}. For 1 -< xl, X2 N, integers, and v, /32 1, 4], let
h(x, x2, v, v2) be the smallest 8 =< 1 such that there are u, u2 with [ul- v[, lu2- v21-<- 8
and d(x, x2, u, u2) 0, or 1 if no such 8 exists. Then, define, for 0 <= y, y2, u, u2 <= 1
the cost function c(yl, Y2, u, u2) to be

q( Nyl, Ny2)
[h([Ny,], [NyE],3u,+ 1, 3u2+ 1) +2p(3ul + 1) +2p(3u2+ 1)],

20

where p(x) is the distance between x and its closest integer.
Let us verify the properties of cv To verify (i), function h has discontinuities at

integral values of its first two arguments, but q is zero there, so c is continuous. To
check that the Lipschitz constant is 1, recall that if the functions f have Lipschitz
constants Li and maxima mi, i-1, 2, then the function flf2 has Lipschitz constant

Lm2+LEm. Within each "rectangle" of constant [Nyl], [Ny2] h has maximum 1
and Lipschitz constant 3, and p(3ul+1)+p(3u2/1) has Lipschitz constant 6 and
maximum 2, so their sum has maximum 3 and Lipschitz constant 9. Also, q has
maximum 4/N2 and Lipschitz constant at most 8, and so their product has Lipschitz
constant at most 20. It follows that cz has indeed Lipschitz constant at most 1, as
required.

For (ii), let us denote by the set of all functions 7:[0, 1]-[0, 1] which are
piecewise constant, with discontinuities at points i N, and taking the values {0, 1/2, , 1}.
We claim that, for fixed ’)/2, the decision function y(yl) which minimizes J(y, ’)/2) is
in . Notice that infvJ(y, )rE) is equal to

(1_ 1/N) a(Ny) mn a(Ny2)[h+2p(3u+l)+2p(372(y2)+l)]dy2dyl.

To carry out this minimization, it is sucient-to minimize, with respect to u,

(Ny)[h([Ny], [Ny],3u+l,3,/.(y)+l)]dy.+ 2p(3u+l) dy
o

for each y. The first term does not depend on y within the interval i N, (i+ 1)/N],
and thus the optimum ul is indeed constant within this interval. Secondly, notice that
the second term, together with the Lipschitz condition, ensures that the minimum is
achieved at integer values of 3u + 1, that is, at values of , in {0, , , 1}.

The same argument shows that )’2 may be constrained to be in as well. Once
we have shown that the optimizing decision functions are in 9, we have essentially
shown that the continuous LCTEAM problem defined by c is in fact qsomorphic"
to the discrete one I, and it has optimum which is J*(c)=(1/2ON)J*(I), where
J*(I) is the optimum of I, either 0 or 1. Part (iii) is trivial. VI
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4. The main results. In this section we present our evidence that the Lipschitz
continuous team problem is indeed intractable. We prove three such theorems, corre-
sponding to three different notions of complexity of continuous problems introduced
in the previous section, namely uniformly polynomial oracle algorithms, polynomial
instance-specific algorithms, and uniformly hard instances. In all three cases, we show
the intractability of LCTEAM, assuming that a very likely conjecture in Complexity
Theory is true. Naturally, the stronger our notion of intractability of LCTEAM, the
stronger the complexity-theoretic conjecture needed.

4.1. Nonexistence of uniformly polynomial algorithms.
THEOREM 2. There is a uniformly polynomial algorithm for LCTEAM if and only

if P= NP.
Proof. If. Suppose that P=NP. We shall describe a uniformly polynomial

algorithm for LCTEAM. The algorithm works by discretizing the problem, and obtain-
ing appropriately approximate solutions by solving discrete instances of DTEAM
(which is possible, once P-NP).

Let R correspond to a truncation operation" given some x [0, 1] and some e > 0,
R(x, e) retains the [log (1/e) most significant bits of x; consequently, Ix- R(x, e) <- e
and if log (1/e) is an integer, then (1/e)R(x, e) is also an integer.

Given the cost function c of an instance of LCTEAM and some e > 0 such that
log (l/e) is an integer, we construct an instance I of DTEAM by letting A e/8,
N- l/A, M 1/A and cost function

(4.1) d(i,j, k, l)=R(c(iA, jA, kA, IA),A), (i,j, k, l)e 1,...,

Clearly, d is integer-valued and C max d _-< 1/A. Let J(y, y_), Ja(, ) denote the
costs of pairs of decision rules for the continuous (c) and discrete (d) instances,
respectively. J*, J*e are the corresponding optimal costs.

LEMMA 6. IIJ*=- A3j*d < e.

Proof Let , 2 be the optimal for d. Let ),(y) A(k) for y[(k-1)A, kA],
k 1,. ., N, i= 1, 2. Using the definition of d and the Lipschitz continuity of c, we
obtain

j,c J(Yl, Y2)= E E c(yl, y2, yl(y), y2(y2)) dy dy2
k=l m=l k-1)A m-1)A

N N

E E (ad(k, m,
k=l m=l

A3jd(, 2) + 2A A3j.d + 2A A3J*d + e.

In order to prove the converse inequality, suppose that 1, 2: [0, 1] [0, 1], are
such that J(l, 2)J*+ A. Let f(y, Y2)= Jo c(y, Y2, Ul, 2(Y2)) dy2. Then f is also
Lipschitz continuous with Lipschitz constant 1. It follows that

linff(y, u) -inff(y’, Y)I 21y Y’I Vy, y’ [0, 1 ].

Let ’I(Yl) argminuto,lf(kA, u), for Yl e ((k- 1)A, kA). Then,

jc( 1, ’2) "" 2A -<_ jc. + 3A.
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In a similar way, we may construct a piecewise constant function "2: [0, 1 ] [0, 1
such that

c(,, /) _<_

The decision rules */, i= 1, 2, being piecewise constant determine corresponding
decision rules $, i= 1, 2, for the discrete cost function. Then, a chain of inequalities
similar to (4.2) leads to

A3jd*<=A3Jd(),, 62)_--< JC(l, 2)+2A <-JC*+7A <-_JC*+ e.

Since P NP there exists an algorithm for the problem of computing the optimal
cost of any instance of DTEAM (based on the algorithm for DTEAM and binary
search), which is polynomial in M, N, log C, where C is the largest integer appearing
in the cost function. Consider then the following algorithm for LCTEAM:

(i) Decrease e (at most by a factor of 2) so that log (l/e) is an integer.
(ii) Use the oracle to read the log (8/e) most significant bits of c(iA, jA, kA, mA),

l <--i,j, k, m<-N, where NA= I, A=e/8.
(iii) Run the assumed algorithm on tae resulting instance of DTEAM, as defined

by (4.1). Multiply the output by A3 and return it.
This is clearly a uniformly polynomial algorithm, and the proof of the if part is

complete.
Only If If we had a uniformly polynomial algorithm for LCTEAM, we could

solve any instance I of SDTEAM of size N as follows"
(i) Construct the corresponding instance c of LCTEAM, as in Lemma 5.
(ii) Simulate the assumed algorithm for LCTEAM on it, with desired accuracy

e 1/40N4. The time required is polynomial in N, including the computations
of c, which, by Lemma 5(iii), are polynomially related to the "charges" for
oracle calls of the corresponding computation of the algorithm.

(iii) If the result is less than e- 1/40N4, then the optimum cost of SDTEAM
was 0, otherwise 1.

Since this is a polynomial-time algorithm for SDTEAM, an NP-complete problem, it
follows that P NP.

4.2. A hard instance with efficiently computable cost.
THeOReM 3. If DEXP NDEXP then there exists an instance c of LCTEAM such

that
(i) The cost c(y, y, u, u2), where y, y2, u, u2 are k-bit numbers between 0 and

1 can be computed with accuracy e in time polynomial in 2 and 1/e, whereas
(ii) The optimum value J* is not polynomially computable; that is, it cannot be

computed within accuracy
Proof We first need a lemma concerning the existence of certain "hard" sequences

of instances of NP-complete problems, in the spirit of [HSI].
LMMA 7. If DEXP# NDEXP then there is a sequence I, I, of instances of

SDTEAM such that"
(a) Instance Ii has size (that is, N) equal to 2.
(b) There is an algorithm which, given i, constructs I in time polynomial in 2 (the

size of the instance produced).
(c) There is no polynomial-time algorithm that solves all instances I.
Sketch. Consider a problem L in NDEXP-DEXP. Without loss of generality,

instances of L are encoded in binary, and therefore an instance also represents an
integer, in binary. For each instance of L, let f(i) be the string of length 2 which
starts with the string and has O’s in all other positions. The languagef(L) {f(i)" L}
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is in NP (since L is in NDEXP), and thus there is a polynomial-time transformation
that transforms each string f(i) to an instance of SDTEAM such that the instance of
SDTEAM is a "yes" instance if and only if f(i)f(L). By "padding" these instances
of SDTEAM to make them of size a power of two, and filling in the gaps with "null"
instances, we obtain the sequence of the lemma.

To show the theorem, consider a sequence of instances as constructed in the
lemma. For each such instance Ii, we construct a continuous function ci: [0, 1 ]4 [0, 1 ],

with supportas in Lemma 5. Consider now a scaled, shifted version of c, call it c,
[ 1 2-, 1 2-+1)]2 x [0, 1 ]2 (see Fig. 2), defined in this range as

c(yl, Y2, Ul, //2) +1C’(2’+1(Yl- 1 + 2--’), (2i+1(y2 1 + 2-’), u, u2)).

ci is zero outside this domain. Finally, define the function c to be

c(y, Y2, u, u2)=
i=1

FIG. 2

This function is Lipschitz continuous with constant 1 (due to the scaling), as
required by the theorem, and it is easy to see that it satisfies condition (i) (compare
with (iii) of Lemma 5). To show (ii), notice that the optimum value J* corresponding
to c can be expressed in terms of the optima j,a of the instances I that comprise it,
as follows:

j.= j. d 1 1 1

=1 20" 2

The first term of the addend is the cost of the original discrete instance, known to be
either 0 or 1 in SDTEAM. The second term was introduced by the construction of
Lemma 5. The third is due to the scaling, whereas the last term represents the area of
the support of instance c, as defined above. Thus, J* -66o Y_- J*d2-7i. From the form
of the sum, it is evident that, if we could compute J* within accuracy e in time
polynomial in 1! e, then we could compute the optimum cost of I in time polynomial
in the size of Ii, contrary to Lemma 7. [3

Theorem 3 has a weak converse. It can be shown that, if an instance of LCTEAM
as described in Theorem 3 exists, then EXP# NEXP. The argument goes as follows:
If such a hard instance exists, then its discretizations (that is, the sequence of discrete
problems resulting by subdividing the unit interval in 2 equal intervals, and by defining
the cost function on this grid by a restriction of the continuous cost function) are not
all solvable by polynomial-time algorithms. Thus, we have a hard exponentially sparse
sequence of optimization problems of the DTEAM type (in which we are asked to
determine the optimum cost). Since each optimization problem in this sequence can
be reduced to an exponential number of a recognition problems (asking whether the



652 CHRISTOS H. PAPADIMITRIOU AND JOHN TSITSIKLIS

cost of an instance is below some bound), say, by binary search, [PSI, we obtain a
hard polynomially sparse sequence of instances of this problem, known to be NP-
complete. The existence of such hard sequences is known (see [HSI], or the argument
above) to be equivalent to EXP NEXP.

A uniformly hard instance. If P NP we can show something stronger than the
nonexistence of uniformly polynomial algorithms proved in Theorem 2. In particular,
we can show that there is a uniformly hard instance of LCTEAM, which "fools" all
polynomial-time oracle algorithms. Our construction has to use diagonalization argu-
ments which are not polynomially constructive, and as a result the instance constructed
is not one that can be computed efficiently. Since a complete proof of this result would
require the introduction of machinery in a scale disproportional to the information
added, we only present an outline of the proof.

THEOREM 4. There is a uniformly hard instance of LCTEAM ifand only if P NP.
Sketch. One direction follows from Theorem 2. For the if direction, we first need

to define a discrete analog of an oracle algorithm. One way to do this is to consider
sequence algorithms, that is, algorithms which operate on infinite sequences of instances
of a problem. Such an algorithm accepts as its input an infinite tape with the sequence,
together with an integer i, and it returns the answer ("yes" or "no") of the ith instance
of the sequence. To capture the charges due to precision of the queries and the answers
of oracle machines, we require that the algorithm is charged [log k to determine the
value of the kth bit of its input tape.

We first show that, if P # NP, there is a sequence of instances of the SDTEAM
problem, of size exponentially increasing, which cannot be solved by any sequence
algorithm. The construction is carried out by enumerating all polynomial-time sequence
algorithms, and using the ith non-"null" instance in the sequence to rule out the ith
sequence algorithm as a potential solver of the present instance (i.e., sequence). Since
P # NP, an instance on which the ith sequence algorithm does the wrong thing, and
which is of size larger than some given bound, must exist. To avoid the possibility in
which the ith algorithm takes "advice" from the previous or subsequent instances in
solving the current instance, we interject a doubly exponential number of "null"
instances between two such consecutive instances.

We finally construct an instance of the LCTEAM problem from the given sequence
of SDTEAM problems, exactly as in the proof of Theorem 3. If this instance could
be solved by some oracle algorithm, it can be argued that the sequence constructed in
the previous paragraph can be solved by a sequence algorithm, which is impossible
by its construction.

5. Discussion. We have shown that the team decision problem with a Lipschitz
continuous cost function and uniform probability distribution holds the same place
in the continuous world that NP-complete problems do in the discrete world" it
possesses an approximate algorithm which is polynomial in the desired accuracy if
and only if P= NP. A similar result can be also proved if Lipschitz continuity is
replaced by some other, possibly stronger, smoothness requirement such as once or
twice differentiability, etc. Only the construction in Lemma 5 would have to be a little
more elaborate. A similar result is also possible for Witsenhausen’s counterexample
in stochastic control if the assumption of normality of the underlying random variables
is relaxed. Since the team decision problem is a basic component of (generally harder)
problems in decentralized stochastic control, such problems (at least in the absence
of any more special structure) are qualitatively different from the vast majority of
traditional problems in continuous mathematics and classical control. Such problems,
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including nonlinear optimization, filtering and control, as well as partial differential
equations, possess algorithms which are polynomial in the desired accuracy, when
some smoothness conditions are satisfied, and are solvable from a realistic point ofview.

The proofs of our results are based on the fact that the discrete version of the
team problem is NP-complete. In this sense, we demonstrate that NP-completeness
results can be exploited to make inferences about the computational complexity of
continuous problems. It should be noted, however, that the various notions of intracta-
bility used call for conjectures of varying strength from Complexity Theory, all of
them implying P # NP.

The proofs of Theorems 2, 3, and 4 determine a methodology that can be applied
to obtain similar negative complexity results concerning other continuous problems
as well. Abstracting the main elements ofthe proofs, we see that the following properties
of LCTEAM were heavily used:

(i) The discrete version of the problem of interest should be NP-complete.
(ii) We should be able to take an instance of the discret.e problem and construct

an instance of the continuous problem as in Lemma 5, while respecting certain
smoothness requirements.

(iii) The above construction should be simple enough, so that the corresponding
oracle calls can be efficiently simulated by a Turing machine.

(iv) Finally, it should be possible to take a sequence of increasingly large discrete
instances and imbed them into a single one, while keeping the dimension of the
continuous problem constant.

Finally, let us comment on the relation and some differences of our framework
with other theories of complexity for continuous problems. The complexity of any
algorithm solving a continuous problem can be roughly divided into two kinds of
activities" oracle calls to obtain information about the instance to be solved and
computations based on the values returned by the oracle. A lot of past research [TW],
[TWW], [NY] has obtained lower bounds on the overall complexity by deriving lower
bounds on the number of oracle calls necessary to obtain enough information so that
an e-approximate solution is possible. This is a valid approach for the types ofproblems
emphasized in that research (mainly mathematical programming and numerical integra-
tion of partial differential equations) and has produced many interesting results; the
main reason is that in such problems the amount of any further computation necessary
can be bounded by a polynomial (and some times linear) function of the number of
oracle calls. The team problem, however, is different: while O(1/ e4) oracle calls provide
sufficient information for an e-approximate solution, we have shown that further
computations require time which is exponential in e (unless P NP). In other words,
the structure of the team problem forces us to emphasize its computational complexity
rather than its informational requirements.

Much closer to our approach are the very interesting recent results in [Ko]. In
that paper, it is shown that there are ordinary differential equations which are given
in terms of easily computable functions, but which cannot be integrated efficiently,
unless P= PSPACE. In this sense, Ko’s results are quite similar in spirit to Theorem
3. One of the differences is that Ko’s notion of efficiency requires that algorithms
operate in time polynomial in the logarithm of 1/e.

[AHU]
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