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TABLE 11 
CHANGE IN kth DEPARTURE  TIME 

I PA % Error 

2 3 %  15% 
01 5% -2.9% 

-2.0 % -5.6 % 0.0 X 
- 6 1  % - 4 2 %  0.0% 
- 3 1  % 4.5% 0.0% 
-4.4% 4.9% 
-3.7% 4.8% 0.0% 
- 4 2 %  4.47 0.0% 

TABLE IU 
CHANGE IN MEAK  DELAY 

I PA%- 
k I Actualm) I M=2 
m I 0.4052 I 7 5 %  

0936 
0.4951 
0.4805 
0.4918 
0.4976 
0.4947 
05WI 
05052 
0.4966 

2.6 % 

-51 % 
-55 % 
-5.9 x 

M.8 
-1.4 % 
-3.0 R 

1.0 R 
-12 x 
-28 % 
-3.6 % 
-2.6 % 
-25 X 
-1.4 % 
-2.4 X 

M.128 
0.0 R 
-02 % 
-35 x 
0.0 x 
08 % 
-07 % 
-1.0 % 
-1.4 X 
4.9 x 
-06 % 

MEW 

OD % 
0.0 I 
0.0 w 
0.0 % 
0.0 x 
0.0 X 
0.0 % 
0.0 X 
0.0 I 
0.0 % 

v. CONCLUSIONS 

For stochastic discrete  event systems, PA provides a methodology for 
performing on-line optimization by estimating performance  gradients. PA 
is particulxly efficient when the parametric perturbations of interest 
affect event times only-not queue lengths. In this note, we have 
attempted to  provide extensions for the latter case, by considering a 
system with a flow control strategy based on the queue length seen by 
arriving customers. The resulting algorithm is simple, but is limited by the 
amount of state memory required when the  arrival process is not 
deterministic. Constraining the state memory, we have included in 
Section IV experimental results suggesting that the approach can still 
provide accurate estimates. 
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Analysis of a Multiaccess Control Scheme 

JOHN N .  TSITSIKLIS 

Abstract-We consider a multiaccess channel under  the  infinite  source 
model and ternary  feedback. We consider a recently proposed scheme for 
the decentralized control of transmissions through  the  channel, and we 
prove that it is stable, as long as the  rate of generation of  new packets is 
smaller than e- I .  

I. DESCRIPTION OF THE  CONTROL  SCHEME 

Consider the usual slotted ALOHA model, under the infinite source 
assumption and ternary feedback. In more detail,  there is an infinite 
number of stations and, at the beginning of any time  slot, each station may 
have at most one packet to transmit. Any station with an available packet 
may decide to attempt transmission (possibly using a probabilistic rule) or 
to decide to  defer this attempt for later. Let Y, be the number of attempted 
transmissions during the tth slot. If Y, = 0, we say that a “hole” has 
occurred. If Y, = 1,  the (single) attempted transmission is successful. 
Finally, if Y, 2 2, there is a collision and no packet is successfully 
transmitted. At the  end  of  the tth slot, all stations learn whether a hole, a 
success, or a collision has occurred. Accordingly, we define the variable 
Z, to be equal to Y,,  if Y, < 2, and equal to 2, if Y, 5 2. The information 
available to any station at the beginning of the tth slot is the collection of 
variables Z , ,  ; . . , Z , _  I .  The decision of a station, whether it will attempt 
transmission during the tth slot, is constrained to be a function of Z,, . . . , 
Z,-  I and possibly an internal random number generator. 

We assume that during the tth slot, a random number A,  of new stations 
generate a packet which they would like to eventually transmit. We 
assume that the random variables A ,  are independent and identically 
distributed according to a Poisson distribution with mean X. Let N, be the 
number of stations with a packet available for transmission at the 
beginning of  the tth slot.  Then, N, evolves as follows: N,, = N, + A ,  

The objective is to find a probabilistic rule that lets each station decide 
at any given time, using only the information available to  it, whether it 
will transmit or not. (Of course, this rule will be used only by those 
stations that have an available  packet.)  This rule should be stable, that is, 
the stochastic process N, should not “explode” in a suitable mathematical 
sense. 

Rivest [ l ]  has suggested the following strategy. At the bfginning of the 
tth slot, each station has available the same estimate N, of N,. Each 
station with an available packet attempts transmission with probability 1/ 
fi,. Conditioned on fi,, the decisions of different stations are statistically 
independent and independent of any other events that ha_ve occurred in the 
past. (It is not hard to show that if N, is large  and if N, = N,, then the 
above choice of transmission probability is optimal, in the sense that it 
maximizes the probability of a successful transmission during the rth 
slot.) The-novelty of the  scheme lies in the procedure for updating the 
estimate N,, which is the following: 

1, if Z, = 1; N,,, = N, + A,, otherwise. 

i) I fZ,<2,  t h e n ~ l , _ I = m a x { l , ~ , - l + ~ } ;  (1.1) 

ii) IfZ,=2,  thenN,-,=N,+-+K. 
1 

e-2 
(1.2) 

In these  equations, A is an estimate of A. 
This updating procedure is motivated in [ I ]  as an approximation of the 

exact Bayesian formula for updating the optimal estimate E[N,  I ZO, . . . , 
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Z,_ '1. We define X, = (N,, f i r )  and we notice that. for any fixed values 
of X and x, X ,  is a Markov process taking values in a countable state 
space, assuming that fi is initialized with an integer vaiue. 

In this correspondence. we analyze the stability of this scheme. The 
technique we employ is somewhat simpler than the  one used in [2]-131 and 
is based on a suitable Lyapunov function. Our main results may  be 
summarized as follows. 

a) If X is known exactly, and therefore, x = X. then the Markov 
process (N,, N,) is geometrically ergodic if X < e - ] .  We should point out 
here that no control strategy, in which all stations use the same probability 
of transmission, could achieve throughput larger than or equal to e- and, 
in this sense, the above  scheme is optimal. 

b)  If X is  not known exactly, but rather an inexact estimate x is used in 
the updating equations (1.  l),   (1.2), then the scheme is stable (geometri- 
cally ergodic) if X < e- I ,  x I e - ' ,  and-X 5 x. We also provide a 
heuristic argument which suggests that if X < X and if the difference 
between X and x exceeds  a  certain threshold, then instability may result, 
even if X < e - ' .  

In [ I ]  I it is suggested that x could be formed by estimating X on line. In 
particular, one may let x,, the estimate at time t ,  be equal to the number of 
successful transmissions so far, divided by the time elapsed. Alterna- 
tively, one may use a sliding window, or discount past successes, so that 
the estimators x, retain their adaptivity, as I -+ 00. It  is  not known whether 
stability is preserved when such an estimator for X is used. Nevertheless, 
our results show that an estimator for X is not needed. We may simply use 
x = e- I and this guarantees the same throughput as the throughput which 
would have been obtained for  the  case where A is known. 

Relafed Research: References [2] and [3] have presented and proved 
stability of a scheme which achieves a throughput of e- l .  Its difference 
from the scheme in (1. I ) - (  1.2) is that fi, is incremented in a multiplica- 
tive, as opposed to additive. fashion.  The performance of that scheme has 
been studied in 171. This stability result of [2]-[3] has been extended in 
[6], for the case where the information available to the stations is 
corrupted by a  discrete memoryless channel. Reference (81 (see also [9]) 
presents a related scheme based on-the exact implementation of the 
optimal (least squares) estimator  for N,,  and analyzes it for the limiting 
case of a large but finite number of stations. 

Reference [4] mentions a related class of schemes which have been 
introduced and analyzed in [ 5 ] .  The discussion in [4] indicates that the 
scheme introduced in [I] ,  with x = e- '? is a special case of those 
analyzed in [5] and that, in particular, it is known that the scheme is 
stable, although the proof has not been published. In this light, the main 
contribution of this correspondence is a  simple technique for rederiving 
this stability result. 

11. MATHEMATICAL PRELIMINARIES 

A random variable W is exponential-type if there exist d > 0, D such 
that E[ed!'.'i] I D. Let {Xk) be an irreducible aperiodic Markov chain 
on a countable state space. We say that {Xk} is geometrically ergodic if 
there exists a state x such that the stopping time r = min { f > O:X, = x )  
is exponential-type, for any initial state X,. 

Let  { W,} be a sequence of random variables adapted to an increasing 
family { 5 , )  of u-fields. We say that { W,, 5 , }  is exponential-type if there 
exist d > 0, D. such that 

~ [ e d ' l v , + l - " ; l  I5,]rD, v r z 0 .  (2.1) 

We  will use the following result of [2]. 

exponential-type, and that for  some E > 0, a E R, we have 
Proposition 2. 1: Suppose that W, is deterministic. that { W,, 5, } is 

E[W, - , -W,+€ ;  W,>al '5 , ]50 ,  v t 2 0 . '  (2.2) 

Then, for each value of Wo, the stopping time r = min { t L 0: W, 5 

We  will also need  the following result which is proved in a way similar 
a )  is exponential-type. 

to the results of 121. 

' If X is a random variable and A is an event. the notation €[X; A 151 stands for 
E [ X I , 4 ( 5 ] .  where I ,  is the indicator function of the event A .  

Proposifion 2.2: Let { W,, 5,) be exponential-type, with Wo = 0. and 
let J be a positive integer. Let r be a stopping time (with respect to { 5, ) )  
and assume that there exists some E > 0 such that E [  W,, - W, + E ;  T 

> f I 5, ]  I 0, Vt .  Then  there exists some B (depending only on d, D, E ,  
but  not on Jor the statistics of 7) such that Elmax (0, W,} ;  r > JI So] 5 
B. 

Proof: Since { W,, 5 , )  is exponential-type and using our assumption 
on W, + I - W,, there exists some 9 > 0 (depending only on d, D, E )  such 
that 

E[en"+'r-I-'r); r > t 1 3 , ] ~ ~ 1 ,  vt. (2 .3  

(This is proved in Lemma 2.1 of [2].) We use the inequality max (0, x }  
I (l/q)en.y, Vx. to obtain 

E [ m a x  {O, W,}; ~ > J 1 5 ~ ] = E [ m a x  {O, W,-?}; 7 > J 1 F 0 ]  

5 - E [ e " ' J A r ;  T > J ) 5 0 ] 5 - E [ e n ~ ~ J A l n r 1 5 0 ] .  
1 I 
9 9 

We now notice that the stochastic process e? ' h i  is a supermartingale, as 
a consequence of (2.3). Therefore, E[e"'hI To] I 1. which gives the 
desired result with B = l / ~ .  

III. MAIN RESULT 

Theorem 3.1: If 0 < 5 e-I, 0 < X < e - ' ,  and X 5 x, then the 
Markov process X , ,  defined in Section I, is geometrically ergodic. 

Proof: We will be using the notation N, = fi, - N, and x = x - X. 
We also define 5, as the u-field generated by {A,- I, N,, Ns:s I f } . We 
start by establishing approximate  formulas for the drift of N, and N,. We 
define two functions on the state space: c(N, fi) = E[N,+ I - N, IX, = 
( N ,  1Q)l and d(N, N) = E[N,+'  - fi,IX, = (A', N)]. Using the 
binomial probability formulas, we obtain 

(3.1) 

(3.2) 

We also introduce a functionf:[O, 00) x (0, e - ' ]  - C R ,  defined by 

f ( a ,  A)=- ( l -ae-c-e-a)-e-a+i; .  (3.3) 

Lemma 3.1: There exists a  function h:R - CR such that lim,+- 

- 1  
e-2 

h ( M )  = 0 and such that, if N 2 M o r  2 M ,  then 

I c ( N ,  N ) - ( A - a e - " ) ( s h ( M ) ,  

( d ( N ,  N ) - f ( a ,  X ) !5h ( lM) ,  

where 01 = N/&. 
Proof  (Outline): For any fixed value of a, the result is_immediate 

from the formulas (3.1), (3.2), and the fact lim+, (1 - 1 / N ) "  = e - ' .  
The fact that the bounds are actually uniform over all a may be easily 
demonstrated by working out an exact expression for  the approximation 
error. or by appealing to the similar bounds developed in [3]. H 

We now study the properties of the function f. 
Lemma 3.2: 
i) For any x, the functionf is strictly increasing in a .  
ii) For tny E (0, e -  I ] .  there  exists  a unique a = g(x) E (0, I] such 

iii) If X E (0, e - ' )  fl (0, x], then g(x)e-Hx) > X. 

i) This is implied by the inequality (df/dcu)(a, x) = (l/(e - 2))ae-a 
+ e-" > 0, vcu > 0. 

ii) Existence of a so_lution in the desired range follows frornf(0, x) = 
- 1 i i; < 0, f (1 ,  X) = x 2 0, and the continuity off.  Uniqueness 
follows from the strict monotonicity off. 

that&, X) = 0. 

Proof: 
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iii) Suppose first that h = x. Then, g ( x )  = g(0) = 1 and g(O)e-:(O) = 
e - ]  > h, as  desired. So suppose that X # x. We use the equation (df/ 
d i ) (g (x ) ,  x) = 0, to obtain 

- ( h )  = dg - 
d i  1 

e - 2  

- 1  

- g(E;)e-B(%)+e-21P) 

Thus, 

Hence,  for > 0, we have g(X)e-g(x) > g(O)e-g(O) - x = e-I - x 2: 
From now  on we use p to  denote the value of g ( x ) .  Given any y E (0, 

p)  and M > 0, we partition the state space into four regions as follows. 
We let 

K - X = h .  

(N, A) : N z M ,  7 > 1 + y  , I h' 
h' 3 

Q,,= { ( N ,  A) : N I M ,   S < M } .  

We also let R+, = R7:,w U R;.,,. 
Lemma 3.3: There exist some IM > 0, y > 0 ,6  > 0, such that 5y  < 
and 

c (N,  N)s - 6 ,  V(N,  A) E Ss,,M, (3.4) 

d(N,  - 6, V(N,  A) E RyGtf, (3 -5) 

d(N,  N)z6, v (N ,  N )  E R;, , .  (3.6) 

Proof: Notice that X - me-" is negative when a = 1 (because h < 
e - ' )  as well as when a = [because of Lemma 3.2 iii)] and is monotonic 
in between. Furthermore, it is a continuous function of a and therefore 
there exist y > 0 and 6 ,  > 0 such that h - me-" I - 6 1 ,  v a  E [ p  - 
57, 1 + 571. Hence, using Lemma 3.1 I c(N, A) I - 6 ,  + h ( M )  I - 
61/2, V ( N ,  A) E S S , , . ~ ,  provided that we take M large enough so that 
h ( M )  I &/2. This proves (3.4) and fixes our choice of y. For 
inequalities (3.5) and (3.6), we use the  strict monotonicity o_ffto conclude 
$atf(a, x) 5 f ( p  - y. x) < 0, VCY 5 p - y andf(a, h) r f(1 + y, 
X) > 0, Va  2 1 + 7. The desired result follows again by choosing M 
large enough and using Lemma 3.1. rn 

From now on we assume that A4 and y have been fixed and that 
inequalities (3.4)-(3.6) hold. We introduce a Lyapunov function which 
exploits the properties of the drift  of (N,, &) in the regions we introduced 
earlier. Namely, we let 

3Y 
( N - f i ) ,  ___ 

and notice that the first,  second, and third expression inside the brackets 
becomes effective when N belongs to S,,,,, I?;+,, R Y , , . ~ ~  respectively. 
Unfortunately, for any 4 > 0, the inequality E[V(N,,,,  NI+l)l(Nf, ??,)I 
I V(N,, N,) - A fails to hold at the boundary between adjacent regions. 
However, we  will show below that, if J i s  chosen large enough, then there 
exists some A > 0 such that 

E [  V(N,+J, NrTJ)l(N,, N,)=(N,  H ) ] I  V(N,  N ) - A ;  

V(N,  N) Q . w + J ~ .  (3.8) 

Our method consists of estimating the decrease in V by separately 
considering likely and unlikely events, starting with unlikely ones. Given 
some integer J and some t 2 0, we define a random variable TJ by 7J = 
min {s 2 t :  A X  2 J ) ,  where Ak is the number of  new packets 

generated at time k.  We then have the following two auxiliary results 
whose proof is straightforward (using, for  example, the same methods as 
in the proof of Proposition 2.2) and is omitted: 

Wenoticethat - N,I 5 1 + A,and I#,+, - Nil 5 l/(e - 2) 
+ X I 2 + i; I 3.  It then follows from (3.7) that 

. 

SC(1 +A,) ,  

for  some constant c. Therefore,  there exists some C, independent of J ,  
such that 

I v(Nr-J, N f + J ) -  V(N,, N , ) I S c J + C  A, .  
1 + J  

k = I  

Using (3.16), we see that if J is chosen large  enough, then 

E [ V ( N ~ + J ,  N ~ + J ) -  V(N,, fi,); TJIJI (N, ,  fi,)] 

can be made as close to zero as desired. 
We now consider the event 75 > J .  
Lemma 3.4: J can be chosen large enough so that, if TJ > J ,  then the 

following are true. 
i) If X ,  E S2,,&,- J 2 ,  then X,,, E L S ~ ~ , M ,  V k  E [0, J ] .  
ii) IfX, E S47,~M+J2 n R ; y , . w - J 2 ,  then&+k E S~,,M n R& v k  E 

[O, J l .  
iii) IfX, E R; ,,,,, + , 2 1  thenXrtk E R ; 7 , M ,  V k  E [O, 4 .  
iv) Statements il) and iii) remain true if we replace R + by R - . 

Proof: If 7, > J ,  then ( N , + k  - N,I I 2Jand  IN,+k  - N,l 5 3J ,  
Vk  E [0, J ] .  On the other hand, notice that the distance between 
Sp,,.,,+ J Z  and the complement of S ~ , , , M  is of the order  of J 2  and part i) 
follows. The proof is similar for the remaining parts of the Lemma and is 
omitted. 

From now on, we assume that J is large enough so that the statements 
of Lemma 3.4 hold. We start by considering the  case (Nf, Nt) E 
& 7 , M - J 2 .  Then, V(N,, N,) = N,. If, in addition, 7J > J ,  then (Nr+k,  
N , + k )  E S 3 7 , ~ ~ + ~ 2 7  v k  E 10, J I  (by Lemma 3.4) and V N ~ + J ,  N ~ - J )  = 
Nr+J. Thus, using (3.4)  and assuming that J is large enough so that P(7J 
> J )  > 1/2 [which is possible, due  to  (3.9)] we obtain 

E[V(N,+J,  & I + , ) -  V(N1, Nr); r,>JI(N,, N,)] 
=E[N,-J-N,;  TJ>JI(N,, IC,)] 

I -  I =x E[c(Nr+k, N,+,); 
X = O  

TJ>JI(N,, Nf)]5 - ~ J P ( ~ , > J ) I  -- , 6 J  
2 

where 6 > 0 is the constant of Lemma 3.3. 

as above yields, for J large  enough, 

E [  V(N,+J,  N / + J ) -  V(Nr, Nr); ~ J > J I ( N ~ ,  NO1 

Next we consider the case (Nf, N,) E R<?,.,,- ~ 2 .  The same argument 

A similar argument applies to the case where X ,  E RF?,,~+ J z  
We now consider the slightly more complicated case where (N,, N,) E 

S47,,t,-L2 and (N,, N,) 6 S 2 , , , M + J 2 .  There are two subcases to consider: 
a) NJN,  E (1 + 27, 1 + 471, and b) N,/& E [ p  - 4y,P - 27).  We 
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only consider the first subcase, since th: argument for the second one is 
identical. We therefore have V(N,, N,) = max { N, , - (1 + 3y)/ 
(37)flr}. Furthermore, if TJ > J ,  then (NrAk, @ , - k )  stays inside 
fl R&, V k  E [0, J]. Thus, V(N,+J, f i r + , )  = max {N,-J, -(1 + 
37)/(37)fl(+J]. Consequently, 

E[V(Nr+J,  fit+^)- V(N,, TJ>J ( (Nr ,  f i t ) ]  

+ E  [max IO, - 3 ( N t R L ~ - N , ) + -  ; ~ ~ > J ( ( N t , f i t )  
37 J6 2 3 1 

(3.11) 

Here, 6 is the constant of Lemma 3.3, and we have used the inequalities 
max {a, b }  - max {c ,  d }  i rnax { a  - c, b - d }  and  max {a ,  b }  I 
max {0, a + f} + rnax {0, b + f} - f, withf = J6/2. We consider the 
first summand in the right-hand side of (3.11). Let Wk = N l + k  - N, + 
k6/2. Clearly, { W,, 5 , + k }  is exponential-type because 1 Wk+ - W, I 
i 1 + Ar-k + 6. Furthermore, TJ is a stopping time, with respect to 
{ ' 3 r + k } .  Finally, using Lemma 3.3. 

r 

=E[Nr+p+l-Nr+*+6; ~ / > k 1 5 , + , ] ~ 0 .  

Thus, Proposition 2.2 applies and shows that E[max (0, W J } ;  rJ > J ]  I 
B,  for some B independent of J .  Equivalently, the first summand in (3.11) 
is bounded above by the same B .  The same conclusion is obtained, by an 
identical argument,  for the second summand in (3.11). Finally, the last 
term in (3.11) is equal  to - (J6/2)P(7 ,  > J ) .  Taking Jlarge enough and 
using (3.9). this term can be made arbitrarily negative. It follows that the 
right-hand side of (3.11)  can become negative and bounded away from 
zero by proper choice of J. This concludes the proof of (3.8). 

The proof of the theorem may  be  now completed as follows. Let G = 
max {l,(l + 3y)/3y, (0 - 3y)/(l - 0 + 3y)}(M i J2) .  Whenever 
V(N,, N,)  2 G. then either N 5 M + J 2  or fi 2 M + J' and (3.8) 
holds. Furthermore, { V(N, ,  f i r ) ,  5 , }  is exponential-type. Hence. 
Proposition ?.I applies and shows that the stopping time T = min 
{ k :   V ( N ~ J ,  NkJ) < G }  is exponential-type. for any initial state. From 

. this it follows easily that the time until (N,,  N,) becomes equal to (0. 1) is 
also exponential-type and concludes the proof of the theorem. 

Remark: It should be clear  from the above proof that it is not necessary 
to assume that the arrival process A ,  is Poisson or even that the random 
variables A ,  are independent identically distributed. One only needs to 
assume that { A , ,  TI} is exponential-type, in the sense of Section 11. 

IV. THE CASE WHERE A < h 

With a minor modification of  the proof in Section HI, it can be shown 
that for any fixed h < e- I there exists some E > 0 such that if I h - x 1 < 
E ,  then { X , }  is geometrically ergodic. In general, however. E will depend 
on X and will  tend to  zero as h approaches e-I. 

Suppose now that X is very close to e- I and that h - x is positive and 
sufficiently large. Then, { X , }  will no longer be ergodic,  as indicated by 
the following argument. If h = e-I, the only way of having a stable 
(ergodic) process is to have some mechanism that ensures that  the 
probability of transmission by each station is very close to l/N,, at least 
whenever N, is large. Equivalently, we want Nl/Iirr = 1. However. when 

# 0, then fl drifts away from one, because f( 1, x) # 1, where f. the 
function defined in (3.3) (which is the approximate drift of N. according 

to Lemma 3.1). Therefore. X ,  will tend to spend most of its time in a 
region where (Y is bounded away from  1  and, consequently, the 
probability of a successful transmission is bounded away from e-I. 
Instability then results. 

One might try to make a similar argument for the case A < x. In this 
case, the probability of a successful transmission is again bounded away 
from e-I. However, since h < A < e - ' ,  there is less input traffic to be 
accommodated and instability does not arise. [This is the essence of part 
iii) of Lemma 3.2.1 

It is suggested in [ I ]  that h could be estimated on line, if it is unknown. 
One possible method [I]  is to let A, be the number of successful 
transmissions up to time t ,  divided by f .  Such an estimator loses its ability 
to adapt to changes in  the input traffic statistics. as time goes to infinity. 
For this reason an exponential weight was used in [ I ]  to discount old data. 
It  is unclear whether such a method can achieve stability with a throughput 
up to e - [ .  Given the result of Section 111, overestimating h by using the 
estimate x = e-' cannot result to instability and this seems to be a 
reasonable choice. 

Finally, let us point out that the stability proof presented in Section III 
extends relatively easily to the case where the stations acquire information 
on the state of the channel (whether a hole. success, or collision occurred) 
with a fixed finite delay [lo]. 
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Comments on "Exact Control of Linear Systems with 
Multiple Controls" 

FRANCISCO  CASIELLO AKD KENNETH A. LOPARO 

Abstract-Given a  linear system x' = Ax + Bu, where A and B are n X 
n and n x m matrices, with rn c: n and B is of full rank, Farlow's 
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