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Abstract. We study a class of problems related to the supervisory control of a
discrete-event system (DES), as formulated by Ramadge and Wonham, and we
focus on the computational effort required for their solution. While the problem
of supervisory control of a perfectly observed DES may be easily solved by dynamic
programming, the problem becomes intractable (in the sense of complexity theory)
when imperfectly observed systems are considered.
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1. Introduction

Discrete-event systems (DES) have been introduced by Ramadge and Wonham
[RW2]. Roughly speaking a DES is a discrete-time dynamical system such that, for
each state, a number of different transitions may occur. Furthermore, it is assumed
that there is a possibility for control action through a supervisor which, at any given
point in time, may prohibit certain transitions from occurring. It is then natural to
consider the problem of designing such a supervisor satisfying certain specifications.
Loosely speaking, the specifications that have been considered in the literature
amount to a requirement that the supervisor prohibits from occurring certain
(undesirable) sequences of events, while at the same time allowing some other
(desirable) sequences of events to occur. Naturally, the supervisor design problem
changes according to the different assumptions made concerning the information
available to the supervisor; for example, the supervisor may have full knowledge of
the state of the DES (perfect information), or it may have access only to some partial
information on the state. Decentralized supervision by a set of noncommunicating
supervisors, each one possessing partial state information, leads to another class of
design problems.

A DES is very similar to a discrete-time Markov chain, except that there are no
assumptions about the probabilities of the state transitions. For this reason, the
supervisor design problem is a little different from the traditional problems of
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Markov decision theory, for which dynamic programming provides a solution [B].
On the other hand, Markov decision problems and the supervisor design problem
for a DES are not completely unrelated. Consider the supervisor design problem
under a constraint that certain states must be avoided. We may assign an infinite
cost to the states to be avoided, zero cost to the remaining states, and assign
arbitrarily a positive probability to each possible transition out of given state, thus
defining a Markov decision problem. These two problems are closely related because
any supervisor for the DES satisfying the specifications corresponds to a finite cost
policy for the Markov decision problem. Other types of specifications for the
supervisor of the DES may be easily incorporated into the cost function of a corre-
sponding Markov decision problem; see Section 3 for a more detailed exposition.

~ From these remarks, it is natural to suspect that the types of problems which can
be solved realistically within the DES framework (from a computational point of
view) correspond to easily solvable problems in Markov decision theory. Thus, in
the light of available results [PT], it should be expected that problems with partial
information are algorithmically intractable. One of the aims of this paper is to justify
and give a precise content to the above statement.

The paper is organized as follows. In Section 2 we introduce the definitions,
notation, and terminology to be employed. In Section 3 we provide a brief back-
ground for the case of perfect information. In Section 4 we consider a variety of
supervisor design problems when only partial information is available. While a
special case of this problem, studied in [CDFV], is shown to be tractable, a number
of negative results are derived for several interesting problems.

2. Preliminaries

A DES G can be defined [RW2] as a quadruple G = (Q, X, 4, qo), where Q is a finite
set (state space), g, is an element of Q (initial state), T is a finite alphabet (used to
label possible transitions between states, also called events), and J is a partial
function (i.e., which is defined only on a subset of its domain) from Q x X into Q,
which describes the dynamics of the system. The interpretation of & is the following:
if (g, o) is defined for some given g € Q, 5 € X, then it is possible that, starting from
g, a transition carrying the label ¢ takes place and, in that case, the next state is
equal to d(g, g).

Actually the definition usually given is somewhat more involved because it
includes a special set Q,, of marked states (“accepting states,” in the language of
automata theory). We chose to omit them from the definition in order to simplify
notation. Let us just mention here that the computational complexity of the prob-
lems considered in this paper is unaffected by the exclusion of marked states from
the DES model.

Occasionally we will find the following notation a little more convenient: for
any g € Q, we are given a set X(q) < Z, the set of possible transition labels out
of state g; in that case, § is a function (total, rather than partial) defined on the set
UqEQ({q} x Z(g)). In traditional systems-theoretic terminology, we are dealing
with a dynamical system with state g, subject to uncertain disturbances o; the
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system obeys the dynamical equation

q@t + 1) =6(q@), o), 4(0) = qo, (1)
and the disturbances o(t) are constrained to satisfy
a(t) e £(q(t)) for all t. @)

Here ¢ is a discrete variable used to index events and need not be related to “real
time.”

A string is the concatenation of a finite (possibly empty) sequence (¢(0), ..., a(t))
of elements of Z. Let ¢ denote the empty string and let Z* denote the set of all strings.
We extend the function § to a partial function from Q x X* into Z by means of the
following recursive definition: (g, &) = q and 4(q, s6) = 6(5(q, s), o), if (g, s) is
defined, and o € Z(5(q, ). In particular, d(q, s) is equal to the current state if the
initial state is equal to q and the sequence of transitions represented by the string
s has occurred, assuming that this sequence of transitions is allowed by (2).

Any subset of Z* is called a language. We define L(G), the language generated by
G, as the set of all strings s such that d(qo, s) is defined. Notice that L(G) always
contains the empty string.

We now provide for the possibility of controlling a DES. We assume that the set
T is partitioned into two disjoint subsets £, and Z.. The set Z is interpreted as the
set of events which can be disabled. We define a supervisor for G as a function
y: Z* 2% such that y(s) o X, for all s € £*. The set y(s) is the set of events that
are allowed by the supervisor to occur (not disabled), as a function of the string s
of past events. Accordingly, in the presence of a supervisor y, we obtain a new
dynamical system whose state again satisfies (1), but the constraint (2) now becomes

a(t) € y(a(0) -~ a(t — 1)) " Z(3(qo, 0(0) -~ o(t — 1)) = y((0)- -~ a(t — 1)) " Z(q(?))-

3)
A DES G together with a supervisor y, are called a supervised system. Given a
supervised system (G, y), we define the language L(G, y) as the set of all strings in
T* that can be generated by that system. More formally, L(G, y) is the set of all
strings a(0)--- 6(T) € L(G), which also satisfy (3), for each ¢t < T, the empty string
being included. Let us point out that we could require y to be a partial function
defined only on the subset of £* consisting of those strings whose occurrence is
possible, that is on L(G, y). However, we assume that y is total, to simplify notation
and the discussion. ‘

In general, a supervisor need not have access to the entire string of past events;
this may place a restriction on the set of supervisors under consideration. We then
say that partial information, as opposed to perfect information, prevails. There are
several possible ways of modeling partial information and we follow here the
formulation in [CDFV]. Consider a function M: X IT U {&}, where IT is another
finite alphabet and where ¢ denotes the empty string. Following [CDFV], call such a
function a mask. We interpret M (o (t)) as the information provided to the supervisor
on the value of o(t). However, the possibility that M(o(t)) equals the empty string
allows a situation where the supervisor does not learn that a transition has occurred.
(In particular, a supervisor does not know, in general, the value of the time variable
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t. We extend M to a mapping from X* into IT* by letting M(c(0):-- a(t)) be the
concatenation of M(c(0)), ..., M(a(t)). A supervisor y is called an M-supervisor if
there exists some function y,,: IT* — 2% such that y(s) = y,(M(s)) for all s € Z*.

A special class of supervisors is the class of state feedback supervisors. A supervisor
7 belongs to this class if there exists a function yg: Q+— 2% such that y(s) = x(3(4o, 5))
for all s e L(G). Such supervisors are easily implemented in the case of perfect
information because the current state can be reconstructed from the knowledge of
all past events but this is, in general, impossible in the case of partial information.

Another interesting class of supervisors is the set of finite state supervisors. A
supervisor y belongs to this class if there exists 2 DES G = (0, do, %, ) and a
function yg: Q'+ 2% such that: (a) Q is a finite set; (b) 5 is a total function; (c) y(s) =
yx(8(do, 5)). Any such G, together with the mapping. yg, is called a finite state
realization of y.

We note that if Q is finite then any state feedback supervisor is also a finite state
supervisor. The corresponding DES G is just a duplicate of the supervised DES G;
it keeps track of the state g(t) of G and at each time instance it chooses its supervisory
action appropriately.

Let us briefly recall concepts from complexity theory to be used later. We will
only consider decision problems, that is problems in which a yes/no question is posed.
As usual, P (resp. NP, PSPACE) stands for the class of decision problems solvable
by a polynomial-time (resp. nondeterministic polynomial, polynomial memory)
algorithm. A problem is NP-complete (resp. PSPACE-complete) if it belongs to NP
(resp., PSPACE) and any problem in NP (resp. PSPACE) may be reduced to it via
a polynomial-time transformation. A problem is NP-hard, (resp. PSPACE-hard) if
some NP-complete (resp. PSPACE-complete) may be reduced to it by a polynomial-
time transformation. We have P = NP < PSPACE and it is widely conjectured that
both inclusions are proper. If this conjecture is true, then there do not exist any
polynomial-time algorithms for NP-complete, NP-hard, or PSPACE-complete
problems. The reader is refered to [PS] for a more detailed and precise exposition
of these concepts.

3. Supervisor Design: Perfect Information

A representative supervisor design problem introduced in [RW2] is the following:
given three DESs G, G,, G,, employing the same alphabet X, we are asked to
determine whether there exists a supervisor y such that

L(G,) = L(G, ) = L(G,).

This problem has been solved in [RW2] and [WR] and polynomial upper bounds
on the required computations are given in [RW1]. We outline below a different
way of getting to these results, by framing the problem in a Markov decision context.

Any DES may be modified so that the corresponding transition function is total.
In particular, given a DES G = (Q, o, Z, ), we define a new DES G’ = (Q U {#},
4o, Z, 8'), where * is a new (trap) state. We let '(q, o) = (g, o), whenever 6(q, o) is
defined, and 6'(q, 6) = #, otherwise, Notice that §’(q, s) =  if and only if s ¢ L(G).
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We assume that all three DESs introduced above (G, G, G,) have been so
augmented.

Consider a new DES consisting of the augmented versions of G, G,, G,, running
simultaneously, under the influence of the same input sequence ((0), a(1), .. .)and
starting from their respective initial states. Let ¢'(t), 1 (t), g5(t) denote their respec-
tive states at time t. We now interpret our supervisor specifications as state con-
straints. The inclusion L(G,) = L(G, y) requires that if (6(0)--* a(t — 1)) € L(G,)
(that is, if q}(t) # *), then (c(0) - o(t — 1)) € L(G, v) (that is, q'(t) # *). Therefore,
this constraint is captured by assigning infinite cost to any state (q’, g1 93) of the
composite DES such that g # * and g’ = *. Similarly, the constraint L(G, y) =
L(G,) is equivalent to assigning infinite cost to any state (¢’ 41, 4>) such that q #*
and g4 = *. Clearly, the original supervisor design problem has a solution if and
only if there exists a control law for the above-defined composite system under
which the cost (starting from the appropriate initial state) is finite, for any possible
sequence of events. This would be a standard dynamic-programming problem: the
only difference is that we are dealing with a worst-case (minimax) criterion instead
of an expected cost criterion. However, it is well known that the dynamic-
programming algorithm is equally applicable to such minimax problems and has
polynomial computational requirements [B]. As this is a well-known algorithm, we
omit a detailed description. In fact, the structure of this problem is so simple that
the dynamic-programming algorithm simplifies to a connectivity test; still, it is
important to realize that the computational requirements of this problem are
polynomial because it is a special case of a control problem solvable by dynamic
programming. -

An alternative design criterion that has been proposed is as follows: the objective
now is to find a supervisor y such that L(G, y) is maximal, subject to the constraint
L(G, y) = L(G,). (Existence and uniqueness of a maximal L(G, y) has been proved
in [RW2].) We point out that this problem can also be formulated as a dynamic-
programming problem. We do not provide the details, but the key idea is the
following: we express the requirement L(G, y) = L(G,) as a state constraint (as with
the previous problem) and we enforce maximality of the supervisor by introducing
a penalty term which increases with the number of disabled transitions at each stage.

Notice that we are not suggesting that a reformulation as a traditional control
problem be used in order to obtain an algorithm for supervisor design. The value
of the above arguments is that they prove with minimal effort that these problems
are polynomially solvable.

We finally mention the problem of optimal supervisor reduction. In this problem
we are given a DES G, and by some design procedure we have chosen a supervisor
y. Suppose, furthermore, that y is a finite-state supervisor. As there exist infinitely
many alternative finite-state realizations of such a supervisor, we are interested in
a realization with a minimal number of states. This problem has been studied in
[VW]. This reference provides an algorithm for constructing such a minimal super-
visor. However, this algorithm requires, in general, a computational effort which is
exponential in the number of states of G. While a polynomial algorithm would be
desirable, this is very unlikely, because the problem under consideration is NP-
complete. A proof can be found in [T]. The same result can also be obtained by
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realizing that the supervisor reduction problem is closely related to the problem of
state reduction in incompletely specified finite-state machines which is known to be
NP-complete [P]. (We thank an anonymous referee for this observation.)

4. Supervisor Design: Partial Information

Let M be a mask, as defined in Section 2. We consider here certain supervisor design
problems, similar to those considered in Section 3 except for the additional require-
ment that the supervisor designed is an M-supervisor. The simplest such problem
addresses the question whether there exists some M-supervisor y such that L(G, y) = -
L(G,), where G, is a given DES. This problem has been studied in [CDFV] where
the following result is proved:

Proposition 4.1. Given two DESs G, Gy, such that L(G,) = L(G), and a mask M:
T+ IT U {+}, there exists an M-supervisor y such that L(G, y) = L(G,) if and only if
the following two properties hold:

(@) There exists a supervisor y such that L(G, y) = L(G,).
(b) If s, s’ € L(G,), 6 € £, so € L(G,), s'c € L(G), and M(s) = M(s"), then s'c €
L(G).

We now show that the conditions in Proposition 4.1 may be tested in a computa-
tionally efficient way:

Proposition 4.2.  There exists a polynomial-time algorithm (polynomial in the cardi-
nalities of the state spaces of G and G,) for deciding whether the conditions in
Proposition 4.1 are valid.

Proof. (a) Testing this condition is equivalent to solving the first problem of
Section 3, for the special case where G, = G,, and can therefore be done in poly-
nomial time.

(b) Let G = (Q, g0, Z, 0), G, = (Q1, g5, =, 8;), and let Z(q), =,(q") be the allowed
transitions under G, G,, respectively, when the current state is g, q', respectively.
Consider the following game: we start at the “state” (g§, 44, 4o)- In general, at each
point in time our state is a triple (g%, g% ¢*>) € Q; x Q; x Q and we have the
following options: choose some o € £,(¢"), choose some ¢’ € X (g3), or choose both
a o and a ¢’ as above. The rules of the game are as follows: if we have chosen some
o € £,(¢") such that M (o) # &, then we must simultaneously choose some ¢’ € Z(g*)
such that M(¢) = M(c’). Similarly, if we have chosen some o’ € Z(g*) such that
M(c’) # &, then we must simultaneously choose some o € 2(g") such that M(o) =
M(c’). After we make our choices, the states move as follows: ' does not change
if no ¢ is chosen; otherwise it moves to d,(q*, o). The states g2, g, do not change if
no ¢’ is chosen; otherwise, g> moves to §(¢>, ') and g*> moves to J,(q?, '), except
if ¢’ ¢ Z,(¢g*), in which case the game terminates. We win if and only if the game
terminates and the ¢’ causing the termination is equal to the last ¢ chosen and
belongs to Z..
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Suppose that there exists a winning strategy in this game. Let 5= (g(0)- - o(m))
and 5" = (¢'(0)- - 6”(n)) be the strings of ¢’s and ¢”’s used in our winning strategy.
Lets = (6(0):--a(m — 1))and s’ = (¢'(0)--- ¢'(n — 1)). Since we win, we have o(m) =
o’'(n) = g for some ¢ € X. Therefore, 5§ = so and 5" = s’¢. Because of the rules of the
game, we have M(s) = M(s’). Furthermore, so € L(G,), because at each time we
choose a ¢ belonging to =, (¢*). Similarly, since the game was not terminated before
a'(n) was chosen, it follows that at each choice except for the last one we had
o’ € Z,(¢%) and therefore s’ € L(G,). Since L(G,) = L(G), we also have s’ € L(G) and
since a’(n) € Z(g*), it follows that s’ € L(G). On the other hand, since we have won
the game, we must have o ¢ X, (¢2). Therefore, s’ ¢ L(G;) and condition (b) is
violated. :

The above argument can be reversed: if there exist s, s’, o for which condition (b)
is violated, then we use them to define a winning strategy in the above game. Thus
(b) holds if and only if there exists no winning strategy in our game.

It follows that it is sufficient to devise an algorithm which determines if there
exists a winning strategy for the above game. This is just a deterministic optimal
control problem on a finite-state space, with state-dependent control constraints.
Dynamic programming applies and provides a polynomial-time algorithm for
solving it, which concludes the proof. ]

Proposition 4.2 is a positive result, especially given the fact that control problems
with partial information are often intractable. Notice, however, that we have only
found a way for deciding whether an M-supervisor exists, but we do not yet have
an efficient method for constructing it. It is shown in [CDFV] that if there exists
an M-supervisor y such that L(G, y) = L(G,) and if G, G, have finite-state space,
then the supervisor y may be chosen to be a finite-state supervisor. A reasonable
choice for the state space of y is to let it be equal to the power set of Q x Q,, where
Q, Q, are the state spaces of G, G,, respectively. With this choice, a state of the
supervisor indicates the set of all states of G, G,, which are possible, given the
available information. However, such a state space has cardinality which is expo-
nential in the size of the state space of G and therefore an exponential amount of
computational resources is required to construct it. Given the positive result in
Proposition 4.2, we might hope that a supervisor with a polynomial-state space may
always be found. The family of examples provided below shows that this is not so.

Example. Let us fix some positive integer n. The DES G to be supervised has an
associated alphabet X = {u,, ..., u,} U {dy,...,d,} U{0, 1} U{ay, ..., a,}. The lan-
guage L(G) generated by G consists of all prefixes of strings of the form (¢(0)---
o(n + 2)) with the following properties: ¢(0) € {u,, ..., u,po{dy,...,d,}; oi)e
{0,1}fori=1,...,nandi=n+20(n+ 1)e {21, ..., a,}. Furthermore, if ¢(0) =
u, then o(k) = 1 and o(n + 1) = ; also, if ¢(0) = d,, then g(k)=0and g(n + 1) = a,.

Notice that L(G) is a finite language and may therefore be generated by a
finite-state DES. In fact, we may choose the state space of G to be as small as O(n?).
This is done as follows: except for an initial state g,, we let the other states be pairs
(x, £) where t counts the number of transitions made so far and where x is equal to
6(0). Figure 1 presents a state transition diagram for the case n = 3.
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1 .
a(0) o) o(2) o(3) o(4) o(5)

o(n) aln+1) o o(n+2)

Fig. 1

We observe G through a mask M defined as follows: M(u,) = M(d,) = ¢, for
allk,and M(0) = oif o = o, or o € {0, 1}. Let our target language L(G, ) be the same
as L(G) except that if ¢(0) = u,, we then require that g(n + 2) = 1, and if 6(0) = d,,
we require o(n + 2) = 0. Notice that G, is a finite-state DES: it coincides with G
except that we delete one of the two possible transitions out of any state that can
be reached after exactly n + 2 transitions. (The deleted transitions correspond to
the thicker lines in Fig. 1.)

It is easy to see that there exists an M-supervisor such that L(G, y) = L(G,): the
supervisor remembers o(1), ..., a(n). When a(n + 1) occurs, the supervisor observes
oy, for some k, and retrieves the value of g (k). If 6(k) = 1 (resp. 0) it decides that the
unobserved transition ¢(0) was equal to u, (resp. d; ), and decides accordingly which
transition to suppress. This supervisor uses O(2") states, since at time n + 1 it
remembers n bits of information and intuition suggests that no reduction of its state
space is possible. We prove this formally. For any string s = (a(1)--- a(n)), let g(s)
denote the state of the supervisor before a(n + 1) is observed. The transition which
is not disabled after o(n + 1) is observed is therefore a function of a(n + 1) and g(s).
Therefore, there exists some function f such that:

(®) f(g(s), ) = 1if o(k) = 1.
(i) f(g(s), ) = 0if o(k) = 0.

Let s, s’ be such that s # s'. Assume that s and s’ differ in their kth symbol. Then
we must have f(g(s), ;) # f(g(s'), o), which implies that g(s) # g(s’). This shows
that g is a one-to-one mapping and therefore its range has cardinality 2". Hence,
the state space of the supervisor must have cardinality at least 2". We have thus
constructed a family of partially observed supervision problems (parametrized by
n) for which an M-supervisor exists (for each n), the state space of the DES being
supervised has cardinality polynomial in n, but the state space of any M-supervisor
must have cardinality exponential in n. Furthermore, this happens even though
there exists a supervisor (which is not an M-supervisor) with small (polynomial in
n) state space.
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The supervisor design problem of Proposition 4.1 seems to be about the only
partial information problem for which something can be done in polynomial time.
We justify this claim by studying three variants of the imperfect information
problem, all of which are found to be algorithmically intractable.

Problem A. This problem is very similar to the one considered in Section 3. Given
three finite-state DESs G, G,, G,, and a mask M, does there exist an M-supervisor
y such that L(G,) = L(G, y)  L(G,)?

Proposition 4.3. Unless P = NP, there is no polynomial-time algorithm for Problem
A. (In particular, the complement of Problem A is NP-hard.)

Proof. We reduce the complement of the 3SAT (“three satisfiability”) problem of
propositional calculus to Problem A. In the 3SAT problem we are given n literals
(Boolean variables) vy, ..., v,, and K clauses Cj, ..., Cx, and we are asked whether
there exists an assignment of truth values to the literals so that all clauses are true.
We now assume that an instance of 3SAT is given and we construct an equivalent
instance of Problem A.

We first describe the DES G. The set of events T is given by £ = {cy, ..., ¢k, 0, 1,
o4, ..., 0x} and the structure of G is shown in Fig. 2. In particular, L(G) is the set
of prefixes of all strings of the form ¢, ss’ where s € {0, 1}" and s" € {0y, ..., ox }X. We
let the set =, of controllable events be given by Z. = {d;, ..., ox}. We let IT =
{0, 1, ¢} and we consider the mask M: = — I1 given by M(0) = 0, M) =1,M(c) =
M(o,) = ¢ for each k. Effectively, the supervisor observes a sequence s € {0, 1}" and
decides what elements of X are to be disabled afterwards. For this reason, we
identify a supervisor with a function y: {0, 1}" — X where y(s) is the subset of Z,
which is enabled, given that s has been observed.

We continue with the supervisor specifications. We let G, be the DES shown in
Fig. 3. In particular, L(G,) N L(G) = L(G) — {cxs0, '+~ ox: s € {0, 1nk=1,..., K}
The specification L(G, y) = L(G,) translates to the requirement that y(s) # X, for
every s € {0, 1}". To see this, suppose that y(s) = X, for some s. Then the string

[ % 0,1 [eX]

O——D—®

A

e T

Fig.3. The DES G,. Here Z* stands for the set {¢;|]1 <i < Kand i # k}.
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Fig. 4. The DES G,. In this example we have n =4 and a single clause (K = 1). The clause is
(vy v ¥, v ). Notice that the state moves to the upper row of states as soon as the clause is satisfied.

€180 ‘- oy is allowed to occur, violating the requirement L(G, y) = L(G,). Con-
versely, if y(s) # =, for each s, no string of the form ¢, sq, - Ox may occur, because
at least one of the 6,’s in the substring o, - - gy is disabled.

Let S, be the set of all strings s = vy v, € {0, 1}" such that v, ..., v, satisfy the
kthclause C,. Let S = (\X_, S, and notice that S # Jifand only if the given instance
of 3SAT is a “YES” instance. We let the DES G, be such that L(G,) is equal to the
set of all prefixes of strings belonging to the set

K
U {cesoi: s € 8.}
k=1
Such a DES G, is easily contructed (in polynomial time) as shown in Fig. 4. The
specification L(G,) < L(G, y) is easily seen to be equivalent to the requirement that
g, € y(s) for every s belonging to ,.

We have completed the construction of the instance of Problem A. Given our
earlier remarks, this is a “YES” instance if and only if there exists some y: {0,1}" > =,
such that: (a) y(s) # Z_ for all s {0, 1}"and (b) g, € y(s) for all s e S;. We show that
this is the case if and only if we started with a “NO” instance of 3SAT. Indeed
suppose that we have a “YES” instance of Problem A and that y is a supervisor
satisfying (a) and (b) above. Then, for every s e {0, 1}", there exists some k such that
0, ¢ 7(s); using (b), for every s e {0, 1}" there exists some k such that s ¢ S;. It follows
that § = ﬂ,{‘=1 Si is empty and we have a “NO” instance of 3SAT. Conversely,
suppose that we have a “NO” instance of 3SAT. Then, for every s € {0, 1}", there
exists some k such that s ¢S, and a desired supervisor is obtained by letting
Y(s) = Z; — {0, }. This completes the reduction. ]

It is quite likely that a stronger result can be proved, although we have not been
able to do so: we conjecture that Problem A is actually PSPACE-hard. We now
continue with a variation of Problem A.

Problem B. Given two finite-state DESs G and G,, and a mask M, does there exist
an M-supervisor y such that L(G, y) = L(G,) and such that “deadlock is impossible,”
meaning that we never come to a situation where all transitions out of the current
state are disabled?

The “no deadlock” specification is equivalent to requiring that for every s e
L(G, y) there exists some o € ¥ such that so € L(G, y). Such a specification cannot
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be expressed, in general, in the form L(G,) < L(G, y). We show that Problem B is
intractable even for the special case where G, = G. In this case, the inclusion
L(G, y) = L(G,) is trivially true and we are dealing with the following problem.

ProblemB’. Given a DES G does there exist an M-supervisor y such that deadlock
is impossible?

Proposition 4.4. Problem B’ (and, a fortiori, Problem B) is PSPACE-hard.

Proof. The proofis patterned after the proof that the partial information Markov
decision problem is PSPACE-complete [PT], with a few differences. It consists of
reducing the QSAT problem (quantified satisfiability) of propositional calculus to
Problem B. An instance of QSAT consists of 2n Boolean variables vy, ..., U,, and
K disjunctive clauses Cy, ..., Cx, with three literals per clause, and the problem
consists of deciding whether v, Vv, - 305,-1 V02,[Cy A C, A -+ A Cg], where A
denotes conjunction. (The existential quantifiers 3 are alternating with the universal
quantifiers V in the above formula.) We think of this problem as a game: an opponent
assigns values to the even variables v;, Vs, -+ -5 U2n and we are to assign values to the
odd variables v, v3, . - ., V2,1, as functions of the past choices by the opponent; our
objective is to have all the clauses satisfied.

Given an instance of QSAT we now construct an instance of Problem B'. The
alphabet T is {u;, ..., ug} U {To, 71> T0> T1s w}. We let =, = {to, 7, }. The mask M is
such that M(u,) = &, for all k, and each 7;, 7; is perfectly observed. We introduce an
auxiliary function f defined by f(zo) = f(70) = 0and f(t;) = f(r{) = 1. Accordingly,
a sequence of 2n transitions not involving the u,’s is associated, using the function
f, with an assignment of the variables vy, ..., Uzp-

There is an initial state g, out of which any one of the transitions uq, ..., Uy may
occur, leading to states x;, ..., Xk, respectively. However, M(u,) = ¢, for all k, so
that the state g(1) after the first transition is unknown. (We may think of this as
having the opponent choose a clause without revealing the choice.) The state
transition diagram starting from any x,, k = 1,..., K, does not involve any u;’s and
is such that the state g(2n + 1) is a “bad” state b, (respectively, a “good” state gi) if
the assignments v, = f(o(k)) make the kth clause true (resp. false). (This is similar to
the construction in Proposition 4.3 and is illustrated in Fig. 5 for the case n = 2.

To b'

Fig. 5. An example of the reduction in Proposition 5.5. Here n =2 and there is a single clause
vy V Ty V g). '
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There are no transitions possible out of the bad states b, thus guaranteeing dead-
lock, whereas there is a transition w from every g, to itself. Thus, deadlock avoidance
is equivalent to guaranteeing that the state eventually reaches one of the states g,
or, equivalently, that the clause selected by the opponent is satisfied. Since the clause
selected is not known (because M(u,) = ¢ for all k), we should satisfy all clauses.
Notice that at odd times ¢ the supervisor may disable t,, or 7,, which corresponds
to assigning a truth value to the variable v,, whereas at even times ¢ the supervisor
has no control, which corresponds to letting the opponent fix the value of v,.

The proof is completed by showing that such a supervisor exists if and only if we
are dealing with a “YES” instance of QSAT. Suppose that we have a “YES” instance
of QSAT. Thus, there exists a strategy through which at any odd time ¢t =1, 3, ...,
2n — 1, we assign a value to v, (equivalently, the supervisor enables exactly one of
To OT T,), as a function of past assignments, so that every clause is satisfied. This
guarantees that the bad states b, are avoided for each k.

For the converse, suppose that we have a “YES” instance of Problem B’; that is,
there exists a supervisor conforming to the specifications. Since dealock is pro-
hibited, the supervisor enables at least one of 7, 7,, at any odd time. Furthermore,
if a supervisor exists, then there exists a supervisor which never enables both 1, ;.
(Enabling both simultaneously amounts to leaving one more variable to the control
of the “opponent” and this cannot be beneficial.) The strategy of this supervisor for
deciding which t; to enable at each odd time ¢ then determines a strategy for
assigning a value to the variable v, so as to satisfy all clauses, which proves that we
have a “YES” instance of QSAT and completes the proof. |

Problem C. Given a finite-state DES G, two masks M;: Z+—TIIu {¢},i = 1, 2, and
a finite-state DES G, whose symbol alphabet is IT, does there exist an M, -supervisor
y such that M,(L(G, y)) = L(G,)?

Here M,(L(G, y)) stands for the language consisting of the images of all strings
in L(G, y), under the mapping M,. This is a reasonable design criterion if our
performance specifications depend on the string of transitions s through some
function M,. That is, instead of constraining s directly, we only constrain M,(s).
Such a specification may be used, for example, if we want to impose a condition
that the state of G eventually reaches a special state g*, but we do not care about
how it gets there.

Proposition 4.5. Problem C is PSPACE-hard.

Proof. We use exactly the same reduction as in the proof of Proposition 4.4. We
also define M, by M,(w) = w and M, (o) = ¢ for all 0 # w. We impose the specifica-
tion M,(L(G, 7)) = {w}*. It is easy to see that this specification is equivalent to the
no-deadlock specification we had in the context of Proposition 4.4. Therefore
Problem C is also PSPACE-hard for the same reasons. ]
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