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Abstract. We consider an iterative algorithm in which several components are updated in par- 
allel at each stage. We assume that the underlying iteration mapping is monotone and we show 

that the speed of convergence is maximized when all components are updated at each iteration. 

1. INTRODUCTION. 

Consider an iteration of the form t := Ax + b for solving the system of linear equations 
x = AZ + b. If A is a nonnegative matrix, it is well-known that the convergence rate of 
the Jacobi-type iteration (all components are simultaneously updated) is no better than 
the convergence rate of the corresponding Gauss-Seidel iteration (components are updated 
one at a time). When it comes to parallel implementation, the Gauss-Seidel iteration could 

have certain disadvantages because variables that depend on each other can only be updated 
sequentially, whereas each Jacobi-type iteration takes a single step. Using the standard 
coloring technique [l], a Gauss-Seidel update of all components can be often performed in a 
reasonably small number of stages. In particular, when the matrix A is sparse, the Gauss- 
Seidel iteration is often amenable to massive parallelization and its improved convergence 

properties suggest that it might be preferable than the Jacobi iteration. Despite that, 
Smart and White [2] have recently shown that the parallel implementation of the Gauss- 

Seidel iteration cannot be faster than its Jacobi counterpart. In this note, we generalize 
their result by considering a) general monotone iterations and b) iterative algorithms that 
are intermediate between the Jacobi and Gauss-Seidel methods. Our result is very easy to 

derive but seems to have interesting practical implications. 

2. COMPARISON RESULTS. 

We consider a generic iterative algorithm of the form t := f(z), where f is a function 
from 3” into itself, and whose ith component is denoted by fi. Let U be a function defined 
on the nonnegative integers and such that u(t) c { 1, . . . , n} for each t. We interpret U(t) as 
the set of components of z that are updated (in parallel) at stage t. We are thus concerned 
with the iteration 

$(t + 1) = fi (x”(t)), i E U(t), (1) 

x”(t + 1) = x?(t), i $ u(t), (2) 
where ~~(0) is a given initialization. 

A Jacobi-type iteration corresponds to the choice U(t) = { 1, . . . , n} for every 1. JVe use 
the superscript J to indicate the sequence generated by the Jacobi-type iteration. In par- 
ticular, we have zJ(t + 1) = f (x”(t)), f or every t. We notice that a parallel implementation 
of a Gauss-Seidel variant of the iteration z := f(x) can be always put in the form of Eqs. 
(l)-(2), with a suitable choice of the sets u(t). 

Assumption 1: a) There exists a vector I* f !I?” satisfying xc = f(x*) and such that 
limt_oo 3?(t) 
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= z* for every choice of ~~(0). 
b) The function f is monotone, that is, if t 5 y then f(z) 5 f(y). (All inequalities between 

vectors are to be interpreted componentwise.) 

Proposition 1: Suppose that z(O) = ~~(0) = ~~(0) and that the inequality f(z(0)) 2 

z(0) holds. Then, 
z* 5 z’(t) 5 zU(t), vt 2 0. (3) 

[A symmetrical result holds if f(z(0)) 1 z(O).] 

Proof: We have ~~(1) = f(z(0)) _< z(O) = ~~(0). Using the monotonicity of f, we 

obtain ~~(2) = f(zJ(l)) 5 f(zJ(0)) = ~~(1). P roceeding similarly by induction, we obtain 

cJ(t + 1) I I”(t), vt > 0. (4 

Since d(t) converges to I* (by Assumption 1) we also obtain z* 5 d(t) for all t. 
We now prove Eq. (3) by induction on t. It is certainly valid for t = 0. Assuming that it 

holds for some t, we prove it for t + 1. We distinguish two cases: 

(i) If i 4 U(t), th en zf(t + 1) 5 2$(t) 2 z”(t) = $(t + l), where the first inequality follows 

from Eq. (4). 
(ii) If i E U(t), we use the induction hypothesis zJ(t) 5 zU(t) and the monotonicity of f to 
obtain zf(t + 1) = _fi(zJ(t)) 5 fi(Z’(t)) = $(t + 1). Q.E.D. 

Proposition 1 shows that for any initial conditions satisfying f(z(0)) 5 z(O) or z(O) 5 

p(z(O)), the Jacobi-type iteration converges faster. The next result considers a more gen- 

eral class of initial conditions. 

Proposition 2: Suppose that ~~(0) = ~~‘(0) = z(0) > z*. Furthermore, suppose that 

there exists some Z > z(O) such that f(Z) 2 I. Then, there exists an integer K [depending 

on t(O) and Z] such that z* < tJ(t + K) 5 z’(t) f or all t. [A symmetrical result holds if 

2(O) < z’.] 

Proof: We define F(t) by letting Z(O) = Z and F(t + 1) = f@(t)). Using the monotonicity 

of f, the inequality ~~(0) < F, and an easy induction, we obtain 

zJ(t) _< f(t), vt 2 0. (5) 

Let K be such that Z(K) < z(0). Such a I< exists because x* < x(0) and Z(K) converges 

to x* [Assumption l(a)]. Let g(t) be the sequence generated according to Eqs. (l)-(2) 
but with x(0) replaced by T(K). Since E(K) 5 x(O), the monotonicity of f implies that 
~(1) 5 z?(l) and, proceeding inductively, we obtain 

c(t) < zU(t), vt > 0. (6) 

Similarly with the proof of Eq. (4), we have ?F(t + 1) 5 Z(t) for all t. In particular, 

f w>> = V(K + 1) < Z(K). Notice that the sequence {F(t + K) 1 t = 0, 1,. . .} is 
generated by the Jacobiiteration starting (at t = 0) at the vector Z(K). The sequence g(t) 
is initialized at the same vector but components are updated as determined by U. Since 

f (WI) I W)t P rop. 1 applies and shows that T(t+ K) < g(t). Combining this inequality 
with Eqs. (5) and (6), we obtain 

zJ(t + K) 5 z(t + K) I z(t) 5 x’(t), vt 1 0. 

Q.E.D. 

Proposition 2 shows that if i(O) satisfies x(0) > t* or x(0) < x* then xJ(t) can ‘lag 
behind” d’(t) by at most a constant number I< of steps. An easy corollary is that the 
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asymptotic convergence rate of zJ(t) is no worse than that of am, if z(0) is as above. 
For example, if we assume that zJ(t) converges at the rate of geometric progression and, in 
particular, that 

/i& (IV@) - Z’llm) 1/t = p, 

it is easily shown that 

$rnnf (]]r”(t) - z’]]~) 
i/t 

2 p. 

3. APPLICATIONS. 

Suppose that f is of the form f(z) = Ax + b where A is an n x n irreducible nonnegative 
matrix and b E ?I?‘, and let xc satisfy x* = Ax’ + b. Under the assumption that the 
Jacobi-type algorithm converges, the spectral radius p(A) of A is less than 1 and (by the 
Perron-Frobenius theorem) there exists a positive vector w such that Aw = p(A)w < w. It 
is seen that Assumption 1 is satisfied and, if the initialization x(0) = w + x* is used, we 
have f (x(0)) = A(x* + w) + b = x* + Aw = x* + p(A)w < x* + w = x(O). Therefore, Prop. 

1 applies and yields x”(t) - x* 2 xJ(t) - Z* = p(A)‘w. In particular, the convergence rate 
of xv(t) can be no better than the convergence rate p(A) of the Jacobi-type iteration and 
we have recovered the result of [2]. 

There are several situations in which the iteration mapping f is nonlinear and satisfies our 
assumptions, e.g. in dynamic programming or nonlinear optimization [l]. One example is a 
variant of the “nonlinear Jacobi” algorithm (incorporating an underrelaxation parameter) for 
the solution of the dual of a strictly convex network flow problem (see [l] for a description 
of the algorithm and its properties). A Gauss-Seidel variant of this algorithm has been 
studied in [3] and has been tested in a parallel environment [4]. Our result shows that the 
Jacobi variant is actually preferable, and this is consistent with what was observed in the 
experiments reported in [4]. 

Another interesting example is the Bellman-Ford algorithm for finding shortest paths in 
networks. Here, we are given a directed graph G = (V, E), with node set V = { 1,. . . , n) 
and edge set E. Also, for each (i, j) E E, we are given a scalar aij representing the length 
of arc (i, j). Let 1 be a destination node, and we are interested in finding the length of a 
shortest path from any node i # 1 to node 1. The Bellman-Ford algorithm finds the shortest 
distances (assuming that they are finite) by means of the iteration 

while xl is fixed to 0. The algorithm is guaranteed to converge starting from any initial 
conditions, the iteration mapping is clearly monotone, and Assumption 1 holds. The stan- 

dard initialization of the algorithm is to let z(O) = f, where Ti = co for every i # 1, and 
Fi = 0. The inequality f(F) 5 F is trivially true and Prop. 1 applies. (There is a minor issue 
because the vector Z does not belong to !R”. However, the proof of Prop. 1 goes through 
verbatim for this case.) We conclude that the parallel Jacobi version of iteration (7) is no 
slower than any parallel Gauss-Seidel variant of that iteration. This is in sharp contrast to 
what happens in serial computing environments in which Gauss-Seidel variants are known 
to substantially outperform the Jacobi iteration. 

All of our discussion has been based on the implicit assumption that there are n processors 
available so that an iteration of the Jacobi algorithm can be performed in parallel, in a single 
step. It should be emphasized that our results are not relevant to the case where fewer than 
n processors are available; in particular, when the number of processors is sufficiently small 
the Gauss-Seidel variant can be shown to be preferable. Similarly, no general statement 
can be made for the case of non-monotone iterations. For instance, there are numerous 
algorithms whose Jacobi variant fails to-converge but their Gauss-Seidel variant converges 
and is therefore preferable. 
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