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ON THE SETTLING TIME OF THE CONGESTED GI/G/1
QUEUE

GEORGE D. STAMOULIS* AND
JOHN N. TSITSIKLIS,* Massachusetts Institute of Technology

Abstract

We analyze a stable GI/G/1 queue that starts operating at time t = 0 with No 0
customers. First, we analyze the time TvN required for this queue to empty for the
first time. Under the assumption that both the interarrival and the service time

distributions are of the exponential type, we prove that limN0 .. TTN0/No . J( - ),
where A and p are the arrival and the service rates. Furthermore, assuming in -
addition that the interarrival time distribution is of the non-lattice type, we show that
the settling time of the queue is essentially equal to No/(p - A); that is, we prove that

lim dti( A°. c=
NO -- -;L 0,

for O<c< 1;
for c> 1,
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where dNo(t) is the total variation distance between the distribution of the number of
customers in the system at time t and its steady-state distribution. Finally, we show
that there is a similarity between the queue we analyze and a simple fluid jnodel.

CONGESTED QUEUE; SETTLING TIME; TRANSIENT ANALYSIS

1. introduction

In this paper, we analyze the settling time of a stable GI/G/1 queue, assuming
that it is initially highly congested. Under certain assumptions on the distributions of
the interarrival and the service times, we first prove that the time for the queue to
empty is asymptotically proportional to the number of customers initially present at
the queue. We then show that the time required for the queue to approach
stationarity (settling time) is essentially equal to the time for it to empty.

We consider a GI/G/1 queue. The interarrival times are independent and
identically distributed with moment generating function A(s). The service times are
independent and identically distributed with moment generating function B(s);
moreover, the service process is independent of the arrival process. The arrival and
the service rates are denoted by A and At, respectively. The number of customers
present at the system at time t (including the customer in service, if any) is denoted
by N(t) and it is taken to be right-continuous. The queueing system starts operating
at time t = 0; the arrival time of the first new customer has the interarrival time
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distribution. The queue is said to be stable [6] if, as k -- o, the distribution of the
waiting time of the kth customer to be served converges to a limiting function,
which is the distribution of a proper random variable (i.e., a random variable that is
finite with probability 1); this limiting function is independent of the initial number
of customers. Except for the DID/1 queue, a necessary condition for stability [10] is
A< A. In fact, stability is guaranteed [6] if A < J and the interarrival time
distribution is of the non-lattice type. (A random variable Z is said to be of the
lattice type if there exist constants a and b such that the only permissible values of Z
are of the form a + nb, with n being integer.) Moreover, in this case, the stationary
distribution (rk)k.=o, ..• of the number of customers in the system exists; we have

def
k = tlim,,. Pr[N(t)= k N(0)= 1] for k = 0, -.

Henceforth, we restrict ourselves to stable queues with A < p and with interarrival
time distributions of the non-lattice type. In addition, we shall always assume that
both the interarrival and the service time distributions are of the exponential type.
That is, we have E[esz ] < a for some s > 0, where Z is a random variable distributed
as the interarrival time; this implies that there exists some sA > 0 such that A(s) is
defined for all s in the interval (--O, sA) (see Section 2.1). Similarly, we have
E[e"- ] < - for some g >0, where Y is a random variable distributed as the service
time; it follows that there exists some SB > 0 such that B(s) isAeffned for all s in the
interval (-0, SB). This assumption on the interarrival and the service time
distributions is rather mild, since it holds for most of the distributions appearing in
practical cases (e.g. Erlang, hyperexponential, etc.).

Let No be the number of customers intially in the system; we shall always treat No
as a positive parameter. We denote by TN. the random variable corresponding to the
time required for the queue to empty (for the first time), namely,

TN finf {t:N(t) = 0)}.
lto0

It is known that the expected busy period duration is finite, i.e. E[T]] <c (see [91
and references therein). Moreover, Pollaczek [11] has derived the joint distribution
of Ti and the number of customers served during this period. Finally, some other
results have been established for the case No = 1 (e.g. see [12]).

In the context of the M/M/1 queue, using well-known results of queueing theory,
TN. can be expressed as the sum of No independent random variables all of which
have the same distribution as the busy period duration T1. Using this, it may be
proved that E[TNJ = No/(p - A) and, if the random variables T,, T2, • -- are defined
on the same probability space, then

lim T 1
No-- N o tA-- )'
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On the settling time of the congested GIIGI 1 queue

where a.s. stands for almost surely (i.e., with probability 1). Similar results hold
for the MIGI1 queue with service time distribution of the exponential type. We
briefly present these results in Section 3.

For the GI/G/1 queue under analysis, we prove that

Tiim a.. 1
Noim- = -

N.-- o uN g-;L

.-. . . .. .

. . .. ...
..-..-.. .. ..-...

It is worth noting that this result is in perfect agreement with intuition. Indeed,
consider a pool that initially contains a quantity No of fluid. If fluid is supplied at a
constant rate A and, at the same time, it is removed at a constant rate M, with A< <p,
then the pool empties in time No/(p - A). In fact, it will be shown (see Proposition
11 in Section 5.1) that this fluid analogy holds to a greater extent.

Next, we consider the settling time of the GIIG/1 queue under analysis. As
shown in [1], there is a close relation between the time for a Markov process to
reach stationarity and the hitting times of certain subsets of the state space. In our
context, after establishing that the time until the queue empties (for the first
time) is approximately equal to No/(t - A), we prove that it is also essentially
the time for the queue to reach steady-state. Indeed, defining ofNo/0 ( - ;),
we show that

lim dNo(rvNc) =  1,
N--_ 0,

·· .(: · ~
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forO<c<l; "
for c>l1,

where dN(t) denotes the total variation distance between the distribution of the
number of customers in the system at time t (under the initial condition N(O) = No)
and its stationary distribution; that is,

dN.(t) max I Pr [N(t) E aj I N(O) = No] --(d)l

= IPr [N(t) = k I N(O) = No] - rkI,
k=0

where xr is the steady-state probability that the system contains k customers and
a(d) = Ek,.k for c Z.. (Intuitively, do(t) is the 'distance' between the
transient distribution of the number of customers in the system (at time t) and its
stationary distribution.) Thus, rN0 (namely, No/(Ip - A)) may be viewed as the settling
time of the GI/G/1 queue under analysis when it initially contains a large number
No of customers.

To the best of our knowledge, both results in (1) and (2) are new. Results of the
form (2) have been proved in [11 for 'rapidly mixing' Markov chains, and in [2] for
the convergence to steady state of closed Jackson networks with a large number of
customers. Interestingly enough, some of the results in [21 are in agreement with an
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approximate fluid model. However, the difficulty with such an approach is that the
validity of a fluid approximation is technically non-obvious. Thus, our work can be
viewed as a step towards the justification of fluid approximations. We expect that
our analysis can be substantially extended to cover more complex systems like
networks of queues.

2. Background

2.1. A note on random variables of the exponential type. The discussion to follow
is based on [3].

A random variable T is said to be of the exponential type if there exists some
positive s such that E[e")] < m. The most straightforward example pf such a random
variable is one that is exponentially distributed with mean 1/A; for this random
variable, we have E[es"T < c for all s < A.

The moment generating function of T is defined as follows: G(s) lf E[eTi. If T is
of the exponential type, then there exists some positive s such that G(s) is finite for
all 0-s <si. Moreover, for all s* E (0, s1) the following are true: G(s) is strictly
convex and continuous on [0, s*] and has derivatives of all orders on (0, s*); its first
derivative is strictly increasing on (0, s*), provided that Pr [T = 0] * 1. Furthermore,
we have E[T] <m- and

E[T] = lim dG(s)
slo ds

Henceforth, we restrict ourselves to random variables of the exponential type that
satisfy in addition the following property: there exists some positive s2 such that
E[e'T ] < for all s e (-s2, 0). Clearly, this property is satisfied by random variables
that are either lower bounded (that is, there exists some finite constant to such that
Pr [T - to] = 1) or can be expressed as the difference of two lower bounded random
variables of the exponential type that are independent.

The upper and lower tails of the distribution of a random variable of the
exponential type may be upper bounded by using the Chernoff bound. Indeed, let t
be a finite constant. We have

Pr [T - t] s E[e"T]e -" = G(s)e-", Vs e (0, st).

In the case where t > E[T], there exists some positive s (depending on t) such that
G(s)e" < 1 for all s e (0, s'). Similarly, we have

Pr [T < t] 5 E[e ']ee" = G(-s)e', Vs E (0, s2).

In the case where t < E[T], there exists some positive s" (depending on t) such that
G(-s)es"< 1 for all s E (0, s").

We apply the above results to the random variable EtI Xi, where X 1, - -•, XN
are independent random variables that have the distribution of the random variable

·:·:·:': ·:
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On the settling time of the congested GI/G/ I queue

X, which is of the exponential type. Let 6 be positive; we have

N

Li=

where 01(6) is a positive constant depending on 6. Indeed, we have
E[exp (s Ej,= X,)j = [G(s)]N, where G(s) = E[esX]; applying (3) with s = s*, where
s* is chosen to satisfy G(s*)exp(-s*E[X](1+ 6))<1, and defining 01(6)4d

-In G(s*) + s*E[X](1 + 6), we obtain (4). Similarly, for any positive 6, we have

Pr X -- E[X](1 - 6)N -5 exp (- 0 2(6)N),

where 02(6) is a positive constant depending on 6.

2.2. A note on exponential convergence. The discussion to follow is based on [7].
Let (ZN)N.,.... be a sequence of random variables (not necessarily defined on the
same probability space) and let (hr)N=1,... be a sequence of positive numbers with
limN_.hN = m. The sequence (ZN/hN)N=1I... of random variables is said to converge
exponentially to the constant z, as N--+ , if for any positive 6 there exists some
n(6) -1 and some positive y(6) (both depending on 6) such that

VN 2 i(65).

.........

Moreover, if the random variables (ZN)N,=,... are defined on the same probability
space, then the inequality above implies almost sure convergence, namely

limN_.(ZN•hN) = z.

2.3. A note on notation. Throughout this paper, the notations Pr [I] and E[X]
stand for Pr [I I N(O) = No] and E[X I N(O) = No], respectively. Similarly, Pr [r I A]
and E[XIA] stand for Pr[rl A and N(0)=No] and E[X I A and N(O)=N No],
respectively, unless the event A is of the form N(0) = n*.

Also, LxJ denotes the integer part of x, and [xl denotes the smallest integer that
is greater than or equal to x.

3. Results on the M/MI1 and the M/G/1 queues

In this section, we present some results concerning the time required for the
stable M/M/1 queue to empty. Similar results hold for the stable M/G/1 queue
with service time distribution of the exponential type, as well.

3.1. The MIMI1 queue. The proposition to follow suggests that, in the context of
the MIM/1 queue, the random variable TNo can be expressed as the sum of No
independent and identically distributed random variables. This may be proved by
decomposing TNo into sub-busy periods (e.g. see [10]).

Pr X

[

, M E[X](1 + 6)N 5 exp (-#x(6)N),

i:·": ·:·1
.. :.:.
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Proposition 1. The following is true:

TN. Xvi

where V1, - - -, VN0 are independent random variables, all of which have the same
St

distribution as the busy period T, (the notation = denotes equality in distribution).

The moment generating function of T, is known in closed form (see [10]), namely

+ii 4- + - - % - - A,
E[exp (sT,)] = ' *. A2, Vs:5 o0;

this leads to the following result for the probability density functioq of T,:

pr,(t) = e I(2tV ), VtL 0O,

where I1(&) is the modified Bessel function of the firstkind-of order 1. According to

[4], the integral f- pr,(t)e" dt is equal to the expression appearing on the right-hand
side of (6) for all s < (N - N/)2 . Therefore, the random ,variable T, is of the
exponential type. Moreover, it follows from (6) that E[TI 1/(p -'A). Hence, using
Proposition 1 (and the strong law of large numbers), we obtain the following results.

Proposition 2. The random variable TN0 is of the exponential type and satisfies

No dN f •T.Nos. 1
E[TN = ?No and lim - - .

3.2. The MI/G/1 queue. Propositions 1 and 2 of Section 3.1 hold in the context of
the stable M/G/1 queue with service time distribution of the exponential type, as
well. Indeed, the decomposition of TN. into sub-busy periods is still applicable.
Furthermore, it is well known (see [10]) that, in the context of the M/G/1 queue,
the moment generating function G(s) of the busy period duration T, satisfies the
following functional equation: G(s) = B(s - A + AG(s)) for all s - 0. This implies
that E[T1] = 1/(j - A); moreover, because of Proposition 1, we have

E[T4)]= N N and lim -. 1

- A o-=No  ~-
Finally, the fact that TNo is of the exponential type follows from Corollary 6 in
Section 4.2.

4. Preliminary results on the GI/G/1 queue

In this section we present several results on the time required for the stable
GI/G/1 queue to empty. As already mentioned in Section 1, it is assumed that both
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On the setling time of the congested GI/G /I queue
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the interarrival and the service time distributions are of the exponential type, that
the interarrival time distribution is of the non-lattice type and that A < 1. A
powerful result such as Proposition 1 does not hold in the case where the arrival
process is not of the Poisson type. Thus, the derivation of (1) in the more general
context of the GI/G/1 queue is considerably more complicated as compared to the
proof of Proposition 2.

4.1. Some preliminary results. First, we establish a lower bound on E[To]. Let N
denote the number of arrivals until the system is met empty for the first time. In
other words, we have X = n if the arrival of the nth customer is the first to occur at
a time larger than TN0. Let f.f denote the arrival time of the Xth customer. Clearly,
the number of customers served until the queue empties equals X + No - 1. The
following lemma is established in [12] by using Wald's equation. (In fact, only the
case No = 1 is considered there; however, the result may be easily extended to hold
for No=2,. - - .)

Lemma 3. The following are true:

E[(]= =AE[xxl and E[] +No-.1= IE[TN].

Moreover, if E[X ] = -, then E[SZ] = E[TNo =

In the case where E[SI < m (which will be shown to always b&trite for the type of
queues we consider), Lemma 3 implies that the average arrival rate up to (and
including) the time when the queue is met empty equals A. Similarly, the average
service rate up to (and including) the time when the queue empties equals u. Based
on this lemma, we prove the following result.

Proposition 4. The following is true:

N-I <E[TNJ, for No=l,-.-.

Proof. The result is trivially true if E[TNJ= o. However, it will be shown later
that this never occurs.

Assuming that E[TNJ]<oo, we prove the result as follows. Clearly, we have
TN. < 1 with probability 1, which implies that E[TNO < E[-X]. Combining this with
Lemma 3, we obtain

E[TJ < (IzE[Tr N - No + 1).

Rearranging terms in (7) and using the fact A </ , we obtain the inequality in
question.

4.2. A bound on the upper tail of TNo. In this subsection, we derive an upper bound
on the upper tail of the distribution of TN; we also prove some other results on TN,
that follow from this bound.

~.. 1

i/
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Proposition 5. For any positive 6 there exist positive numbers C(6) and rt(6) such
that

Pr [TN - rNv(1 + kb)] < C(6) exp (-Vp(6)kNo), for No, k = 1,---

where tNo f No/l( - A).

Proof. We fix a positive 6. Obviously, if the initially present customers and the
ones to arrive during the time interval [0, rN(1 + kS)] have a total service time that
is smaller than rNo(1 + k6), then the queue is empty for some part of the time
interval [0, rN0(l + k6)], even though it may be non-empty at time t = N0o(1 + kS).
Let Y, be the service time of the ith customer, for i = 1, - - , and let 4C(6) be the
number of arrivals during the time interval [0, tN0(l + 6)]. Then,

E[A,(k6)+N )].
Pr [TN-, N(1 + k6)] < Pr 2 Yi >- v(1 + k6)

We define

q(6)9 [T 0(1 + ar6),

where &a is a positive constant satisfying 1< < l/A. Clearly, .

(10)

[A(k)+N k)] (k)+No
Pr[ *Yj_ýt0(1+kb5)]:Pr[ YC r(1+k4)

+ Pr [.A(k6) > q(k6) + 1].

In what follows, each of the two terms appearing in the right-hand side of (10) is
appropriately upper bounded.

Since A(kb) is the number of arrivals during the interval [0, rNo(1 + k6)], we have

r(6q([( k) ( )+ 1" ( kS)
Pr [A(k6) > q(k6) + 1] = Pr Z-_5No(1+ k6)

=Pr 1 (q =(k6)+1 q( + k6)+
-r +q(k)+1 k i=1 q(kb) + 1'

where Zi denotes the ith interarrival time. It follows from the definitions of q(6) (in
(9)) and N, that

tNv(l+k H) 1+k6

q(kb)+1 A(1+ ak6)
† .: .* .*.·· . ·. . .Z: :

Furthermore, since a > 1, we have

1+ k 1+6 = 1 6(a - 1)
-A(1+ k6)< 1(1+a6) 1i-
A(1 + auk) At(1+ a6) l + ad

.::;
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On the settling time of the congested GI/G/ I queue .

for k = 2, - - -. Combining these two inequalities with (11), we obtain

.. ` . .. . p.. ...

.'.~. I

......

(12) Pr [A(k6) (- q(k6) + 1] 5_ Pr Z- - 6( 1 - )) (q(k6) + 1).

The random variables (Z,)il 1,..-,q(k6)+1 are independent and have the interarrival
time distribution, which, by assumption, is of the exponential type; moreover, since
a&> 1, we have b(a - 1)/(1 + ca6)>0. Thus, we may upper bound the right-hand
quantity in (12) by applying the Chernoff bound; using (5) in Section 2.1, we have

q(ck6)+

(13)where () > 0. Since () is positive, it follows froexp(-m (6)(q(k6) + )),

where q9(6) > 0. Since 'Pi(6 ) is positive, it follows from (9) that

(14)
exp (-jp1 (6)(q(k6) + 1)) < exp (- q~(6).rNo(1 + atk6))

< exp (-gP1(6)ArNark6).

We define A).(6) (cp( 6 )3a6/(p - A). Since A < p and pq,(6) >0, we have 1p(6) >
0. Combining the previous definition with (13), (14) and the fact. No = No/(1 - A),
we obtain

Pr z, Z -L( 1 - l)(q(k6) + 1)] < exp (-1(6)kNo).
e-2 1+ a

Using (12) and the inequality above, we have

(15) Pr [A¢(k6) - q(kb) + 1] < exp (- ipj(6)kNo).

The other term in the right-hand side of (10) may be upper bounded by reasoning
similarly. First, we have

q(k6)+No 1 q(k)+hb (1+k6)
(16) Pr Y rN(1 + k6)] = Pr [q(k6)+NW (=(, Y+ k6•

Using the definitions of q(6) (in (9)) and tNo, we obtain after some algebra

_v_(1 + k6) 1 +k6
q(k6) + No At + ,ak6'

Furthermore, since ac <K I/A, we have..

I + k6 1+6 1 6(+ - Aa) o -2. -
> 1+ A- for k=2,---

S+ Aak6 + AA6 + )p + A)

~1

.~ :~-.7· ~·:~·
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Using these two inequalities and (16), we obtain

(17)

Sq(k6)+NoPr Y • • YrN+o(1 +k6)
I=1

The random variables (Y )i=,.--..q(k6)+No are independent and have the service time
distribution, which, by assumption, is of the exponential type; moreover, since
a< ~/A, we have 6(u - aA)/( + Ak6) >0. Thus, we may upper bound the
right-hand quantity in (17) by applying the Chernoff bound; using (4) in Section 2.1,
we obtain

(18)

[q(k6)+No 6i 51
Pr 7 _ YIpA-1 + (q(kb)o + N)

i= x A + Xab

- exp (- q2 (6)(q(k6) + No)),

where q 2(6) > 0. Since 9p2(6) is positive, it follows from (9) that

(19) exp (-_ 2(6)(q(k6) + No)) < exp (- P2(6)(zNo(1 + *k6) + No - 1))

< exp (q 2(6)) exp (- 2(6) 5~rNdak6).

We define

(20) C2(6) exp (92(6)) and 'P2(6) 'f 2(6)a6/(p -

Since A < f and o > 0, we have ip2(6) >0. Combining (18) with (19), (20) and the
fact tNo = No/(y - A), we obtain

r [q(ka)+No Y >I 1 'Y
Pr - 1 + (q(k) + No) < C2(6) exp (- p2(6)kNo).

This together with (17) implies that

(21) Pr ; Y, 3(1 + kL)] < C 2(6) exp (- 2(6)kNo).
L i=:l

It follows from (8), (10), (15) and (21) that

Pr [T• _ rNo(1 + k6)] < exp (- •p(6)kNo) + C2(6) exp (- p 2(6)kN0 ).

After defining p(6) 'min {ip,(6), iP2(6)} and C(6) -- 1 + C2(6), the result follows
from the inequality above.

It is a consequence of the proposition above that the random variables (T.).-t,...
are of the exponential type; moreover, their moment generating functions have a
common interval of definition in the positive axis. Indeed, we have the following
result.

:·::v ;i: I·..·!

:·r: .: i··:".
e~:~::~: ;

q(k6)+NAro .5(,u - A
MPr Y A_11 1+ )(q(k6)+No].)

i= xA + Amrb

...... ....
.. . . . .. .. . .
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On the setling time of the congested GIIG /1 queue

Corollary 6. There exists a positive s* such that

E[exp (sTN)1 < o, for No= 1, - - - , and Vs E (0, s*).

Proof. We fix a positive 6. We have

E[exp (STNo)] = E[exp (sTNo) I TN < rNo(l + 6)] . Pr [TNo< rN(l + 6)]
Mo

* -*. .*

+ I {E[exp (sTN.) I rN.( + k6) - TN < .(1 + (k + 1)6)1
k-Pr + k T < + (k + )

. Pr [ r(1 + k6) 5 TN < rNO(1 + (k + 1)6)}.

Obviously,

E[exp (sTNo) I TN, < rNo(1 + 6)] < exp (srNo(1 + 6)), Vs >0,

and

E[exp(sTN) I rN(1 + k6)- TN, < vrN(l + (k + 1)6)] < exp (srNo(1 + (k + 1)6)),
for k = 1, * -*, and Vs > 0.

Combining these inequalities with (22), we obtain

E[exp (sTNo)] < exp (srN.(l + 6)) + ( {exp (SrNo(1 + (k + 1)6))
k=1

(23) exp (sr,(1+6)) . Pr [r (1 + k6) _ T,,< eo(1 + (k + 1)6)1)]}
_exp (s'tN(I+ 6))

+ exp (SvNo(1 + 6)) {exp (srzk6) . Pr [TNo t•(l + k6)]).
k-i

Using Proposition 5, it follows from (23) that

E[exp (sTN)] < exp (stN(1l + 6))

+ exp (St~N(1 + 6))C(6) i exp (srNok6) exp (- p(6)kNo)
(24) k=1

(24) =exp (s (1 + 6))

+ exp (SrNo(1 + 6))C(6) , [exp (srN6 - Vp(6)No)lk.
k=-1

Since p(6) > 0 and zN40 No/(p - A), we have 0 < exp (s•t 6 - i(6)No) < 1 for all

s E (0, s*), where s* is defined by s* dt ip(6)(y - ))/6 > 0. Therefore, the geometric
series in the lower part of (24) is convergent for all s E (0, s*); this implies that
E[exp (sTN)J] <oo for all s e (0, s*). In particular, we have

E[exp (sTN)]<exp(srN,(1 + 6))

1
+ exp (str(l + 6))C(6) , Vs (0, s*).

exp ([(6) - s No - 1

.. .... -

:~.: '1. .. .~.
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GEORGE D. STAMOULIS AND JOHN N. TSITSIKLIS

Since TN0 is of the exponential type, it follows from the discussion in Section 2.1
that E[TNJ is finite for No = 1, --. In particular, reasoning as in the proof of
Corollary 6, it can be shown that E[TN] is close to rN, for sufficiently large No-
Indeed, we have the following result.

Corollary 7. We have E[TNJ] < for No = 1, - * -. Furthermore, for any positive
6, there exists some n'(6) 2 1 such that

E[TN] ý 5rNo(l + 6), VNo , n'(6),

where rNo -= NoI(# - A).

Using Proposition 4 and Corollary 7, it is easily established that

lim E[TNO]= I1
N.o-- No # -A

However, we are interested in a stronger result, namely

T4 a.s. 1
lim -Tr.= 1

No- - N o  -

In order to prove this, we also need an upper bound on "the lower tail of the
distribution of TN0; such a result is presented in the next subsedioh.

4.3. A bound on the lower tail of TN.

Proposition 8. For any positive 6 there exist some n(6) - 1 and some positive
ý(6) such that

Pr [TNo rN,,(1 - 6)] < exp (- (6)No),

where rN', No/(p - )).

VNo e n(6),

Proof. Clearly, it suffices to establish the result only for those 6 in the interval
(0, 1).

We fix a 6 satisfying 0 < 6 < 1. Let Ad(6) denote the number of arrivals during the
time interval [0, tNo(l - 6)], where rNd No/(p - A). Moreover, let Yj denote the
service time of the ith customer and Zi denote the ith interarrival time. We define
the sequence (Xk)k=o,... of random variables as follows:

No--I

i= 1

No+k-1 k

and Xk X -T Zi,,
i=1 i=I

for k = 1, ---.

Clearly, the k*th customer to arrive is the first to meet an empty system upon
arrival if and only if X, ý-0, - - -, Xk*-- 2-0 and Xk. <0 (for k* = 1 the condition is
Xt < 0). Given the event Ad(6) = m, the system is empty for some part of the time
interval [0, zN(l - 6)] if and only if at least one of the first m + 1 customers to

·'
.'

`·~· ~ : i

..,. ;:. ~L· ~·:. ;~h: ~"'
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On the settling time of the congested GIIGI1 queue

arrive meets an empty system upon arrival. Therefore, we have

Pr [Tv -5 r(1 - 6) 14(6)=m]

= Pr [3k e (1, - , m + 1}: Xk < 0 1 A(6) = ml,

or equivalently,

Pr [TN4-rN(l - 6) 1 A(6)=m]

(26) =Pr Lmin {Xk)<0 I(6)=m],

~. . . . " . .. •.°.

s•.-':- :- I: :•. i·l:":'-: .::-'..-.:,

We define m* by

(27) m*= 1- ."

Using (26), we obtain after some algebra

Pr [ To- *rN (1 - 6)]

(28) n*-1
S< O Pr[ min (Xk}<OandA(6)=m +Pr[Ad(6) -- m*].

Clearly, we have

min {Xk}h min {Xk}, for m=0,---,m*- 1.
1•;km+1 ISfkm"

Combining this with (28), we obtain

Pr[TN;5rN(1- -6)] < T, Pr min {Xk<0 and A(6)=m + Pr[A(6)_-m*]
m=0 l15k;m*

(29) =Pr min {Xk} <0 and £(6) -m*-1 +Pr [(6) m*

Pr min {Xk} <o] + Pr [A(6) ) m*].

In what follows, each of the two terms appearing in the lower part of (29) is
appropriately upper bounded.

Since A(6) is the number of arrivals during the interval [0, -N0(l - 6)], we have

(30) Pr [A(6) - m*l = Pr Z, - No(1 - 6) = Pr [-i Z, :- ]

Using the definition of m* in (27) and that of rNo, we have.

(31) M* T1--/ <1-- ( .
m* 1- 6/2n \-21

·.-........... ~......

for m =0, -

for m =0, ---
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Combining (30) with (31), we have

(32) Pr[AI(6)-m*j]Pr z5l- Zi - m* .

...- ..-.
i·

The random variables (Z1)i=1•...,. are independent and have the interarrival time
distribution, which, by assumption, is of the exponential type. Thus, since 6 > 0, we
may upper bound the right-hand quantity in (32) by applying the Chernoff bound;
using (5) in Section 2.1, we obtain

Pr Z, zi-5 -(1 - m ] exp (-p(6)m*),

where qt(6) > 0. Since 9Pq(6) is positive, it follows from (27) that

exp (-q9,(6)m*) <exp (-cp(6)rN1- .

We define
deA /6VAI

SiceA< ndq~()>0 e ae ~QS >.Cobnigtieprvou efntin

Since A < C and 97,(6) > 0, we have 01(6) > O. Combining tire previous definitions
with (33), (34) and the fact tN. IM No/(pl - A), we obtain .'

Pr = Z, - A-t'(1 m* exp (-4 1(6)No).

This together with (32) implies that

Pr [A(6) m*] < exp (- 4 1(6)No).

We now consider the other term. We have

Pr[ min (Xk} <0o]

=Pr min {Xk-Xo}<-Xol=E[Pr[ min {Xk-Xo}<-XOIXO].E15k6m* J L Llkm m*

Let a be some constant satisfying 0 < a < 1. It follows from (36) that

Pr [min {Xk} < 0

= Pr [Xo>NN-C(1 - a6)]

E[Pr[ minc. {X - Xo} <-X Xo] Io Xo> Nop-(1- a6)]

+ Pr [Xos No-'(1 - a6)]

.E[Pr [min {Xk - x<-Xo}< X IX XoNoN-0 '(l-ab)].
L L1k;m*

'C·

·"~-r~~ .~,~~~,..~.....-.,. ....

· · i
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On the settling time of the congested GIIGI 1 queue

We define the random variables (Vk)k=0,--...m as follows: Vk d-f-X + Xo for
k = 0, - - - , m*. Using this definition and (25), we obtain

-.....

·:1·`· ~· · · · -·~:·:

·:.
·~ ·-

;:···-~: --

"\;·~

i

k

Vo=O and Vk = Y(- .+No-1 + Z1),
i=1

for k = 1, - - -, m*.

i
Obviously, we have

Pr min {Xk - X} < -Xo I X
1Skgim*

Pr tmil Io= Pr l•_k•m (,,,.(V} xo[].=Pr min (-Vk}<-Xo XoPr max (Vk>XoXL15.k~m* = L15ksm*I

However, it follows from (38) and (25) that the random variables V, • "-, V',. are
independent of Xo. Using this and (39), we obtain

(40) Pr min {Xk- Xo} < -Xo Xo = xo =Pr max {Vk >0
L11kAm* 1= L1Sk;Sm' J

Vxo 0 0.

Furthermore, we have

Pr[ max {ax Vk} >Nom-{(1 - ab6),
L1gk.m' -aL>k;Sm* J

0o >No-( 1 - -1 a).

Combining this with (40), we obtain

EPr min -Xk-X I<-X o]lXoX o>Nol-t(1-a6)]
L L1k~gm*J

=-Pr max {Vki >NoA-(1-r6)]
U1gk ( wm*

Using this and (37), we have

.. I .
r~.,· -c·L1'Z~''`.ZI ""-"

-· ·--

~· ':

I

Pr Min (Xk} < 0
119k m* I

5Pr max (Vk}>Noy-'(1-tr6) +Pr[Xo:5Nojz-'(1-&6)j.
L11k;m* J

(41)

In what follows, each of the terms appearing in the right-hand side of (41) is
appropriately upper bounded.

We define nz(6)fmax{2/(&6)-1,2}. It follows that No-x(1-ab)_5-
(No - 1)#-t(1 - (ca/2)6) (and No - 1 > 0) for all No >-- n2(6), - - -. Therefore,

(42) Pr[XoNoP-i(1- a6)]5-Pr[ Xo-(No - 1)p-'1 1- a1 ) VNo : n2(6).

It follows from the definition of Xo [see (25)] that the lower tail of its distribution
may be upper bounded in the way presented in Section 2.1. (Recall that service

-.·2----~-::.:`.;'.. :~. ;·:
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5. The main results on the GI/G/1 queue

The main results of this paper are presented in this section.

5.1. Asymptotic linearity of TNo and the fluid analogy.

Proposition 9. The sequence (T,/n).=, ... of random variables converges ex-
ponentially to 1/(p - A), as n--* •. Furthermore, if these random variables are
defined on the same probability space, then convergence holds in the 'a.s.' sense as
well.

Proof. We fix some positive 6. Using Proposition 5 (applied with k = 1) and
Proposition 8 (and recalling that rv Nol/(p - A)), we have

PrL•N A/p_ ] < C ( 6 ) e x p ( - ( 6 ) N o) + e x p ( - f ( )N o), °

y(6) 4- min {V(6), ý(6))

n*(6) max {n(6), in (C(6) 1)1
y(),we obtain

(49) Pr TN • 1 -Z <exp (-(6)No), VNo- n*(6).

This implies that the sequence (T,/n),,=,... of random variables converges exponen-
tially to 1/(pu - A), as n -* (see Section 2.2). As already mentioned in Section 2.2,
if the random variables (T,).=... are defined on the same probability space (which
is always possible), then exponential convergence implies almost sure convergence.

Before proceeding to the other two main results, we establish a technical lemma.
We define the random variable RNo as follows:

(50) RNo- inf {t:N(t) 1)
ri- TNo

Clearly, RNo corresponds to the first regeneration point of the queue. It is intuitively
clear that, for sufficiently large No, the upper tail of RN, behaves similarly to that of
TN0 (see Proposition 5). We now present this result; in order not to break continuity,
we give the proof of this technical lemma in Section 5.3.

Lemma 10. For any positive 6 there exists some 1(6) and some positive 0(6) such

Pr [RN0 ý ?v(1 + 6)] : exp (- (6)No), VNo _i 1(6).

In Section 1 we introduced a simple fluid model, namely a pool that initially
contains a quantity No of fluid; in this pool, fluid is supplied at a constant rate A and,

W-*1

.:... .;.,·.

~~I
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VNo _ n(6).
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On the seuding time of the congested GIIGI I queue

44. ' '

at the same time, it is removed at a constant rate p. As already pointed out in
Section 1, the result in Proposition 9 is reminiscent of the fact that the pool empties
in time No/(p -;A). This analogy may be extended even further. Indeed, the
aforementioned pool contains a quantity (1 - c)No of fluid at time cNo/(p - A) for all
c e [0, 1]; moreover, it contains no fluid at time cN0 /(p - A) for all c >1. The
analogous results for the type of GIIG/1 queue under analysis are as follows.

Proposition 11. The following convergence results hold in the exponential sense:

limN(Noc) 1 - C,

No- - No to,
for 0 -- c - 1;
for c> 1,

where N4- No0/(Ip - A). Furthermore, if the random variables involved are defined
on the same probability space, then the above results hold in the 'a.s.' sense of
convergence, as well.

Outline of the proof. The result is obvious for c = 0.

(a) We fix some c e (0, 1]. We have to show that for any positive e there exists
some m(s) - 1 and some positive 0(e) (both of which may possibly depend on c)
such that

Pr [IN(rNoc) - (1 - c)NoI ý eNo] - exp (-O(sE)No), eo >- rn(e).

Assuming that No > 1/c, we introduce the following priority scheme: we choose
[(1 - c)Nol customers among those initially waiting to be served; these customers
are assigned the lowest priority; priority assignment is irrelevant to the customers'
service times. (In fact, no priority scheme is introduced for c = 1.) Therefore, the
priority scheme introduced does not affect the statistics of the process N(t) [141. We
define

T f inf {t:N(t)= r(1 - c)Nol }.
It0

Since low-priority customers are 'transparent' to the ones with higher priority, we
have

SStT = Ttnal.

(This is because [(1 - c)No + [cNoj = No.) We fix a positive e. For any positive 6,
we have

Pr [IN(zNac) - (1 - c)Noj - ENo]

= Pr [IN(t•Nc) - (1 - c)Nol 2 eNo and IT - rNocl SNo]

+ Pr ([IN(r•c) - (1 - c)No0 
> ENo and 0 - T - NoC < 6No]

+ Pr [IN(rNoc) - (1 - c)NoI - eNo and -6No < P - rNC < 0],

. - ..- ....- .

4· .·44 ,444
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which implies that

Pr [IN(tavc) - (1 - c)NoI - eNo] 5 Pr [IT - rNvcl - 6No]

(52) + Pr [IN(rNoc) - (1 - c)NoI ? eNo and 0 - T - oc < 6No]

+ Pr[IN(rNoc) - (1 - c)Nol - ENOI - 6NO < T - tNc < 0].

Each of the three terms in the right-hand side of (52) will be upper bounded by
some quantity that decays exponentially, as No-* oo. This may easily be done for the
first term. It suffices to combine (51) with (49).

Now, we consider the second term. Since the system contains more than
[(1 - c)No] customers at any instant prior to T, we have

Pr [IN(-rNc) - (1 - c)NoI - eNo and 0 5 T - tNoC < 6No]
(53) = Pr [N(rN0c) - (1 - c)No - eNo and 0 5 T - rNc < 6Mol

< Pr[T - Nc < 6No I N(rNvc) - (E + 1 - c)No and T -rNc].

The quantity in the lower part of (53) equals the probability that the system contains
exactly [(1 - c)No] customers at some time in the interval (-rc, rNc + 6No) even
though there are at least r(E + 1 - c)No] customers present at time tr. Since
r(E + 1 - c)No] - r[(1 - c)N0] 2 reNol - 1, the quafitity in the lower part of (53)
may be upper bounded by the probability that at least [sNol - 1 customers complete
service during the time interval [rNoC, rNo C + 6No). Applying t.e LChernoff bound, it
may be shown that the latter quantity decays exponentially, as No--oo, provided
that 6 < ep-.

Finally, we consider the third term in the right-hand side of (52). We have

Pr [IN(•vc) - (1 - c)Nol - eNo I - 6No < T - rN0c < 0]

= Pr [N(rNoC) - (e + 1 - c)No I - 6No < T - rNoC < 01
+ Pr [N(rNc) 5 (-e + 1 - c)No I - 6No < t - rNoc < 0].

The first term on the right-hand side of (54) may be upper bounded by the
probability that at least reNol - 1 customers arrive during the time interval
(-6No + rt 0c, rN0c). This decays exponentially, as No-> oo, provided that 6 < eA-.
(The arguments for this are similar to those in the previous paragraph.) As for the
other term, it equals 0 in case of e > 1 - c; in case of e _ 1 - c, it may be upper
bounded by the probability that at least [eNo] customers complete service during
the time interval (- 6No + vNc, rNc). This decays exponentially, as No- -oo,
provided that 6 < Ep- '.

(b) We fix some c > 1. We have to show that for any positive e there exists some
m(e) - 1 and some positive O(e) such that

(55) Pr [N(rNoc) - eNo] - exp (- p(E)No), VNo - rm(e).

Let RN, be the random variable defined in (50). We fix a positive E and a 6 satisfying
0 < 6 < c - 1. Reasoning as in similar cases, we obtain

Pr [N(rN0c) _ eNo] - Pr [RN, - rN0(1 + 6)]
+ Pr [N(rN c) - eNo I RNo < rvN(l + 6)].

:·
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On the settling time of the congested GI/GII queue

The term Pr [RN, - No(1 + 6)] decays exponentially, as No--oo (see Lemma 10).
Furthermore, since 1 + 6 < c, and RNo is a regeneration point of the queue, we have

(57) Pr [N(rG.c) - eNo I RN = tl

= Pr [N(rNoc - t) - eNo I N(0) = 11, Vt E [0, TNo(l + 6 )).

It has been established in [8] that the queue under analysis is geometrically stable
under the initial condition N(0) = 1. That is, for any sufficiently small positive y
there exists a D(y) such that Pr [N(t) -M I N(O) = 1]_5 D(y)e- •M for all t 2 0 and
M = 1, - - *. Applying this with M = r[No] and using (57), it follows that the second
term in the right-hand side of (56) decays exponentially, as No-0 oo. Combining this
with (56) (and the conclusion following it), we obtain (55) after some algebra.

5.2. The settling time. Proposition 11 implies that, for c < 1, the humber N(-rNc)
of customers contained in the system at time tNoC is asymptotically e(No) (i.e., of the
same order of magnitude as No), with high probability. Therefore, for any fixed
ce (0, 1), at time CtNo the queue is still away from steady-state for all sufficiently
large No. Thus, the settling time of the queue may not be asymptotically smaller
than rTNc, for any c e (0, 1). On the other hand, applying Proposition 11 with c = 1,
we see that the number N(tr0) of customers contained in the system at time tN is
asymptotically o(No) (i.e., of smaller order of magnitude than.-No), with high
probability. Thus, it is reasonable to expect that, for sufficiently large No, the time
required for the queue to approach stationarity, starting from the time instant rN, is
negligible as compared to rn,.

The above discussion implies that the settling time of the GI/G/1 queue under
analysis is asymptotically equal to tN,. This is established in the proposition to
follow.

Proposition 12. The following is true:
lm dN,1NoC){ 1 , for0<c<l;

NO- d- 0, for c > 1,

where dN,(t) is defined at the end of Section 1 and rN.4-No/(P - k).

Proof. We consider the cases 0 < c < 1 and c > 1 separately.
(a) Let c be a constant satisfying 0< c <1. First, we show that

limNo.. Pr [N(tNoc) - D] = 0 for all D - 0. We fix some non-negative D and some
e* that satisfies 0 < e*< 1- c. It has been established in Proposition 10 that there
exist some m(e*) - 1 and some positive O(e*) such that

.. .
Pr [IN(t-c) - (1 - c)No > i*No] - exp (- #(e*)No),

which implies that

(58) Pr [N(rNoc) - (1 - c - e*)Nol - exp (- #(E*)No),

VNo -m(e*),

VNo 2 rtt(z*).

Since 1-c-e*>0, we have D-5(1-c-e*)No for all No- D/(1-c- e*).

:.;:····-:··: ·--- ·-r~-N~Cr~-~~.: -.~-W:IIZY~
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Combining this with (58), we have

Pr [N(,vc) - D] 5 exp (-O(E*)No), VNo - M*,
where

Clearly, this implies that

(59)

M* V max mt(e*), D 0.1c - E

lim Pr [N(•Nac ) s D] = 0.
No- --

Next, let (Xk)k=0.... be the steady-state distribution of the number of customers in
the queue. We fix an e satisfying 0 < e < 1. Since the queue under analysis is stable,
there exists some D(e) - 0 such that ikD(s)•k- 1 - E. This together with (59)
implies that there exists some L(e) such that

(60) IPr [N(rNoc) e -4.] - x(rd,)j > 1 - 2E, VNo -L(e),

where ~, I{ (k: k 5 D(e)}. We now notice that

|Pr [N(rN0c) e d.] - r(d )I - dy (roC) 1.

This together with (60) [which holds for all ee (0, 1)] proves that
limN., dN(-No) = 1.

(b) Let c be a constant satisfying c>1 and let 6 be defihed as 6 (c -1)/2;
clearly, we have 6 >0. Using the alternative expression for the total variation
distance (see Section 1), we obtain

(61)

We- have

dNo(rNoc) = 12 I|Pr [N(rN0(1 + 26)) = k] - JrkI
k=0

Pr IN(rNo(1 + 26)) = k] = Pr [N(-No(1 + 26)) = k and RNo - r,_(1 + 6)]

+ Pr [N(r-(1+ 26))= k and RN> !V(1 + 6)],

where RN0 is the random variable defined in (50) of Section 5.1. Using this and the
triangle inequality, it follows from (61) that

(62)
dNo(r Nc) -- IPr[N(N 0(1 +26))=k and RN -jrl(1 + 6)] - rk

+ Pr [N(rN((1+26))= k and RN> rN(1 + 6)].
k=O0

In what follows, each of the two terms in the right-hand side of (62) is appropriately
upper bounded.

Starting with the last term, we have

(63) . Pr [N(-N(1 + 26))= k and RN > rN0(l + 6)] = Pr [RN > 1No(1 + 6)].
k=O

~-.r·z"·-::
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.... . .-... .....

Using Lemma 10, we obtain

(64) Pr [RN > t (1 + 6)1 -5 exp (- 0(6)No),

where 0(6) > 0.
Now we consider the first term in the right-hand side of (62). Since RN0 is a

regeneration point of the queue, we have

(65) Pr [N(vrN(1 + 26))= k RN. = t*I

= Pr [N(,rv(1 + 26) - t*) = k I N(0) = 1],
We define

(66) fk(t) dPr [N(t) = k I N(O) = 1]- k,

Vt* e [0, •N•(l + 6)].

it 2 0.

Clearly, we have E7.-=ofk(t) = 0 for all t- 0; thus, it follows that

fk(t)l = 2 2 fk(t),
k=0 keE'(

Vt - 0,

where f+', {k :fk(t) 2 0}. Clearly, (66) implies that ,k&.fk(t)1 - 1 for any d C_ Z..
Combining the previous two results, we obtain

S Ifk(t)l - 2,
k-=O

Vt - 0.

Since xk limt., Pr [N(t) = k I N(0) = 1], it follows from (66) that lim_..fk(t) = 0
for k = 0, - - - . Due to (67), we can apply the dominated convergence theorem and
obtain

lim . Ifk(t) = 0.
t-- k-0

.
Therefore, for any positive E there exists some D(e) 20 such that

ifk(t) < 6,
k0o

Vt > D(e).

Using the inequality above and the fact rNo(1 +26) - t* 6No/(p - ) for all
t* e [0, rN 0(1 + 6)], we obtain

kIf(rN(1+ 26) - t*) < e,
k=0

Vt*e [0, rN( 1+6) and VNo A D(E).

.. . .. ........

Combining this with (65) and (66), we have

IPr [N(rNo(1 + 26))= k I RN= t*] -Ikl < e,

(68) k=O

Vt* [0, rtN,(1 + 6)1 and VN0 - M(e),

. ..... . . .

.........
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where M(e) is defined by M(e) ((p - ;))D(E)/6. We also have

(69) Pr [N(rNo(l + 26)) = k IRN - S N(1 + 6)]

= E[Pr [N(rv,(1 + 26)) = kl RNl I RN5 r (1 + 6)1.

Using (68) and (69) (and the fact IE[X]I - E[jXI] for any random variable X), we
obtain

(70) IPr[N(rNo(1+ 26)) = k I RN ' (1 + 6 )1 - rk < ,
k=O

VNo -M(e).

It also follows from (64) that 1 - exp (-0(6)N0 ) 5 Pr [RNo5 ,v(1 + 6)] - 1. Using
this, we obtain (after some algebra)

jPr[N(r(1 + 26)) = k and RN, vr(1 + 6)] - k

I jPr [N(,N.(1 + 26)) = k I RNo- rN(1 + 6)] - ;rk

+ exp (-4(6)No). Pr [N(rNo(l + 26)) = k I RN _ rN (1 + 6)].

Combining this with (70), we have

|Pr [N(rmo(1 + 26)) = k and RNo r1N(l + 6)] - irkl <e + exp (- (6)No),
k=0

VNo M(e).

This together with (62), (63) and (64) implies that for any positive e there exists
some M(e) such that

0 5 dN(r,,c) <2 + exp (- 0(6)No),

Since 0(6) > 0, it follows that lim,.. dNo(rvNc) = 0.

..-.. ,·-.,...-. .. . . .4.

VNo -- M(e).

5.3. Proof of Lemma 10. Let I be the random variable corresponding to the
residual interarrival time at the random time instant TNo; moreover, let RN. be the
random variable corresponding to the first regeneration point of the queue (see (50)
of Section 5.1). We have

RN = TM + I.

Using this and the union bound, we have

Pr [RN rNo(1 + 6)] = Pr [TNo + I -- ŽN(1 + 6)]

(71)
-Pr [TNo r(I +) + Pr [I -oN: r].+ 2 2

In what follows, each of the two terms in the right-hand side of (71) is appropriately
upper bounded.

'''""`~ '`:Z1:'I: .:::~..'

.'-.·.·-I
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On the settling time of the congested GI/GI I/1 queue

Starting with the first term, we have

The result above follows from Proposition 5, applied with k = 1 and with 6/2
instead of 6.

We now consider the last term in the right-hand side of (71). Let N be the random
variable corresponding to the number of arrivals until the system is met empty for
the first time (see also the discussion preceding Lemma 3). Moreover, let YV denote
the service time of the ith customer and let Zi denote the ith interarrival time. We
have

No+k-1

k n-n
k

Since I is the residual interarrival time at the time instant TN0, we have I< ZN
with probability 1; this implies that

(74) Pr [I2 No• !5Pr[ZX,--NO

We define n* as follows:

(75)

where e is some positive constant. We have

(76)
Pr IZx rN = Pr Z, ~r 2 and N _ n*

+Pr Zx a 2I and dr> n*.
N0 an 1~n

Clearly, we have

Pr ZX rN and n* Pr [ max {Z} - .

Combining this with (76), we obtain

Pr [Z rN ]-5Pr[ max ({Zj>} - Tro]+Pr[X>n*].
2 i-1,---, 2

Each of the two terms on the right-hand side of (77) will be upper bounded by an
exponentially decaying quantity.

Starting with the last term, we have (due to (73))

No+k-I k
Pr [X>n*]=Pr T, Yj2_t Z,Vke{1,---,n*}

Y-i=1~ . zi .
.. 1

:·-f · ··:·I

Pr I TN. 1 ( + < C" (6) exp(-i '(6)No).

.;.r·~·~-.·-.~ .~·- d

.-i ii'''

n* 4e [Aro.(l + E) ,

:"'~' "' *·"~;'jL~·r-~c~.--r?~~
~533~3~f~'53"1
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Y~,dcf

t=1C

n*

Y- z.

Clearly, we have E[e'& = [B(s)]No+n'-I[A(-s)]j" for all s E (-sA, SB); thus, apply-

ing the Chernoff bound (see (3) in Section 2.1), we obtain

( 
N 7+ ) -  zi=pr(1 .(

(79) Pr 1 Z , = P rY a- 7 O] < [ B (s ) ]N
o
+ . -- [A ( - s )] "' , Vs E (0, ss).

Since B(s) > 1 and A(-s) < 1 for all s E (0, se), it follows from (75) (and from the

fact tNo, No/(u - ))) that

(80) [B(s)I•+"'-~[A(-s)I"'<([B(s)1Ife+'l"-"+1[A(-s)]^ *+**-)
Vse(0, s5 ).

Defining

we have f(O) = 1 and

oim -= 1 -  ( + E)+ 1) - (1 + e)=--- <0.

Therefore, there exists some st e (0, sB) such that f(s) < 1. Applying (79) and (80)
with s = s1 , we obtain

Pr [ 1 - Z,, <exp (-qpNo),

where pi I -Inf(sl) > 0. This together with (78) implies that

(81) Pr [XN > n*] - exp (- qpqNo).

We now consider the other term in the right-hand side of (77). Applying the
union bound and using the fact that the random variables (Z,),=.... are identically
distributed, we obtain

(82) Pr max {Zi} -r N F Pr Zi - r =, n* Pr [Z _ ro ,

where Z is a random variable having the interarrival time distribution. Applying the
Chernoff bound (see (3) in Section 2.1), we have

Pr Z ] TN. A(s) exp sT , Vs e (0, SA).

We also have (due to (75) and the fact that t,,No/(jL - A)) that

n* < At•vo(1 + E) + 1- ) (1 + 2e)

for all No -l*, where l* F (u - A)/(A). We fix some s e (0, sA). Using the previous

.-

........ .. .
•.-•.z.,• •'':•'•,•=;•-•, .-. .. :.-•.:.. .

f(s) [B(s)] +E'''(-A)+x'[A(-s) *1 1+ ' -" )
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:·:-· 1.·.-.



On the settling time of the congested GI/G/1 queue

·.:.,-... ·... i .. ~·.,
:.:.5`i~':j~;~:~::1:~i)~:.::~~:~::I ~~-l~L~
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inequality, (82) and (83), we obtain

[ 6 ANo s6
(84) Pr max {z, Ž4Zi} j-N <2 (1+2s)A(s)exp (- N,

L=1'---Z* 2 ji-X 2(p-A)

We define

2 4() - ) and D2(6) 14 (1 + 2E)A(s).
4 L( a - D) s6

VNo-I *.

Using these definitions and the inequality x < (1/a')e" (for a>0), it follows from
(84) (after some algebra) that

Pr max {Z,} i-- :- <D2 (6) exp (-q~2(o)No),

This together with (77) and (81) implies that

Pr IeNo -' exp (-q 1 N0 ) + D)(6) exp (-- 2(6)No),

Combining this with (72) and (71), we obtain

Pr [RN. rt.(1 + 6)] < C'(6) exp (- p'(6)No) + exp (-9 1 No)o

+ D2(6) exp (- Qp2( 6 )?o,);
After defining

and

VNo0 l*.

VATO g *.

VNo 2 1*.

1(6)'I min ( V'(6), 0, 92(6)}

1(6) -max {*, In [C'(6) + 1 + D2(6)]}

the result follows from the inequality above.

It is worth noting the following. Since TN0 < RN0 with probability 1, it follows from
Proposition 8 that for any positive 6 we have Pr [RN0 : -N 0(l - 6)] < exp (-g(6)No)
for all No n(6). (ý(6) and n(6) are the same as in Proposition 8.) Combining this
result with Lemma 10, one may easily prove that

l R RNa.s. I
lim

No-., No  A-A

(see also Proposition 9).

6. Conclusions

In this paper we have analyzed a certain type of stable GI/GI1 queue, namely
that with A < 1L, with the service time distribution being of the exponential type and
with the interarrival time distribution being of the exponential and of the non-lattice
types. This type of queue fits most practical cases. Assuming that such a queue

.1
.-... ·.--... -

:..-..- r.
:·.

::r:r :::-
· ·'-:. ... '.` . ~:~.·-

-- ·-?r·~:.-:.---.-~-~.
~E.~;- I-n,·.
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initially contains No customers, with No * 0, we proved that the time TN. required for
the queue to empty is asymptotically proportional to No, namely

lim TN=.
N0-- oN0  •-A

Using properties of the random variable TNo, we proved that the settling time of the
queue is asymptotically equal to ?N. (i.e., No/(p - A)). Finally, we proved that after
scaling both time and the number of customers in the system by No, as No increases,
the queue asymptotically behaves as if customers were arriving at a constant rate L
and, at the same time, were departing at a constant rate t, as in a simple fluid
model.

An interesting direction for further research is to consider the asymptotic
behaviour of TN. in the context of a GIG/I queue where the interarrival and
service times form a stationary and ergodic sequence (YV, Zj)it,.... It is reasonable
to conjecture that most of our results are still valid in this more general context, and
that their proofs would include coupling and stochastic monotonicity arguments.
(This point was suggested by the referee and by F. Baccelli.) Moreover, we believe
that the results established in this paper may be extended to queueing networks. In
such systems, it is the dependence among arrivals that makes our analysis not directly
applicable. Thus, one has to show that, after scaling time by, N;, this dependence
becomes unimportant. Such a result has been established in [13] for the simple case
of a stable tandem of exponential servers with Poisson arrivals.
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