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ON THE SETTLING TIME OF THE CONGESTED GI/G/1
QUEUE
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Abstract

We analyze a stable GI/G/1 queue that starts operating at time ¢t =0 with N, #0
customers. First, we analyze the time T, required for this queue to empty for the
first time. Under the assumption that both the interarrival and the service time

distributions are of the exponential type, we prove that limy,_, Ty, /N, =Yg -1),
where A and p are the arrival and the service rates. Furthermore, assuming in -
addition that the interarrival time distribution is of the non-iattice type, we show that
the settling time of the queue is essentially equal to Ny/(u — 1); that is, we prove that

. No )_{1, for0<c<l;
h%lf-d""(y—hc 1o, forc>1,

where dy(?) is the total variation distance between the distribution of the number of
customers in the system at time ¢ and its steady-state distribution. Finally, we show
that there is a similarity between the queue we analyze and a simple ﬂ:ﬂd jmodel.

CONGESTED QUEUE; SETTLING TIME; TRANSIENT ANALYSIS

1. Introduction

In this paper, we analyze the settling time of a stable GI/G/1 queue, assuming
that it is initially highly congested. Under certain assumptions on the distributions of
the interarrival and the service times, we first prove that the time for the queue to
empty is asymptotically proportional to the number of customers initially present at
the queue. We then show that the time required for the queue to approach
stationarity (settling time) is essentially equal to the time for it to empty.

We consider a GI/G/1 queue. The interarrival times are independent and
identically distributed with moment generating function A(s). The service times are
independent and identically distributed with moment generating function B(s);
moreover, the service process is independent of the arrival process. The arrival and
the service rates are denoted by A and yu, respectively. The number of customers
present at the system at time ¢ (including the customer in service, if any) is denoted
by N(t) and it is taken to be right-continuous. The queueing system starts operating
at time t=0; the arrival time of the first new customer has the interarrival time
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distribution. The queue is said to be stable [6] if, as k— =, the distribution of the
waiting time of the kth customer to be served converges to a limiting function,
which is the distribution of a proper random variable (i.e., a random variable that is
finite with probability 1); this limiting function is independent of the initial number
of customers. Except for the D/D/1 queue, a necessary condition for stability [10] is
A<up. In fact, stability is guaranteed [6] if A<u and the interarrival time
distribution is of the non-lattice type. (A random variable Z is said to be of the
lattice type if there exist constants ¢ and b such that the only permissible values of Z
are of the form a + nb, with n being integer.) Moreover, in this case, the stationary
distribution (7)o, - - - Of the number of customers in the system exists; we have

me=lim,_, . PN(f) =k | N(0)=1] for k=0, - - -.

Henceforth, we restrict ourselves to stable queues with 4 < u and with interarrival
time distributions of the non-lattice type. In addition, we shall always assume that
both the interarrival and the service time distributions are of the exponential type.
That is, we have Efe*?] <= for some s >0, where Z is a random variable distributed
as the interarrival time; this implies that there exists'some s, >0 such that A(s) is
defined for all s in the interval (—«,s,) (see Section 2.1). Similarly, we have
E[e’] < for some §>0, where Y is a random variable distributed as the service
time; it follows that there exists some sz > 0 such that B(s) is.defined for all s in the
interval (—o,sg). This assumption on the interarrival and the service time
distributions is rather mild, since it holds for most of the distributions appearing in
practical cases (e.g. Erlang, hyperexponential, etc.).

Let N, be the number of customers intially in the system; we shall always treat N,
as a positive parameter. We denote by 7, the random variable corresponding to the
time required for the queue to empty (for the first time), namely,

def . . =
Ty = :gg {t:N(t) =0}.

It is known that the expected busy period duration is finite, i.e. E[T3] <= (see [9]
and references therein). Moreover, Pollaczek [11] has derived the joint distribution
of 7; and the number of customers served during this period. Finally, some other
results have been established for the case Ny =1 (e.g. see [12]).

In the context of the M/M/1 queue, using well-known results of queueing theory,
Ty, can be expressed as the sum of N, independent random variables all of which
have the same distribution as the busy period duration 7;. Using this, it may be
proved that E{Ty ] = No/(1 — A) and, if the random variables 7}, T, - - - are defined
on the same probability space, then
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where a.s. stands for almost surely (i.e., with probability 1). Similar results hold
for the M/G/1 queue with service time distribution of the exponential type. We
briefly present these results in Section 3.

For the GI/G/1 queue under analysis, we prove that
T

1 lim 2 .
O Ny =12

a.s. 1

It is worth noting that this result is in perfect agreement with intuition. Indeed,
consider a pool that initially contains a quantity N, of fluid. If fluid is supplied at a
constant rate 4 and, at the same time, it is removed at a constant rate u, with A <y,
then the pool empties in time Ny/(¢ — A). In fact, it will be shown (see Proposition
11 in Section 5.1) that this fluid analogy holds to a greater extent.

Next, we consider the settling time of the GI/G/1 queue under analysis. As
shown in (1], there is a close relation between the time for a Markov process to
reach stationarity and the hitting times of certain subsets of the state space. In our
context, after establishing that the time until the queue empties (for the first
time) is approximately equal to No/(—4), we prove that it is also essentially
the time for the queue to reach steady-state. Indeed, defining TN., = Nol(y A),
we show that .

{1, forO0<c<1; .

@ Hm dy(Tae) = 0, fore>1,

No-—-i
where dy(t) denotes the total variation distance between the distribution of the
number of customers in the system at time ¢ (under the initial condition N(0) = Np)
and its stationary distribution; that is,

dn () E max |Pr [N(t) e A | N(O) = Np] — ()|

=13 [Pr[N@) =k | N(©) = No] — ],
k=0

where m, is the steady-state probability that the system contains & customers and
7(A)=Lreu e for A cZ,. (Intuitively, dy(z) is the ‘distance’ between the
transient distribution of the number of customers in the system (at time ¢) and its
stationary distribution.) Thus, 7y, (namely, Ny/(u — A)) may be viewed as the settling
time of the GI/G/1 queue under analysis when it initially contains a large number
N, of customers.

To the best of our knowledge, both results in (1) and (2) are new. Results of the
form (2) have been proved in [1] for ‘rapidly mixing’ Markov chains, and in [2] for
the convergence to steady state of closed Jackson networks with a large number of
customers. Interestingly enough, some of the results in [2] are in agreement with an
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approximate fluid model. However, the difficulty with such an approach is that the
validity of a fluid approximation is technically non-obvious. Thus, our work can be
viewed as a step towards the justification of fluid approximations. We expect that
our analysis can be substantially extended to cover more complex systems like
networks of queues.

2. Background

2.1. A note on random variables of the exponential type. The discussion to follow
is based on [3].

A random variable T is said to be of the exponential type 1f there exists some
positive s such that E[e*7] <. The most straightforward example of such a random
variable is one that is exponentially distributed with mean 1/; for this random
variable, we have E[e’T] <o for all s <A.

The moment generating function of T is defined as follows: G(s)dif E[eT]. £ Tis
of the exponential type, then there exists some positive s, such that G(s) is finite for
all 0=s5<s,. Moreover, for all s* € (0, 5,) the following are true: G(s) is strictly
convex and continuous on {0, s*] and has derivatives of all orders on (0, s*); its first
derivative is strictly increasing on (0, s*), provided that Pr [T = 0] # 1. Furthermore,
we have E[T] <~ and K

E(T] = tim 9
s]o

Henceforth, we restrict ourselves to random variables of the exponential type that
satisfy in addition the following property: there exists some positive s, such that
E[e’T] < for all s € (—s,, 0). Clearly, this property is satisfied by random variables
that are either lower bounded (that is, there exists some finite constant ¢, such that
Pr[T =¢,] = 1) or can be expressed as the difference of two lower bounded random
variables of the exponential type that are independent.

The upper and lower tails of the distribution of a random variable of the
exponential type may be upper bounded by using the Chernoff bound. Indeed, let ¢
be a finite constant. We have

3) Pr(TZ(=SE[eTle ™ =G(s)e™, Vse ©, 1)

In the case where ¢t > E[T], there exists some positive s (depending on ¢) such that
G(s)e™ <1 for all s € (0, s'). Similarly, we have

PriTS /S E[eT]e" =G(~s)e", Vse(0,s,).

In the case where t < E[T], there exists some positive s” (depending on ¢) such that
G(—s)e™ <1 for all s € (0, s").

We apply the above results to the random variable LY, X;, where X,,---, Xn
are independent random variables that have the distribution of the random variable
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X, which is of the exponential type. Let d be positive; we have

N

@ Pr| 3 X 2 EIX](1 + N | = exp (~4:(8)N),
=l

where ¢,(8) is a positive constant depending on &. Indeed, we have

Elexp (s N, X;)] =[G(s)]", where G(s) = E[¢**]; applying (3) with s =s*, where

s* is chosen to satisfy G(s*)exp(—s*E[X]|(1+ d))<1, and defining 4)1(6)‘-’—%f

—In G(s*) + s*E[X]}(1 + 8), we obtain (4). Similarly, for any positive §, we have

®) n[;&éE[X1<1—6)N]§em (~9a(8)N),

where ¢,(J) is a positive constant depending on &.

’

2.2. A note on exponential convergence. The discussion to follow is based on [7].
Let (Zy)n=1,.- be a sequence of random variables (not necessarily defined on the
same probability space) and let (hy)n-; ... be a sequence of positive numbers with
limy.,.hty = %. The sequence (Zy/hn)n<1,... Of random variables is said to converge
exponentially to the constant z, as N— o, if for any positive 8 there exists some
n(8) Z1 and some positive y(é) (both depending on &) such that

Zy
Pr[ PN z
Moreover, if the random variables (Zy)y-;,... are defined on the same probability
space, then the inequality above implies almost sure convergence, namely

fimy_u(Zy/hn) = 2.

= a] Sexp(-¥(ON), YN = A{5).

2.3. A note on notation. Throughout this paper, the notations Pr [I'] and E[X]
stand for Pr [T | N(0) = Np] and E[X | N(0) = Ny], respectively. Similarly, Pr[[| A]
and E[X |A] stand for Pri'| A and N(0)=N,] and E[X |A and N(0)=N,],
respectively, unless the event A is of the form N(0) = n*.

Also, |x] denotes the integer part of x, and [x] denotes the smallest integer that
is greater than or equal to x.

3. Results on the M/M/1 and the M/G/1 queues

In this section, we present some results concerning the time required for the
stable M/M/1 queue to empty. Similar results hold for the stable M/G/1 queue
with service time distribution of the exponential type, as well.

3.1. The M/M/1 queue. The proposition to follow suggests that, in the context of
the M/M/1 queue, the random variable T, can be expressed as the sum of N,
independent and identically distributed random variables. This may be proved by
decomposing Ty, into sub-busy periods (e.g. see [10}]).
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Proposition 1. The following is true:
No
To= 2 Ve

where Vj, - - -, Vj, are independent random variables, all of which have the same
distribution as the busy period 7; (the notation = denotes equality in distribution).

The moment generating function of 7; is known in closed form (see [10]), namely
u+id-s—V(u+ai—s)>—4ul

(6) Efexp (sTy)} = 1 ,  Vs=0;
this leads to the following result for the probability density functiog of T;:
e~
pr(t)= T L(2tVay), V=0,
i

<

where I;(-) is the modified Bessel function of the first-kind.of order 1. According to
[4], the integral [§ pr,(f)e” dt is equal to the expression appearing on the right-hand
side of (6) for all s <(VA—Vp)>. Therefore, the random -variable 7, is of the
exponential type. Moreover, it follows from (6) that E[T;] = 1/fu = A). Hence, using
Proposition 1 (and the strong law of large numbers), we obtain the following results.

Proposition 2. The random variable Ty is of the exponential type and satisfies
No Typas. 1

Adéfr,vo and lim —=——r0.

MN—oNy p-—24

E {TNo] u
3.2. The M/G/1 queue. Propositions 1 and 2 of Section 3.1 hold in the context of
the stable M/G/1 queue with service time distribution of the exponential type, as
well. Indeed, the decomposition of 7, into sub-busy periods is still applicable.
Furthermore, it is well known (see [10]) that, in the context of the M/G/1 queue,
the moment generating function G(s) of the busy period duration 7 satisfies the
following functional equation: G(s) = B(s — A+ AG(s)) for all s=0. This implies
that E{T;] = 1/(u — A); moreover, because of Proposition 1, we have

— NO def . Iﬂ,a._s. 1
E[TNJ-.M,—A—‘:NO and N?E&No—u_l.

Finally, the fact that T, is of the exponential type follows from Corollary 6 in
Section 4.2.

4. Preliminary results on the GI/G/1 queue

In this section we present several results on the time required for the stable
GI/G/1 queue to empty. As already mentioned in Section 1, it is assumed that both
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the interarrival and the service time distributions are of the exponential type, that
the interarrival time distribution is of the non-lattice type and that A<pu. A
powerful result such as Proposition 1 does not hold in the case where the arrival
process is not of the Poisson type. Thus, the derivation of (1) in the more general
context of the GI/G/1 queue is considerably more complicated as compared to the
proof of Proposition 2.

4.1. Some preliminary results. First, we establish a lower bound on E[T,]. Let &
denote the number of arrivals until the system is met empty for the first time. In
other words, we have A = n if the arrival of the nth customer is the first to occur at
a time larger than T,. Let &, denote the arrival time of the A'th customer. Clearly,
the number of customers served until the queue empties equals N + N, — 1. The
following lemma is established in [12] by using Wald’s equation. (In fact, only the
case N, =1 is considered there; however, the result may be easily extended to hold
for Ng=2,---.)

Lemma 3. The following are true:
E[N]=AE[Zy] and E[N]+ N,—.1= uE[Ty).
Moreover, if E[N] =, then E[Z)] = E[Ty,] = . '
In the case where E[/]} <« (which will be shown to always be«tnte for the type of
queues we consider), Lemma 3 implies that the average arrival rate up to (and
including) the time when the queue is met empty equals A. Similarly, the average

service rate up to (and including) the time when the queue empties equals u. Based
on this lemma, we prove the following resulit.

Proposition 4. The following is true:
No—1
u—a

<E[Ty], for Ny=1,.--.

Proof. The result is trivially true if E[Ty]= . However, it will be shown later
that this never occurs.

Assuming that E[Ty ] <, we prove the result as follows. Clearly, we have
Ty, < &, with probability 1, which implies that E[Ty,] < E[Zy]. Combining this with
Lemma 3, we obtain

1
Rearranging terms in (7) and using the fact A<y, we obtain the inequality in
question.

4.2. A bound on the upper tail of Ty,. In this subsection, we derive an upper bound
on the upper tail of the distribution of T,; we also prove some other results on Ty,
that follow from this bound.
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Proposition 5. For any positive d there exist positive numbers C(8) and y(8) such
that

Pr{Ty, Z tn(1 + k8)] < C(8) exp (—y(O)kNy), for No, k=1,---,
where Ty, = No/(u — A).

Proof. We fix a positive §. Obviously, if the initially present customers and the
ones to arrive during the time interval [0, Ty, (1 + k)] have a total service time that
is smaller than Ty (1 + k3), then the queue is empty for some part of the time
interval [0, Ty (1 + k8)], even though it may be non-empty at time ¢ = 75 (1 + k6).
Let Y; be the service time of the ith customer, for i=1, - - -, and let #(J) be the
number of arrivals during the time interval [0, 75, (1 + 6)]. Then,

M(kS)+ Ny
8) Pr [Ty, = tn (1 + k8)|=Pr [ > YEon(a+ ké)].
i=1
We define _
) g(8) = Aty (1 + ad)f,

where « is a positive constant satisfying 1 <a < u/A. Clearly; .

M(KkB)+ Ny qkd)+No
Pr[ > Yz tNo(1+k6)]§Pr[ > Y,-zr,vo(1+k6)]
i=1

i=1

(10)
+ Pr[M(kS) = (k&) + 1].

In what follows, each of the two terms appearing in the right-hand side of (10) is
appropriately upper bounded.
Since #(kd) is the number of arrivals during the interval [0, T4 (1 + k8)], we have
g(k8)+1
Pr [M(kS) = q(k8) + 1] = Pr [ S ZiS o1+ ka)]
(11) ‘ - (kb)+1
q +
N S O ]
qkd)+1 q(kd) +1

i=1

where Z,; denotes the ith interarrival time. It follows from the definitions of ¢(&) (in
(9)) and 7y, that

tn(1+k8) __ 1+Kk8
q(kd)+1 A(1+ akd)’

Furthermore, since o« > 1, we have

1+ ké 146 ‘_1( _a(a—1))

< -
Al+akd) AMl+ad) A 1+ ad
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for k =2, - - - . Combining these two inequalities with (11), we obtain

q{k&)+1 —
(12) Pr [ﬂ(ka)gq(ka)+1]§Pr[ ) z,..s_rl(1—‘sl(—ia—61—))(q(ka)+1)].

The random variables (Z;);~1 ... qs)+1 2re independent and have the interarrival
time distribution, which, by assumption, is of the exponential type; moreover, since
a>1, we have 8(a —1)/(1+ a@d)>0. Thus, we may upper bound the right-hand
quantity in (12) by applying the Chernoff bound; using (5) in Section 2.1, we have

q(kd)+1

w 'Y z=1(t -2 qk8)+ 1] S exp (— g8 )a k) + 1),

where @,(6) > 0. Since @,(d) is positive, it follows from (9) that

exp (—@1(8)(q(kd) + 1)) <exp (—@:(8)Atn(1 + akd))
<exp (—¢1(6)2_1N0wk6).

(14)

We define wl(é)d—’fqh(d)larél(u A). Since A <y and @(8) >0, we have ¥(8) >
0. Combining the previous definition with (13), (14) and the fact 1’~., = Nol (1 — A),
we obtain

(k&) +1 Sa — ’
Pr[ >z él‘l(l -~ —l(if:-a—?)(q(ka) + 1)] < exp (—y1(8)kNy).

Using (12) and the inequality above, we have
(15) Pr[#M(kd) = g(kd) + 1] < exp (—y,(8)kNy).

The other term in the right-hand side of (10) may be upper bounded by reasoning
similarly. First, we have

(16) Pr [q(k§+N° Y251 +k8)| =P [W;T'ATOC(%:NO v)z %"(’—;ﬁ—‘ls—;'?":—;]

Using the definitions of g(8) (in (9)) and 7,,, we obtain after some algebra

(1 + k6) 1+kd
q(k8)+ N, u+ Aaks’

Furthermore, since & < u/A, we have

1+ kb S 1+6 _1( G(u-—laf)‘) for k

u U+ Aad

= =2, .-
u+iAaokd pu+iad p
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Using these two inequalities and (16), we obtain
q{kd)+Ng
Pr| > Bzl ké)]
i=1

an a(k8)+No

Y - (u — Aa)

<p [ = 1(1 L2E 29
r ,=21 i u+Aad

)(atks) + N |
The random variables (Y;);—y.... qxs)+n, are independent and have the service time
distribution, which, by assumption, is of the exponential type; moreover, since
a<u/d, we have 8(u— aA)/(u+ Aad)>0. Thus, we may upper bound the
right-hand quantity in (17) by applying the Chernoff bound; using (4) in Section 2.1,
we obtain

.

q(kd)+Ng 6(“ — la')
=t —_ L
Pr[ Y vzp (1 v )(q(ka) + No)]

Sexp (—@2A6)(g(kd) + No)),
where @;(8) > 0. Since @5(8) is positive, it follows from (9) that

exp (— @2(8)(q(kd) + No)) < exp (— @2(8)(Atn,(1 + k) + No— 1))

(18)

(19)

<exp (@(8)) exp ("“Pz(é).l.;'twak‘s)-
We define
(20) CA8)Eexp (95(8)) and ¥ (8)E px(8)ad/(u - A).

Since A<y and a >0, we have ,(8) >0. Combining (18) with (19), (20) and the
fact rNodéfNo/(u — 1), we obtain

(k8)+Np (1 — i
" nza (14252 0w + N9 ] < ®) exp (~ v ok

This together with (17) implies that

1) Pr [q(kifm" Yz o+ ka)] < Cy(8) exp (— Yo 6)KkNp).

i=1
It foliows from (8), (10), (15) and (21) that
Pr [Ty, = ta,(1 + k6)] <exp (—:(6)kNo) + Co(8) exp (— y2(8)kNy).
After defining w(8)% min {¥.(8), ¥»(8)} and C(8) % 1 + C5(5), the result follows
from the inequality above.

It is a consequence of the proposition above that the random variables (7,),—,,...
are of the exponential type; moreover, their moment generating functions have a
common interval of definition in the positive axis. Indeed, we have the following
result.
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Corollary 6. There exists a positive s* such that
Efexp (sTy)} <=, for No=1,---, anﬂ Vs €(0, s*).
Proof. We fix a positive 6. We have
Efexp (sTi,)] = E[exp (sTn,) | Tny < Twg(1 + 8)1 . Pr [T, < Tn(1 + )]

22 + i {Elexp (sT,) | ta(1 + k8) = Ty, < th (1 + (k + 1)8)]

k=1
. Pron (1 + k8) = Ty, < tn(1 + (k + 1)6)]}.
Obviously,
Elexp (sTw) | Tn, < ta (1 + 8)] <exp (sta (1 +8)),  Vs>0,
and .
Elexp (sTi,) | ta(1 +k8) = Ty, < ta(1 + (k + 1)8)] < exp (stx,(1 + (k + 1)6)),
fork=1,---, and Vs>0.

Combining these inequalities with (22), we obtain

Elexp (sTy,)] <exp (sty(1+ 8)) + 2 {exp (sr;,o(l + (k + 1)8))
23) - Pron (1 + k6) = T, < tn(1 + (k + 1))}
=exp (sta (1 + 6)) .
+ exp (57n,(1 + 8)) i {exp (st kD). Pr{Ty, = ta (1 + k6)]}.

Using Proposition 5, it follows from (23) that
Efexp (sTy,)] <exp (sty (1 + 6))

+ exp (sTy(L + BY)C(8) S, exp (7w k) exp (— p(8)kN)

24
@) = exp (stn,(1 + 3))

+ oxp (stL + a))cw)g [exp (stwd — YOI

Since ¢(6)>0 and tNod=°f No/(p — 1), we have 0 <exp (stn,0 — Y(3)Np) <1 for all
s € (0, s*), where s* is defined by s* «f Y(6)(u — A)/ 8 > 0. Therefore, the geometric
series in the lower part of (24) is convergent for all s € (0, s*); this implies that
Elexp (sTy,)] < for all s € (0, s*). In particular, we have

E[exp (STNo)] < exp (ero(l + 6))

+exp (sTy,(1+ 6))C() 1 , Vse(0,s*).

exp ([tp(é) - " is_ A]N") -1
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Since Ty, is of the exponential type, it follows from the discussion in Section 2.1
that E[Ty,] is finite for No=1, - - -. In particular, reasoning as in the proof of
Corollary 6, it can be shown that E[Ty] is close to , for sufficiently large N,.
Indeed, we have the following result.

Corollary 7. We have E[Ty ] <= for Ny=1, - - - . Furthermore, for any positive
8, there exists some #'(8) 2 1 such that

E[Ty] = (1 + 9), VN, = n'(9),
where andéf No/(u — A).
Using Proposition 4 and Corollary 7, it is easily established that
E[Tv)__1 -

lim —-fl=

Ng— No " A )
However, we are interested in a stronger result, namely

T’v a.s. 1

him et

No-‘—'mNo _u—l..

¥

In order to prove this, we also need an upper bound on ‘the lower tail of the
distribution of T,; such a resuit is presented in the next subsection.

4.3. A bound on the lower tail of Ty,

Proposition 8. For any positive é there exist some n(8)=1 and some positive
&(8) such that

Pr [Ty, = tn,(1 — 6)] <exp (—&§(8)No), VN, 2 n(6),
where tNodéiNo/(u —A).

Proof. Clearly, it suffices to establish the result only for those 6 in the interval
(©, 1).

We fix a § satisfying 0 < 6 <1. Let () denote the number of arrivals during the
time interval [0, Ty, (1 — 8)], where rNo'Li'fNo/(u — A). Moreover, let Y; denote the
service time of the ith customer and Z; denote the ith interarrival time. We define
the sequence (X;)x-o,... of random variables as follows:

No—1 : No+k—1 k
(25) XYV and X, 3 v,->2z, fork=1,---.
i=1 i=1 i=]1

Clearly, the k*th customer to arrive is the first to meet an empty system upon
arrival if and only if X, 20, - - -, X._; 20 and X,. <0 (for £* =1 the condition is
X, <0). Given the event #(3) = m, the system is empty for some part of the time
interval [0, To,(1 — )] if and only if at least one of the first m + 1 customers to



On the settling time of the congested GI/G[1 queue 941

arrive meets an empty system upon arrival. Therefore, we have
Pr [Th S 7(1 — ) | 4(8) = m]
=Pr[3ke{l,- -, m+1}:X,<0| M(8)=m], form=0,--
or equivalently,
Pr [Ty, = wa(1 — 8) | M(6) =m]

(26)
=Pr[1§kmm {X}<0| #(8)= m] form=0,---
We define m* by
o
*d‘ef —— I »
27 m*= [At,vn(l 2)]

Using (26), we obtain after some algebra

Pr{7Zy, = ta(1 — )]
(28) m*—~1
= 2_ Pr [ min  {X,} <0 and #(6) = m] +Pr [M(6)> *1.

1Skam+1

Clearly, we have <4

= - ’ e * _
lsgmﬂ {X} = mm X} form=0, ,m*—1,

Combining this with (28), we obtain

m*—1

P Stw(l-8)]S 3 Pr [lgnklisn {X.}<0and ﬂ(6)=m] + Pr[M(8)=m*]
(29) =Pr Lsnklisn {X} <0 and M(S)Sm* - 1] +Pr [ M(8) = m*]

éPr[ min {X.} <o] +PrL(8) = m*).

1SksSm*

In what follows, each of the two terms appearing in the lower part of (29) is
appropriately upper bounded.
Since #(8) is the number of arrivals during the interval [0, 7y,(1 — 8)], we have

(30) Pr{#(6)=m*]=Pr [; ZStu(l- a)] =Pr [ 3z =l ‘5)]

l=1

Using the definition of m* in (27) and that of t,,, we have.

w(l=8)_, ., 1=8 _ . &
G me =8 Tt (1 2)'
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Combining (30) with (31), we have

(32) Pr [M(8) = m*) = Pr [2 z <rl(1 —g) ]

i=1
The random variables (Z;);.; .....- are independent and have the interarrival time
distribution, which, by assumption, is of the exponential type. Thus, since 6 >0, we
may upper bound the right-hand quantity in (32) by applying the Chernoff bound;
using (5) in Section 2.1, we obtain

(33) Pr [g Z,=i" (1 - -§>m*] S exp (~@1(8)m?),
where @,(6) > 0. Since @,(d) is positive, it follows from (27) that )
(34) exp (~gu(8)m*) <exp (~u()irn1-3)).
We define

$1(5) % %(6)—%7(1—%)5

Since A <pu and @(8)>0, we have ¢1(8) >0. Combining the prevmus definitions
with (33), (34) and the fact t,, = LN/ (u — A), we obtain .t

Pr [Z zs 1-1(1 - -g—)m*] < exp (—~$:1(5)Ny).
=1
This together with (32) implies that
(35) Pr [M(8) = m*] <exp (—¢:1(6)No)-
We now consider the other term. We have
(36)
=Pr [ min {X;—- X} < —XO] = E[Pr[ min {X,, Xo} < —X,| Xo]]

132kSm” 1=ksSm

Let a be some constant satisfying 0 < o < 3. It follows from (36) that

Pr [ min {X;} < 0]

1SkEm*

= Pr[Xo> Nop (1 ~ ad)]

37 . E[Pr L;Té'.'n {Xe— Xo} <—X,| Xo]

Xo > No[l-l(l - aé)]
+ Pr [ X, = Nop (1 — aé)] '

. E[Pl'[ min {Xk "'Xo} < "“Xo | Xo] X
1=k@m*

SN Y1 - aa)].
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We define the random variables (Vi)i—o.....« as follows: V,,déf—Xk+Xo for

k=0, ---, m* Using this definition and (25), we obtain
k

(38) Vo=0 and Vi=2 (-Yiinq1+2Z), fork=1,---,m*.
i=1

Obviously, we have

Pr[ mm AXe— X0}<-—X0|Xo]

1Sk=

(39
=Pr[ min {- Vk}<—Xo|X0] { max {Vk}>X0|Xo]
1=kSm* 1=ks=m*
However, it follows from (38) and (25) that the random variables ¥, - - -, V,,. are

independent of X,. Using this and (39), we obtain

(40) Pr [lsﬂkl;n . {Xk - Xo} < _Xo I Xo =xo] = Pr[ max (Vk} >XO], on.z_ﬂ.

1SkSm*
o

Furthermore, we have

Pr[ max {V.} >x0] éPr[ max {Vi}>Nou (1 - aé)] V3o >Nop "1 — ab).
1=ks=m* =ksEm*

Combining this with (40), we obtain

E[Pr[ min {X, — Xo}<—Xo|Xo]

1ZkSm

Xo>Nop™'(1 - “‘S)]

=Pr [ max {Vi.}>Nou™'(1 - a«S)].
1Sk=m*
Using this and (37), we have

Pr [ min {X.} <O]
1SkSm*

(41)
=Pr [12,:“ {Vi} > Nou™'(1 - rx&)] + Pr[Xo= Nou™'(1 ~ @d)].
In what follows, each of the terms appearing in the right-hand side of (41) is
appropriately upper bounded
We define n,(6) % max {2/(ad)—1,2}. It follows that Nou~'(1— ad)=<
(No — Du~'(1 — («/2)6) (and Ny— 1> 0) for all Ny=n,(8), - - - . Therefore,

“2) Pr[xogzv.,y-l(l—aa)]gpr[Xog(No—1)u—1(1—§a)], VN Z ny(5).

It follows from the definition of X, [see (25)] that the lower tail of its distribution
may be upper bounded in the way presented in Section 2.1. (Recall that service
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5. The main results on the GI/G/1 queue
The main results of this paper are presented in this section.
5.1. Asymptotic linearity of Ty, and the fluid analogy.

Proposition 9. The sequence (7,/n),-,, ... of random variables converges ex-
ponentially to 1/(u —A), as n— ». Furthermore, if these random variables are
defined on the same probability space, then convergence holds in the ‘a.s.’ sense as
well.

Proof. We fix some positive 6. Usmg Proposition 5 (applied with & =1) and
Proposition 8 (and recalling that an = No/ (1 — 1)), we have

P % et ____] <C(8) exp (—p(8)No) +exp (~E(BINo), - VNoZn(8).

0
Defining

7(8) =} min {y(8), £(8)}
and
o o def in (C(6)¥ 1)
n*(8) = max {n(é), ——y(é) },

we obtain

E

Tno 1 |o_6 ]
M__ - |z < 1A =n*(0).
@ | e |z <ew oy, YNoznt()
This implies that the sequence (T,,/n),-,,... of random variables converges exponen-
tially to 1/(u — A), as n— = (see Section 2.2). As already mentioned in Section 2.2,
if the random variables (T},), -, ... are defined on the same probability space (which
is always possible), then exponential convergence implies almost sure convergence.

Before proceeding to the other two main results, we establish a technical lemma.
We define the random variable Ry, as follows:

(50 Ry, % inf {t:N(0)=1)}.
tZ Ty

Clearly, Ry, corresponds to the first regeneration point of the queue. It is intuitively
clear that, for sufficiently large N,, the upper tail of R,, behaves similarly to that of
Ty, (see Proposition 5). We now present this result; in order not to break continuity,
we give the proof of this technical lemma in Section 5.3.
Lemma 10. For any positive & there exists some /() and some positive ¢(6) such
that
Pr[Ry, = tn(1 + 8)]| = exp (= P(6)Ny), VN, 2 1(8).

In Section 1 we introduced a simple fluid model, namely a pool that initially
contains a quantity N, of fluid; in this pool, fluid is supplied at a constant rate A and,
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at the same time, it is removed at a constant rate u. As already pointed out in
Section 1, the result in Proposition 9 is reminiscent of the fact that the pool empties
in time Np/(u —A). This analogy may be extended even further. Indeed, the
aforementioned pool contains a quantity (1 — ¢)N, of fluid at time cNo/(u — A) for all
c €0, 1}; moreover, it contains no fiuid at time cNo/{u —A) for all ¢>1. The
analogous results for the type of GI/G/1 queue under analysis are as follows.

Proposition 11. The following convergence results hold in the exponential sense:

lim

N(tn,e) { -C, for0=c=1;
Nop—> No 0,

forc>1,

where thdgNo/ (s — A). Furthermore, if the random variables involyed are defined
on the same probability space, then the above results hold in the ‘a.s.’ sense of
convergence, as well.

Outline of the proof. The result is obvious for ¢ =0.

(a) We fix some c € (0, 1]. We have to show that for any positive € there exists
some m(€) =1 and some positive ¢(g) (both of which may possnbly depend on ¢)
such that

Pr {{N(vn,c) — (1 — )Nl = eNp] = exp (— P (&)N,), VNo m(e).

Assuming that N;=21/c, we introduce the following priority scheme: we choose
f(1 - c)Np] customers among those initially waiting to be served; these customers
are assigned the lowest priority; priority assignment is irrelevant to the customers’
service times. (In fact, no priority scheme is introduced for ¢ = 1.) Therefore, the
priority scheme introduced does not affect the statistics of the process N(z) [14]. We
define

T< inf {£:N(t) = [(1 — c)No] }-
=0

Since low-priority customers are ‘transparent’ to the ones with higher priority, we
have

(51) T = Tiny-

(This is because [(1 —c)Np] + |cNg} = No.) We fix a positive &. For any positive 8,
we have

Pr [IN(Tayc) — (1 — )Nl = eNo]
= Pr[IN(tn,c) — (1 — )Nl Z N, and | T — ty.c| = 6N,]
+ Pr[|IN(zn,c) — (1 — c)Ng| Z eNp and 0= T — 15, < 5N]
+ Pr{|N(zn,¢) — (L — c)No| Z €Ny and —8N, < T — 1,c <0},
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which implies that
Pr[IN(trn,e) — (1 = c)NGI Z eNg] S Pr [IT — tp,c| = ON)
(52) +Pr[N(zn,c) — (1 = c)No| Z eNp and 0= T — 15 < 8N}

+ Pr{IN(tn,€) — (1 — )No| Z eNol — SNo < T — 75y,c <0].

Each of the three terms in the right-hand side of (52) will be upper bounded by
some quantity that decays exponentially, as N,— . This may easily be done for the
first term. It suffices to combine (51) with (49).

Now, we consider the second term. Since the system contains more than
[(1 — ¢)Ny] customers at any instant prior to T, we have

Pr{IN(tne) — (L —c)Ng| Z eNp and 0= T — 1y,c < SN,)
(53) =Pr[N(tnc) = (1 —c)NoZ eN, and 0= T — 75,c < N
SPr{T — tn,c <Ny | N(Twn,€) Z (e + 1 - )Ny and T Z Tyc].

The quantity in the lower part of (53) equals the probability that the system contains
exactly [(1—c)N,] customers at some time in the interval (Tyc, Ty,c + ONy) even
though there are at least [(e+1—c)N,] customers present at time 7,,. Since
[(e+1—c)No] = [(1 — c)No] = [eNg] — 1, the quaiitity in the lower part of (53)
may be upper bounded by the probability that at least [eNy} — 1 customers complete
service during the time interval [tyc, Tn,c + 6N;). Applying the Chernoff bound, it
may be shown that the latter quantity decays exponentially, as Ny— o, provided
that 6 < eu~". '

Finally, we consider the third term in the right-hand side of (52). We have

Pr{IN(zn,c) — (1 — )Nl Z Ny | — 8Ny < T — T, < 0]
(54) =Pr[N(tnc) Z(e+ 1= )Ny | = SN, < T — tpc <0)
+Pr[N(Ene) S(—e+1 =Ny | — 8Ny < T — 7p,c <0).

The first term on the right-hand side of (54) may be upper bounded by the
probability that at least [eNy] —1 customers arrive during the time interval
(—ON, + tu,C, Ty,c)- This decays exponentially, as N;— o, provided that § < eA™%,
(The arguments for this are similar to those in the previous paragraph.) As for the
other term, it equals 0 in case of £>1~c; in case of £=1—c, it may be upper
bounded by the probability that at least [eNp] customers complete service during
the time interval (—O0Ny+ Ty, Ty,c). This decays exponentially, as N,— o,

provided that 6§ <eu™".

(b) We fix some ¢ > 1. We have to show that for any positive ¢ there exists some
m(e) =1 and some positive ¢(¢) such that
(55) Pr [N(tNoC) = £No] = exp (——¢(£)No), VNQ = m(s).
Let Ry, be the random variable defined in (50). We fix a positive £ and a § satisfying
0< 6 <c — 1. Reasoning as in similar cases, we obtain
Pr [N(zn,c) = eNg] = Pr [Ry, = Tx (1 + 6)]

(56) + Pr[N(tn,c) Z eNp | Ry, < Tn (1 + 8)].
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The term Pr[Ry, = ty,(1 + 8)] decays exponentially, as Ny—> = (see Lemma 10).
Furthermore, since 1+ 8 <c, and Ry, is a regeneration point of the queue, we have

Pr [N(TI%C) = ENo l RN°= t]
=Pr[N(tnc— ) ZeNg | N(0)=1],  Vte[0, tn(l + 8)).

It has been established in [8] that the queue under analysis is geometrically stable
under the initial condition N(0) = 1. That is, for any sufficiently small positive y
there exists a2 D(y) such that Pr{N(#) =M | N(0) = 1] = D(y)e™™ for all t=0 and
M=1,---. Applying this with M = [eN,] and using (57), it follows that the second
term in the right-hand side of (56) decays exponentially, as Ny— ®. Combining this
with (56) (and the conclusion following it), we obtain (55) after some algebra.

(7

5.2. The settling time. Proposition 11 implies that, for c <1, the iumber N(zy,c)
of customers contained in the system at time 7,¢ is asymptotically @(N,) (i.e., of the
same order of magnitude as Np), with high probability. Therefore, for any fixed
c€(0, 1), at time cty, the queue is still away from steady-state for all sufficiently
large Ny. Thus, the settling time of the queue may not be asymptotically smalier
than z,c, for any c € (0, 1). On the other hand, applying Proposition 11 with ¢ =1,
we see that the number N(ty,) of customers contained in the system at time Ty, is
asymptotically o(N,) (i.e., of smaller order of magnitude than -Ng), with high
probability. Thus, it is reasonable to expect that, for suﬂic:ently large N,, the time
required for the queue to approach stationarity, starting from the time instant 1, is
negligible as compared to 7. ’

The above discussion implies that the settling time of the GI/G/1 queue under
analysis is asymptotically equal to Ty, This is established in the proposition to
follow.

Proposition 12. The following is true:

1, for0<c<1;

i df(TiC) = {o, for ¢ > 1,
where dy,(¢) is defined at the end of Section 1 and tNa"éiNo/ (u— A).

Proof. We consider the cases 0 <c¢ <1 and c > 1 separately.

(a) Let ¢ be a constant satisfying 0<c<1. First, we show that
limpy,—.  Pr [N(z5,c) = D] =0 for all D =0. We fix some non-negative D and some
£* that satisfies 0 < &* <1—c. It has been established in Proposition 10 that there
exist some m(e*) = 1 and some positive ¢$(e*) such that

Pr{IN(ty,c) — (1 — c)Npl = e*No] S exp (— ¢(e*)No), VN, 2 m(e*),
which implies that
(58)  PriN(tye)=(l—c—e)NolSexp (—p(e")No), VN, Zm(e*).
Since 1—c—¢*>0, we have D=E(1—c~¢*)N; for all Ny=D/(1—c—¢€*).
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Combining this with (58), we have
Pr{N(tyc)=D]=exp (—o(e*)Ny), VN, ZM*,
where

D
M { . ———-}
max {m(e*) -
Clearly, this implies that

(59) im Pr{N(zyc)=D]=0.

No—> @

Next, let (T, )x—0.... be the steady-state distribution of the number of customers in
the queue. We fix an ¢ satisfying 0 < ¢ < 1. Since the queue under analysis is stable,
there exists some D(g)=0 such that ¥,<p)7T =1—¢. This together with (59)
implies that there exists some L(¢) such that

(60) Pr[N(ty,c) € A ] — ()| >1-2e, VN, 2 L(g),
where £, déf{k :k = D(e)}. We now notice that
Pr [N(Tw,C) € o] — 7(he)| S dy,(Taec) S 1.

This together with (60) ([which holds for all se(O, 1)] proves that
limy, - « dy(Tn,c) = 1

(b) Let ¢ be a constant satisfying ¢>1 and let & be defihed as 6% (c — 1)/2;
clearly, we have 8 >0. Using the alternative expression for the total variation
distance (see Section 1), we obtain

(61) dn(tne) =3 i [Pr [N(tn,(1 +28)) = k] — 7.
We have 0

Pr{N(tn(1+28))=k]=Pr[N(tn(1+28))=k and Ry, = 1y ,(1+6)]

+Pr[N(tn(1+28))=k and Ry, > tn(1+8)}
where Ry, is the random variable defined in (50) of Section 5.1. Using this and the
triangle inequality, it follows from (61) that
dnlen) =1 S, Pr[N(r(1+28)) =k and Ry S {1+ 8)] =
(62) k=0
+1 k§=‘,° Pr[N(zn(1+28)) =k and Ry,> 151+ 8)]

" In what follows, each of the two terms in the right-hand side of (62) is appropriately

upper bounded.
Starting with the last term, we have

(63) go Pr{N(zy(1+28))=k and Ry,>1tn(1+6)]=Pr [RN°.> (1 + 8)}
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Using Lemma 10, we obtain
64 Pr [Ry,> tw(1 + 8)] = exp (~ ¢ (8)No),

where ¢(8) >0.
Now we consider the first term in the right-hand side of (62). Since Ry, is a
regeneration point of the queue, we have

Pr [N(tn (1 +28)) = k | Ry, = *]

(65)

=Pr[N(tw(1 +28) —t*) =k |[N(©) =1],  Vt*€[0, ty(1+ 8)].
We define
(66) FOEP[N(t) =k |NO)=1] -7, V0.

Clearly, we have Lz fi(¢) =0 for all ¢ = 0; thus, it follows that

ShOI=2 S £O,  vizo,
k=0 ke%F}

where &} % {k:f(¢) 2 0}. Clearly, (66) implies that L. f(f) =1 forany £ c Z,.
Combining the previous two results, we obtain

v

(67) SIfOI=2,  vezo. -

k=0
Since 7, ¥ lim,... Pr [N(t) =k | N(0)=1], it follows from (66) that lim, ...f,(¢)=0
for k=0, - - -. Due to (67), we can apply the dominated convergence theorem and
obtain

lim 3 (fu(e){ =0.

Therefore, for any positive ¢ there exists some D(g) =0 such that
kEo IfilOl<e,  Vi=D(e).

Using the inequality above and the fact 7y (1+28)—¢*=6N,/(u— A1) for all

t* € [0, Ty, (1 + 8)], we obtain

-2

é

S (1 +28) ~t*) <e,  VE*e0, tu(l+8)] and VNe=E2D(e).
k=0

Combining this with (65) and (66), we have
Y, [Pr[N(tn(1+28)) =k | Ry, =t*] — mil <&,
(68) “°
Ve* €0, Ty (1 +8)] and VN, ZM(s),
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where M(¢) is defined by M(e) < ((u — A))D(£)/5. We also have
Pr [N(1n(1 +28)) =k |[RN, = T (1 + 6)]
= E[Pr [N(zn 1 +28)) = k| Ry,] | Rny = Ty (1 + )]

Using (68) and (69) (and the fact |E[X]| = E[|X|] for any random variable X), we
obtain

(69)

10) S |Pr[N(em(1 +28)) =k | Ry S tf(L + O] ~ ml <&, YNoZ M(2).
k=0

It aiso follows from (64) that 1 —exp (—¢(S)No) =Pr{Ry, = to(1 + )] =1. Using
this, we obtain (after some algebra)

lPr [N(tNo(]- + 26)) = k and RNoé tNo(l + 6)} - ”k!
S|Pr[N(tn (L +28)) =k | Ry, = ty (1 + 8)] — ]
+ exp (—P(6INy) . Pr[N(zn,(1 +28)) =k | Ry, = o (1 + 6)).
Combining this with (70), we have s
> Pr[N(ta (1 +28)) =k and Ry, =ty (l+ 8)] — me| < + exp (—@p(8)N,),
k=0 4
YNy 2 M(e).

This together with (62), (63) and (64) implies that for any positive & there exists
some M(¢) such that

0= dny(Tay0) < g +exp (—p(ONg), VN = M(e).

Since ¢(8) >0, it follows that limy,_. . dn,(Ta,c) =0.

5.3. Proof of Lemma 10. Let I be the random variable corresponding to the
residual interarrival time at the random time instant 7,,; moreover, let Ry, be the
random variable corresponding to the first regeneration point of the queue (see (50)
of Section 5.1). We have

Ry,= Ty, + L
Using this and the union bound, we have
Pr{Ry,Z ty(1+ 8)]=Pr [T, + [ = Ty, (1 + 6)]
(1)

=Pr [TN,,% rNo(l + ‘—25)] +Pr [[% fNog]-

In what follows, each of the two terms in the right-hand side of (71) is appropriately
upper bounded.
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Starting with the first term, we have

(72) Pr [TN,, = rNo(l + 525-)] < C'(8) exp (— ' (5)No).

The result above follows from Proposition 5, applied with k=1 and with §/2
instead of §.

We now consider the last term in the right-hand side of (71). Let 4 be the random
variable corresponding to the number of arrivals until the system is met empty for
the first time (see also the discussion preceding Lemma 3). Moreover, let Y; denote
the service time of the ith customer and let Z; denote the ith interarrival time. We

have
No+k—1 }

(73) JVdészin{ S v<S z

i=1 i=1

-

Since I is the residual interarrival time at the time instant 7T,, we have I<Z,
with probability 1; this implies that

(74) Pr [1 Z 1y, -‘25] sPr {z,, = ,M!g]_

We define n* as follows:

(75) n* & Az (1 + )], P
where ¢ is some positive constant. We have

Pr [Z,,.Z_r,vng] =Pr [Zwé tNog and N =n ]
(76)

+Pr [Z,,é t,,,og and /> n*].

Clearly, we have

é é

Pr[ng tNoz and .A’én*] éPr[ max {Z } -—tNoz]

Combining this with (76), we obtain

o é
a7 [Z” t~°2]<Pr[ max AZ} =y 2]+Pr[.z‘l‘>n"]
Each of the two terms on the nght-hand side of (77) will be upper bounded by an
exponentially decaying quantity.

Starting with the last term, we have (due to (73))

No+k—1 k
Pr[.)V>n“‘]=Pr[ > Yz zZvVke(l, ---,n*}]

i=1 i=1

=p {Mﬁi_ly Zz]

i=1 i=1

(78)
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We define

Ny+n*—1

z¥ Y Y-Xz

i=1 i=1
Clearly, we have E[e**]=[B(s)}™*" "~ [A(—s)]"" for all s € (—s4, 5g); thus, apply-
ing the Chernoff bound (see (3) in Section 2.1), we obtain

Not+n*~—1

(79) Pt[ > Yigizi]=Pr[&20}§[B(s)]"°+"‘-‘[A(—s)]"‘, Vs (0, ).

i=1 i=1
Since B(s)>1 and A(—s)<1 for all s € (0, s5), it follows from (75) (and from the -
fact 7y, = No/ (1 — 1)) that
80)  [BE)* A=) <([B(s)P VU R A=) PO,

. Vse (0, SB).
Defi ing def A(1+£)(pu—2A)+1 YA+ (n—A)
f&)=1B(s)] [A(-9)] ,

we have f(0) =1 and
df(s) 1( A
slo ds p\p-—

Therefore, there exists some s, € (0, sg) such that f(s,) <1. Applymg (79) and (80)
with § = 5,, we obtain

(1+s)+1)—-}(“—fé'(1+e))=—£<o.

Pr [N"*ﬁ':"l .ég ]<exp( ¢P1No)

i=1
where @, %' _inf(s,) > 0. This together with (78) implies that
(81) Pr [N >n*]|=exp (— @ No).

We now consider the other term in the right-hand side of (77). Applying the
union bound and using the fact that the random variables (Z;);,.... .~ are identically
distributed, we obtain

4 o é
(82) Pr ,max {Z}._rNo éZPr ; rNo-z— =n*Pr [Z—?:TNOE],
i=1
where Z is a random variable having the interarrival time distribution. Applying the
Chernoff bound (see (3) in Section 2.1), we have

(83) Pr [Z Z Ty, g] = A(s)exp (—szNo g), Vse &0, S4)-

def

We also have (due to (75) and the fact that z, = No/(u — 4)) that

n <).t~(1+£)+1<:_°

for all No=I*, where I* & (n — 1)/ (Ae). We fix some s € (0, 5,4). Using the previous
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inequality, (82) and (83), we obtain

(84 Pr [‘=tlllax” {Z:} ngo-;i] <

We define

56
_— =7
( 2(y—}.)N°>’ VYN,=1

OE

56 derdh
=0 and Dy(8)= 3 (1 +2)A(s).
Using these definitions and the inequality x <(1/a)e* (for o >0), it follows from
(84) (after some algebra) that

Pr [ max {Z Y= Ty, g] < Dy(6) exp (— @{6)Ny), YN, 2 1*,
This together with (77) and (81) implies that ‘
F)
e[ 12 0,5 | Sexp (00 + DS exp (~9:(ON),  VNoZ "
Combining this with (72) and (71), we obtain 2
Pr[Ry, Z i (1 + 8)] < C'(8) exp (— 9" (0)No) + exp (— 1 No),.
+ Dy(8) exp (— p(8)No), VN, =1
¢(8) ¥ L min {y'(8), @1, 9:(8)}

(6% nan -, LI L DO,

After defining

and

the result follows from the inequality above.

It is worth noting the following. Since Ty, < Ry, with probability 1, it follows from
Proposition 8 that for any positive 6 we have Pr [Ry, = 7o, (1 — 8)] = exp (—&(6)Np)
for all Ny =n(5). (5(8) and n(6) are the same as in Proposition 8.) Combining this
resuit with Lemma 10, one may easily prove that

Ryyrs 1

0

Noin @ No “ - A.
(see also Proposition 9).

6. Conclusions

In this paper we have analyzed a certain type of stable GI/G/1 queue, namely
that with A <y, with the service time distribution being of the exponential type and |
with the interarrival time distribution being of the exponential and of the non-lattice
types. This type of queue fits most practical cases. Assuming that such a queue
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initially contains N, customers, with Ny #0, we proved that the time 7, required for
the queue to empty is asymptotically proportional to N, namely
lim Togns 1 _ ;
N—=Ny pu—424

Using properties of the random variable T,, we proved that the settling time of the
queue is asymptotically equal to T, (i.e., No/(u — A)). Finally, we proved that after
scaling both time and the number of customers in the system by N, as N, increases,
the queue asymptotically behaves as if customers were arriving at a constant rate 1
and, at the same time, were departing at a constant rate w, as in a simple fluid
model.

An interesting direction for further research is to consider the asymptotic
behaviour of 7Ty, in the context of a G/G/1 queue where thé interarrival and
service times form a stationary and ergodic sequence (Y}, Z;);_, ... It is reasonable
to conjecture that most of our results are still valid in this more general context, and
that their proofs would include coupling and stochastic monotonicity arguments.
(This point was suggested by the referee and by F. Baccelli.) Moreover, we believe
that the results established in this paper may be extended to queueing networks. In
such systems, it is the dependence among arrivals that makes our analysis not directly
applicable. Thus, one has to show that, after scaling time by, Np; this dependence
becomes unimportant. Such a result has been established in [13] for the simple case
of a stable tandem of exponential servers with Poisson arrivals.
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