898 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

An Optimal One-Way Multigrid Algorithm for
Discrete-Time Stochastic Control

Chee-Seng Chow, Member, IEEE, and John N. Tsitsiklis, Member, IEEE

Abstract—We consider the numerical solution of discrete-time
stationary infinite-horizon discounted stochastic control prob-
lems, for the case where the state space is continuous and the
problem is to be solved approximately, within a desired accu-
racy. After a discussion of problem discretization, we introduce
a multigrid version of the successive approximation algorithm
that proceeds ‘‘one way’’ from coarse to fine grids, and analyze
its computational requirements as a function of the desired
accuracy and of the discount factor. We also study the effects of
a certain mixing (ergodicity) condition on the algorithm’s per-
formance. We show that the one-way multigrid algorithm im-
proves upon the complexity of its single-grid variant and is, in a
certain sense, optimal.

I. INTRODUCTION AND SUMMARY

HIS paper deals with the computational aspects of con-

tinuous-state discounted-cost Markov decision problems
(MDP’s), as they arise in discrete-time stochastic control [4],
[6], [7], [18] and is a continuation of a research effort [24],
[25] aimed at understanding the computational complexity of
control problems.

In a typical MDP, we are given a controlled discrete-time
system that evolves in a state space S C R"” and we are
interested in computing a fixed point J* of the dynamic
programming operator T (acting on a space of functions on
the set S) defined by

(T7)(x) = inf

u

g(x, u) +a/ J(¥)P(ylx,u)dy|,

vxeSs.

Here, C C R™ is the control space, g(x, u) is the cost
incurred if the current state is x, and control u is applied,
a€(0, 1) is a discount factor, and P(y| x, u) is a stochastic
kernel that specifies the probability distribution of the next
state y, when the current state is x and control u is applied.

Manuscript received April 25, 1989; revised March 31, 1990 and March
26, 1991. Paper recommended by Past Associate Editor, A. Haurie. This
work was supported by the National Science Foundation under Grant
ECS-8552419, with matching funds from Bellcore and Du Pont, and by the
ARO under Grant DAAL03-86-K-0171. A preliminary version of this paper
was presented at the 27th IEEE Conference on Decision and Control.

C.-S. Chow was with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA 02139. He
is now with the IBM T. J. Watson Research Center, Yorktown Heights, MA
10598.

J. N. Tsitsiklis is with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA 02139.

IEEE Log Number 9101161.

Then, J*(x) is interpreted as the value of the expected
discounted cost, starting from state x, and provided that the
control actions are chosen optimally (see Section II for more
details). Unfortunately, even if the problem data (the func-
tions g and P) are given in closed form, the equation
TJ* = J* does not usually admit closed form solutions and
must be solved numerically. This can be accomplished by
discretizing the continuous problem to obtain an MDP with
finite state and control spaces. Then the resulting discrete
problem can be solved by means of several algorithms such
as successive approximation (value iteration), policy itera-
tion, or linear programming [4]. Furthermore, there are
bounds available on how fine the discretization should be in
order to achieve a desired accuracy (see, e.g., [18] and [31]).

The computational requirements of continuous-state MDP’s
are substantial and for this reason, past research has focused
on the finite-state case (see, e.g., [16] and the references
therein). However, the availability of more powerful com-
puter hardware might make the solution of such problems
feasible, including real-time applications (e.g., in robotics
[28]).

We analyze the ‘‘worst-case’” complexity of the problem.
A novelty in our complexity analysis is that we simultane-
ously consider the dependence on the desired accuracy pa-
rameter € and on the discount factor « (as €0 and «oT1).
The dependence on « is interesting for both theoretical and
practical reasons. From the theoretical point of view, when o
approaches 1, the problem converges in a certain sense to an
‘‘average cost’”’ problem [4]. From the practical point of
view, if one discretizes the time in a continuous-time dis-
counted stochastic control problem, the discount factor in the
resuiting discrete-time problem approaches 1 as the dis-
cretization step becomes finer. It will be shown that the
dependence of the complexity on « is significantly affected
by the presence or absence of a certain mixing (ergodicity)
condition.

The main contribution of this paper is the introduction of a
multigrid variant of the successive approximation algorithm,
together with a detailed analysis of its computational require-
ments. This algorithm proceeds by solving the problem ap-
proximately on a coarse grid and by using the coarse grid
solution as a starting point for the solution on a finer grid.
The algorithm, in contrast to the more general multigrid
algorithms which move up and down the grids, proceeds
‘‘one-way’’ from coarse to fine grids, hence, the name
‘‘one-way multigrid algorithm.”” Thus, most of the work
takes place on coarse grids with a complexity reduction

0018-9286 /91 /0800-0898$01.00 ©1991 IEEE

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

resulting. In particular, the dependence of the complexity of
our algorithm on e is optimal. Also, the complexity depen-
dence on « is optimal in the presence of a mixing condition,
and close to optimal otherwise.

Multigrid methods have been studied extensively, primar-
ily for the numerical solution of partial differential equations
and have been found, both theoretically and experimentally,
to offer substantial computational savings (see, e.g., [8],
[13], and [15]). In the context of stochastic control, multigrid
methods have been independently introduced in [1] and [19].
(Also, see [5] and [21] for related works.) However, our
work is different in a number of important respects to be
discussed in Section VII-D.

Outline of the Paper

In Section II, we introduce our notation and review some
basic facts about monotone contraction operators. We state
our assumptions and define the problem of interest. In Sec-
tion III, we describe a discretization procedure related to the
one introduced in [31], and quantify the resulting approxima-
tion error. In Section IV, we introduce an ergodicity condi-
tion that is a continuous-state formulation of a ‘‘scrambling-
type”’ condition discussed in [14] and [27]. We show that the
ergodicity condition leads to faster convergence of successive
approximation methods and to better discretization error
bounds. We also show that if a continuous-state problem
satisfies an ergodicity condition, then this property is inher-
ited by the discretized version of the problem. In Section V,
we review some error bounds for the successive approxima-
tion algorithm, introduce our model of computation, and
develop some estimates on the computational cost of a typical
iteration. In Section VI, we analyze the complexity of the
classical (single-grid) successive approximation algorithm.
The analysis in this section is carried out twice: for general
problems, as well as for problems satisfying the ergodicity
condition. In Section VII, we introduce our multigrid version
of the successive approximation algorithm and analyze its
complexity. We also discuss the optimality of our methods.
In Section VIII, we consider the computation of a policy
whose cost is within ¢ of the optimal. Finally, in Section IX,
we discuss several extensions and generalizations of our
results and suggest certain directions for future research.

II. Marxov DEecisioN PROBLEMS

In this section, we give a precise definition of Markov
decision problems (MDP’s) and state our assumptions. We
start by introducing some notation and with a review of some
basic concepts.

A. Notation, Norms, and Operators

Let S be a Borel measurable subset of the Euclidean space
R"™. We use #(S) [respectively, #(S)] to denote the space of
all bounded Borel measurable (respectively, bounded contin-
uous) functions on S. When comparing two functions J,
J’ € #(S), we use the notation J < J’ which is to be inter-
preted as J(x) < J'(x) for all xeS§. Furthermore, any
scalar ¢ may also denote the constant function on S of value

899

c; in particular, J + ¢ denotes the function with value J(x)
+cat xeS.

We view the Euclidean space R” as a normed vector space
by endowing it with the sup-norm|| - ||,. We will also use
| - | to denote the sup-norm on Z(S). It is well known 21,
[20] that #(S) and %(S) are Banach spaces with respect to
the sup-norm.

We define

[Jlls = sup J(x) — inf J(x), vJe#(S). (2.1)
xeS xe$
The function | - || 5 is called the span norm and is actually a
seminorm [14], [27]. In particular, it satisfies the triangle
inequality. Moreover, the span norm also satisfies

| J)s=2min | J + ¢, Je #(S) (2.2)
ceR
where the minimum is attained by letting ¢ = —[sup, J(X)

+ inf, J(x)]/2. It follows from (2.2) that || J || s < 2| | o>
for all Je #(S).

An operator A:4(S) — #(8) is called a monotone oper-
ator if J=<J implies AJ = AJ’. Furthermore, if there
exists some a € (0, 1) such that || AJ — AJ ||, < allJ -
J' || for all J, J' € #(S), then A is called a contraction
operator on A(S), with contraction factor «. Operators that
satisfy both properties are called monotone contraction
operators [12], [31]. Finally, for any nonnegative integer K,
let A% denote the composition of k copies of A, with A°
denoting the identity operator.

B. Specification of a Markov Decision Problem

An MDP is defined as follows. We are given a state space
S C R" on which a controlled stochastic process evolves,
and a control space C C R™ from which control actions will
be chosen. We assume that S and C are bounded and
measurable, and, without loss of generality, we can make the
further assumption that S C [0, 11" and C = [0, 1]1™. The
dynamics of the system are described by a Borel measurable
function P:S X § X C =~ [0, o). In particular, P(y| x, u)
is to be interpreted as the probability density of the next state
» when the current state is x and the control u is applied.

We incorporate state-dependent constraints in our formula-
tion. In particular, for each x € S, we are given a nonempty
set U(x) C C of admissible controls. Define T' = {(x,
u)| xe S and ue U(x)}. We assume that T is the intersec-
tion of a closed subset of R” X R™ with the set S X C.
(That is, T is closed with respect to the induced topology on
S x C.) It follows that for any x€ S, U(x) is compact.

If at some stage &, the state is x and control u is applied,
then a cost a¥g(x, u) is incurred, where g:S X C— R isa
bounded measurable function, and « € (0, 1) is the discount
factor. A Markov decision problem is specified by the tuple
(s, C, {U(x)}xES7 P, g, o).

C. Assumptions

We assume that there exists a constant K = 1 such that:
Ad: | glx, u) — g(x’, w)| = K|(x, w) = (X,)]s
forall x, x’ €S and u, v €C;

A2: |P(y|x, wy— Py |x, w)| =K|(y, x, u) -
(¥, x',)|, forall x, x', y, y €S and u, u’ €C;

A.3: forany x, x" €S and any u’ € U(x’), there exists
some u € U(x)such that |u — u'||, <= K| x — X' | o}

A4 0=Py|x,uy=Kand [; P(y|x, u) dy =1,
for all x, yeSand uecC.

The first two assumptions state that g and P are Lipschitz
continuous. The third is the same as an assumption used in
[3], and is a continuity condition on the point-to-set mapping
x = U(x). The last assumption reflects the fact that P(-| x,
u) is a probability density. Unless otherwise stated, assump-
tions A.1-A.4 will always be in effect. (These assumptions
are somewhat restrictive; possible generalizations are dis-
cussed in Section IX.) Under our assumptions, an MDP is a
special case of the lower semicontinuous model studied in
[6]; it is also a special case of a model in [18].

D. Policies and the Optimal Cost Function
Define

Il = {u:S+~ C| pis Borel measurable and u(x) € U(x),

vxeS}. (2.3)

Let II” be the set of all sequences 7 = (g, py, **) of
clements of I1. Each element of T1* is called a policy and is
interpreted as a prescription for choosing control actions as a
function of time and of the current state. In particular, if the
state at time f is equal to some x and policy 7 is used, then
control g ,(x) is applied. Once a particular policy is fixed, we
can construct a Markov process {x|t =10, 1,:--} by
letting P(-| xJ, p,(x])) be the probability density function
of x7,, conditioned on x.

For any policy w€Il”, we define its cost J_(x), as a
function of the initial state, by letting

L) = B\ & a'e(x7om(xD) |5 = x]. x5
t=

(2.4)
The optimal cost function J*:S — R is defined by

J¥(x) = inf J (x), xeS. (2.5)

well™
Accordingly, a policy = is called optimal if J = J*
Furthermore, if e > 0, || J — J*||. <€, we will call J an
e-approximation of J*, or an e-optimal cost Sfunction. The
problem considered in this paper is precisely the computation
of such a function.

E. The Dynamic Programming Operator and Bellman’s
Equation

We define the dynamic programming operator T:.4(S) —
2(S), by letting

TJ(x) = min
uelU(x)

{g(x, u) + o /S J(¥)P(y|x,u) dy},

xeS. (2.6)

(We have used ‘“min’’ instead of ‘“inf>’ in (2.6) because the
minimum is always attained by some u € U(x). This follows

1IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

from the continuity assumptions A.1-A.2 and the compact-
ness of U(x).)

It is well known and is easily shown that T is a monotone
contraction operator (see, e.g., [12] and [31]) and satisfies

T(J+¢)=TI+ac, vJe#(S),vceR, (2.7)
WTJ - TI|s<allJ - s, VI, J eB(S). (2.8)

It is also easily shown (see, e.g., [6] or [18]) that, under
our assumptions, 7" maps #(S) into #(S), in particular, T
maps #(S) into itself. Since T is a contraction operator on
the Banach space %(S), the dynamic programming equa-
tion (Bellman’s equation) J = TJ has a unique solution in
#'(S). Furthermore, by [6, Corollary 9.17.2], the solution is
the same as J*. Therefore, J* is a continuous function.

F. Stationary Policies and Associated Operators

For any p€ll, a policy of the form = = (u, u, - -) is
called a stationary policy. When dealing with a stationary
policy, we abuse notation and use p to denote the policy and
J, to denote its expected cost function (instead of using =
and J_, respectively). For any p € I1, we define the operator
T,:%(S) —» #(S), by letting

T,0(x) = g(x, u(x) + [

N

J(»)P(y] x, p(x))dy,

xeS. (2.9)

Similarly with 7', T, is a monotone contraction operator, and
satisfies (2.7)-(2.8).

It follows from [6, Proposition 7.29] that 7, maps #(S)
into itself. Again, since 7, is a contraction operator on the
Banach space #(S), 7, must have a unique fixed point in
#(8); it is then easily shown that the unique fixed point of T,
is J“. Furthermore, it follows from a measurable selection
theorem [6, Proposition 7.33] that for any Je #(S) there
exists a p €Il such that 7, J = TJ; that is, the minimum in
TJ is attained by pu.

More importantly, it is shown in [6, Corollary 9.17.2] that
there exists an optimal stationary policy. Thus, we can
restrict attention to stationary policies and from now on, the
word ‘‘policy’” should be interpreted as *‘stationary policy.”’

I[II. DISCRETIZATION PROCEDURES

The computation of an e-approximation of J* is usually
accomplished by ‘‘discretizing’’ the original problem and by
constructing a new MDP that has finite state and control
spaces. However, since we will be comparing functions
corresponding to different discretization levels, it is both
conceptually and notationally simpler for us to consider
MDP’s that involve simple functions on S rather than func-
tions on finite subsets of S. In this section, we construct such
a discretization and estimate the resulting inaccuracy as a
function of the grid-spacing and of the discount parameter o.

A. Discretization of the State and Control Spaces

Let 4 € (0, 1] be a scalar that parameterizes the coarseness
of our discretizations; we call & the grid size or the grid
level. We start by partitioning the unit interval I = [0, 1]

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

into a collection .#, of subsets. In particular, ., consists of
the set [0, 4] together with all nonempty sets of the form (ih,
G+ DhRINI i=1, 2, . We then partition the unit
n-dimensional cube [0, 1]” into a collection .#," of subsets
defined by

Sl =L % x| Les,}.

We discretize the state space by partitioning it into a finite
collection of subsets. Each set in this partition is the intersec-
tion of S with an element of .#,". More precisely, we let %,
be the set of all nonempty sets o of the form ¢ = § Ny,
te 4, and these sets form the desired partition. We choose
a representative element from each o€ .%), and we let S, be
the set of all representatives. For any x € S, we let o, be the
element of %, to which x belongs. We also use d, to
denote the representative of the set o,

The comrol space is discretized by 1ettmg C,, be the set of
all (u,," -+, u,) €C such that each u, is an integer multiple
of A. The set of admissible discretized controls is defined by

Uy(x) = {aeCylllu-i|.

xeS. (3.1)
For any xe€ S, the set U(d,) is nonempty, by assumption.
Furthermore, using the definition of C‘h, for any u e U(d,)
there exists some i € C,, such that || u — #||,, < h /2. Thus,
the set Uh(x) is nonempty for each x € S. It is also easy to
see that

On(x) =

h
<3 for some u € U(§)}

U,(x) = U(é,), VvxeS,vx eo,.

(3.2)

B. Discretization of the Cost and the Dynamics

We are primarily interested in the case where A is small.
We can therefore assume that & < 1/2K, where K =1 is
the constant of Assumptions A.1-A.4. Given some # € (0.
1/2K], we define the functions §,:S X C, — R and P,:S
x § x €, = [0, o) by letting

(3.3)

(3.4)

An easy calculation [9) verifies that the denominator in (3.4)
is nonzero; so, P,, is well-defined. We note that for each (x,
eSS x C,,, the function Ph(| x, %) is a probability den-
sity on S. Furthermore, P,(y| x, fi) can be viewed as a
sample of P(-| -, @) at the points &,, J,, except that the
samples are suitably normalized. (This normalization is
needed in our subsequent complexity analysis.)

C. The Discretized Dynamic Programming Equation

Given the partition %), of the state space S, we say that a
function f with domain S is a simple function on %, if f
is constant on each element of #,. That is, f(x) = f(x") for
every o€ ¥, and every x, X' €0.

We have so far constructed a discretized MDP (S, C‘h,
{UKX)}, &ys Py,). The dynamic programming operator
T,: #(S) ~» #(S) corresponding to this problem is defined by
T,J(x) = min
eUy(x)

a [J(») By x, @) dyy,
J }

la.(x. 2

Je #(S). (3.5

Similarly with T, Th is also a monotone contraction operator
and satisfies (2.7)-(2.8). We also define the following set of
policies:

1, = {#y:S ~ C,| iy is a simple function on %),

and i, (x) € U,(x), vxeS}.

For any fixed & e éh, the functions g,(-, #) and
ls JNP(y| -, il) dy are simple on .%,. It follows from
(3.5) that for any J € Z(S), T,, Jisa sxmple function on ,,
and that the minimum is attained by a policy in the set IT,.

Since simple functions on), form a complete normed
space, the fixed point of T,, must also be a simple function
on ¥}, in particular, there exists a unique simple function on
%, denoted by J¥, that solves the discretized Bellman
equation J = T,,J

It is clear that the discretized problem (S, C,,, {0,(x)},
&n P,,, «) is equivalent to an MDP whose state space is the
finite set S To this latter problem, we can associate an
optimal cost function j,, S, — R and we have the relation
J,:"(a) = J,,(x), vxeS. For our purposes, however, it is
easier to work with the state space S, rather than S,,, because
J¥ » and J* are defined on the same set S and can be directly
compared.

D. Discretization Error Bounds

Our main discretization error estimate is the following:

Theorem 3.1: There exist constants K, and K, (depend-
ing only on the constant K of assumptions A.1-A.4) such
that for all #€(0, 1/2K] and all Je 2(S)

177 = Ty llw < (K, + 2K, || T s)h. (3.6)

Furthermore,

(A

- 1

Tle= == (K, + aKs | J*]5)h. (3.7)
Proof: We start with the following lemma.

Lemma 3.1: There exists a constant K, (depending only

on the constant K of assumptions A.1-A.4) such that

| By(y|x, i) = P(y|x,&)| < Kph

v(y, x,i)eSx SxC,, Vhe(0,1/2K].

(3.8)
Proof: The result follows from assumption A.2

(Lipschitz continuity of P) and a simple calculation [9].

Q.E.D.

902 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

We continue with the proof of Theorem 3.1. Fix some
J e #(S) and some x € S. We define

H(u) = g(x, u)+a/sJ(y)P(y|x,u) dy, ueC,

(3.9)

(@) = (x, @) + @ [J)B(y]x.7) dy. weC,.
(3.10)

It is clear from assumptions A.1-A.2 that H(-) is a continu-
ous function. Since U(x) is compact, the minimum in
min,, .., H(u) is attained by some u € U(x).

So let ve U(x) be such that H(v) = min,y,,, H(w).
Using assumption A.3, there exists some v’ € U(d,) such
that v — v'|, < K||x — 6,]| < Kh. Finally, choose
some € U,(6,) = U,(x) such that ||v' — ||, < h /2. (This
is possible because of the way that Uh(éx) is defined.)
Therefore, ||v — ¥||, < (K + 1)h. We now have

T,J(x) - TJ(x) = min H,(#) — min H(u)

aelUy(x) uel(x)
< | #,(3) - H(v)|
< | A,(v) - H(?)|

+IH(G) - H)|. (3.11)

Using the definitions (3.9)-(3.10), the Lipschitz continuity of
P (assumption A.2), Lemma 3.1, and a straightforward
calculation [9], we obtain T,J(x) — TJ(x) = (K, +
a2 K, || J)| o)k, where K, and K, are suitable constants. By
a symmetrical argument, we obtain the same bound for
TJ(x) — T,J(x); thus, |TJ(x) - T,J(x)| < (K, +
a2 K, || J||) k. Taking the supremum over all x€S, we
obtain | 7J — T}, J ||, < (K| + a2 K, || J| o) 5.

Tto complete the proof of the first part of the theorem,
since T and f,, satisfy (2.7), we have

179 = Tydllw = I T(J +¢) = TH(J +)|

< (K, + 02K, || J + c|)h. (3.12)

Since ¢ is arbitrary, we can choose ¢ to minimize the
right-hand side of (3.12); using (2.2), we obtain (3.6).

Lemma 3.2: Let T,: #(S) —» %(S) be a contraction opera-
tor with contraction factor « and fixed point J, € #(S).
Then, for any Je %(S),

IJ-7J

e

1
1=l = 5
-a
Proof: See [12, Theorem 1]. Q.E.D.
We now use Lemma 3.2 and (3.6) (with J = J*, T, =T,
J, = J;F) to obtain

1% = T¥lle < 1I* = Ty ¥l

l -«

=<

1= a(KI + Oleuj*“s)h

which completes the proof of the theorem. Q.E.D.

Let J%(x) = O for all xeS. It follows from assumption
A.1 that || TJ%||g < 2K. Since T is a contraction operator
with respect to the span norm || - || 5 [cf. (2.8)], we have

I 7* s = 1 TJ* = IO s < | TT* — TJO| 5
FITIO = 1o g < al ¥l s + 1T 5

which implies that

175 = 7= (3.13)
By an identical argument, we also get
AP (3.14)

1 —

Using (3.13) in the discretization error bound of Theorem
3.1 yields the following.

Corollary 3.1: Let K’ = K, + 2KK,. Then for every
he(0, 1/2K] we have

K'h
(1-a)

In the next section, we show that under an ergodicity
assumption | J*| ¢ can be bounded by a constant indepen-
dent of « in which case the bound of (3.15) can be sharp-
ened.

The following result will be needed later. Its proof is a
simple calculation and is omitted.

Lemma 3.3: 1f Je #(S)and h > 0, then | T, J || s < 2K
+a| J||s. Furthermore, if |J||, <2K/(1 - «), then
“Th‘]”m = ZK/(l - a)-

1% - T2l = (3.15)

E. Remarks

1) Our discretization procedure is similar to those in [31].
Despite some differences, the bounds of Theorem 3.1 are
similar to those in [31, Theorem 6.1]. A main difference is
that our discretized problems are defined on the same state
space S (unlike [31]) and all of the operators f',, act on the
same function space #(S). This greatly facilitates the grid-
level changes in the multigrid algorithms to be introduced
later. For example, in our framework, two iterations on
different grids correspond to the application of an operator of
the form T,,T,,,. In contrast, in the framework in [31], a
grid-level change requires the application of certain interpola-
tion and projection operators.

2) Our discretization scheme is also similar to an approxi-
mation scheme in [18], and the discretization bounds are also
similar. One difference is that we discretize the control space
(whereas the scheme in [18] does not).

3) The assumptions that the control space C is equal to [0,
1]™ and that the functions g and P are defined (and are
Lipschitz continuous) on the entire set C, allow us to use a
uniform discretization of C, independent of the constraint
sets U(x). This idea was used in [3], where the additional
requirement (.7,,(5?) C U(X) was imposed. However, such a
requirement is not necessary in our framework.

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

IV. THE ErcGobiciTy CONDITION

In this section, we consider a special case where the
dynamics satisfy a certain mixing tondition, which we call a
k-stage ergodicity condition. We show that this condition
leads to a faster convergence in the successive approximation
algorithm (to be introduced in Section V) and results in a
more accurate problem discretization. We also show that an
ergodicity condition in the continuous problem is inherited by
the discretized problems, for sufficiently fine discretizations.

A. A k-Stage Ergodicity Condition

For any pell, let P(y|x) = P(y|x, u(x)). Let p,,

uy, - be a sequence of elements of II. We define a
function P, P, :++ P,:S X S~ R by means of the recur-

sive formula

(PILOPMI e Pu,-)(xi+1 I XO)

= /S (puo P (4.1)

We can interpret (P, P, --- P,)(X;,, | x,) as the probabil-
ity density of the state x,,, at time / + 1, given that the
initial state is x, and that policy 7 = (pg, py, **) is used.

Definition 4.1: Let k be some positive integer. We say
that P satisfies a k-stage ergodicity condition with ergodic-

)(xil xO)Pui(xi+1 | x;) dx;.

ity rate p >0 if for all x,x" €S, pg,***, ko,
w; ell,
/mm[“o ux Pu.(ylx)’
s
P,P, - P(y|x)]dy=p. (42)

The definition of a Kk-stage ergodicity condition for the
discretized dynamics P,, is the same, except that we use P-
instead of P,.

This condition is a k-stage generalization of an ergodicity
condition in [18] and is a continuous-state formulation of a
‘‘scrambling-type’’ recurrence condition discussed in [14]
and [27]. It contains a number of important conditions as
special cases (see [14, Theorem 4]), and typically holds when
the system being controlled is ‘‘sufficiently noisy.”” (More-
over, ergodicity conditions are often assumed when studying
average-cost problems; see, e.g., [4], [18].) We caution,
however, that for problems arising from the discretization of
continuous-time problems, the value of ¥ may be impracti-
cally large, and the value of p may be impractically small.

B. Ergodicity and Span Norm Contraction

We now show that a k-stage ergodicity condition leads to
an additional span norm contraction factor (independent of
«) in the dynamic programming operator and results in a
better discretization error bounds.

Theorem 4.1: If P satisfies a k-stage ergodicity condition
with ergodicity rate p, then

a) |T*J = T*J||g < a*(1 - 0)|J = J'||s, for all J,
J' € B(S);

b) 7% s < 24K /5.

903

Similarly, if ﬁ,, satisfies a k-stage ergodicity condition
with ergodicity rate p, then
a) | TKI — TEI ||s < &*(1 = p)|| J = J' ||, for all J,
J € B(S);
b) || T s < 24K /p.
Proof: We first prove part a). Recall (from Section II-F)
that for any J e %(S), there exists u €I such that TJ = 1,J.
So let pg, py,t -, py_ (respectively, py, p),° -, uy_,) be
the policies that attain the minimum in 7*J (respectively,
T*J"); that is
T*J=T,T

HoT

T, J;

Bi—1

kg — e T 4
T*) = T,T, - T, J.

Be—1

The rest of the proof is exactly the same as the proof (for
discrete-state problems) of [14, Theorem 5]. (Alternatively,
see [4, pp. 318-320].)

To prove that || J*|| s < 2kK /p, let J%(x) = 0, for all
x € S. Using the triangle inequality

[J¥)s < ITT* = T*IO|| s + | T*J° -
= (1= J*s+ 1T s

Tls

which implies that || J*|| 5 < ||T*J°| s/p. Finally, the re-
sult follows from

7570 s < Z||TJ° T s
=
k
Z FHTIC| s = 2kK.

For the discretized dynamics, we use the finiteness of I ”
to conclude that for any Je Z(S), the minimum of ThJ is
attained by some p el'[The rest of the proof of parts a’)
and b) is identical and is omitted. Q.E.D.

Theorem 4.1 states that, under an ergodicity condition, 7~‘,,
is a k-stage contraction operator with respect to the span
norm || + || ¢ and the contraction factor is independent of o,
even if « increases to 1. Furthermore, the bound || J*|| 5 <
2kK /p, together with Theorem 3.1, leads to a tighter dis-
cretization error bound.

Corollary 4.1— Under a k-Stage Ergodicity Condition):
There exists some constant K” (depending only on the
constant K of assumptions A.1-A.4, k, and p) such that for
every he (0, 1/2K] we have

”h

- a

17* - T le =7

C. Ergodicity and Discretization

We now show that an ergodicity condition on the continu-
ous problem is inherited by the discretized problems, when
the discretization is sufficiently fine.

Theorem 4.2: Suppose that P satisfies a k-stage ergodic-
ity condition with ergodicity rate 2 p. Then there exists some
h, > 0 (depending only on K, k, and p) such that for all

904 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

he(0, h,), B, satisfies a k-stage ergodicity condition with
rate p.

Proof: We will need the following lemma.

Lemma 4.1: For any jiell »» there exists some pell
such that ||z — ull, < (K + 1)A.

Proof: Fix some ji €11, and some X, € S. The partition
that contains x, is o, and its representative is &, . Let
iy = p.(xo) = (3,) where the second quality holds be-
cause fi is constant on the set o, . By the definition of I hs
there exists some u, € U(d,) such that ug — digllee < B /2.

Let G={ueC| |u— iy|, =< (K+ 1/2)h}. By as-
sumption A.3, G N U(x) is nonempty, for all xeao, o+ Thus,
for every xeo ,» we can choose some u(x)e U(x) such
that || u(x) — 500 = | 4(X) — ol = (K + 1/2)h. By
repeating this argument for each set in the partition of S, we
obtain a function p that satisfies the desired inequality. There
is one final issue that has to be dealt with: according to the
definition of IT, x must be a measurable function. This can
be accomplished by appealing to a suitable measurable selec-
tion theorem ([6, Proposition 7.33]). Q.E.D.

We now proceed to the proof of the theorem. Let f,,

Bi>° ", fBg_y be a sequence of elements of ﬁ,,. Let pq,
Kttt By, be elements of Il such that || u; — &, = (K
+ DHh, i =0,1,- — 1. (They exist by Lemma 4.1.)

Let p and f be elements of IT and H,,, respectively. Using
Lemma 3.1, there exists a constant K, such that

| By(2] %, (%)) = P(y]x, @(x))| < Kph,

Vx,yeS. (4.3)
Furthermore, by assumption A.2
| P(y]x, &(x)) = P(y]x, u(x))|
<K|i(x) —p(x)| =K|p - flle. vx, yeSs.
(4.4)
Combining (4.3) and (4.4), we have |P(y| x) —

P(y|x)| =Kph+ K||p — fille, VX, y€S. In particular

| B (¥1%) = P(»]1%)| = (Kp+ K>+ K)h,
Vx,yeS,i=0,1,---,k—-1.
Using this inequality and the definition of PP, P,

it follows easily that there exists a constant K (dependmg
only on K and k) such that

(P, P) (] x) = (P, P,)(¥|x)

Vx, yeSs.

- K,h)2

_ Using a similar argument, we have for any i, **, i, _, €
I1,, there exist ug,- -+, w),_, €I such that
(Pgy = Py)] %)

= (P o By)y x)

Hence, we have, as required, for any x,x’ €S, py, -

-K,h/2, vx, yeSs.

s

~ ~ ~ e
Pr—1> /‘E)"”’ Au'k—lenh!

/ min [ﬁﬁo
s
> / min [Puo
s

By B (213 dy - [Kohay
S

Isﬂ 7|(y|x)’ P; #k 1(y|x)]

P, (yx),

=22p—-K,h=p

provided that h < h,, where we define 4, = min(1/2K,
p/Ky). Q.E.D.
Finally, we prove a result analogous to Lemma 3.3; it will
be used later.
Lemma 4.2: Suppose that P satisfies a k-stage ergodicity
condition with ergodicity rate 2p and that Je #(S) and
he(, h,). If |J|s =< 2(k+ 1)K /p, then

[T+ || s < 2(k + 1)K /p,

Proof: Let J%x) =0 for all xeS. First, we note
from Theorems 4.1 and 4.2 that, for he (0, h,], T, is a
k-stage span norm contraction operator with contraction fac-
tor (1 — p); from the proof of Theorem 4.1, that || 75J°|
= 2kK; and from Lemma 3.3, that ||ThJ||SS 2K +
I s-

We now prove (4.5) by induction on /. For / = 1, we have

Vi=1,2,-+,. (4.5)

NTH 1T s < W T+ T = TR0 s + | T° -
= (=2 IT,JlIs+ I T5I° s
= (1-p)[2(k+1)K/p+2K] + 2kK
<2(k+ 1)K /p.

TOls

Now assuming that the result holds for /, we will prove it for
! 4+ 1. We have

NIRRT | < | TR — TR0 s + | TR0 s
= (1= p)|TH* " s+ 2kK
< (1 -p)[2(k+ 1)K /p] + 2kK
<2(k + 1)K /p

as required Q.E.D.

V. SUCCESSIVE APPROXIMATION ALGORITHMS

In this section, we introduce the successive approximation
algorithm. We review some known bounds on its speed of
convergence and study the effects of the ergodicity condition.
We then introduce a model of computation and analyze the
computational requirements of a typical iteration of the algo-
rithm.

A. Successive Approximation Error Bounds

The successive approximation algorithm for a discretized
problem proceeds as follows. We start with some function
J € #(S) which is simple on .#,, and we compute 7,J
(r=12,-++). Since i",, is a contraction operator (with
contraction factor o) and since .7,;“ is (by definition) a fixed

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM,;

point of 7}, we have

175 = Tidllw < &' 5 = - (5.1)
In particular, T}J converges to J¥. A further consequence
of the contraction property of 7, is the following well-known
error bound [4], [12]:

~ ~ [0 ~ ~
17 = Tl = =130 = T 170
a' ~
< Tl = Il (5.2)

Since 7~",, is also a monotone operator and satisfies (2.7),
the convergence rate of the algorithm can be accelerated by
using the followiﬂg error bounds (see, e.g., [4]), that are
valid for any Je %(S):

JE< T+

max {(T;"J = T;7)(x)}
(5.3)

T min {(Ti'T - T (x)}. (5.4)

—a

3

JF= T+

(We have used “‘max’’ and ‘“‘min’’ because TJ and T/+'J
are simple functions.) The following is an appoximation to
Ji¥ that exploits the bounds of (5.3)-(5.4):

~ a o -
T = F 4 *—)[min (Ti'7 - T47)(x)
™

2(1

+max (T - T (%) (5.9)

We subtract (5.3) or (5.4) from (5.5) to obtain

~ e ~ ~
J*_Jt+1 < — Tt+lJ_ TtJ
” h "oo 2(1—(1) H h h ”S
t+1
s ——7\\T,J - Js. 5.6

This bound is not much better than the bound of (5.2).
However, if we assume that a k-stage ergodicity condition
holds, Theorem 4.1 yields

I1Tee4td = Tk || s < (1 = 0) | Tud = J s

<(-p)ITJ - Jls. (5.7)

Combining with (5.6), we obtain

~ (1-p)" .

* th+1
Iy =T e = 201 — o) 17,7 = Jlls. (58)
Thus, the distance of J’ from .7,’," contracts by a factor of at
least (1 — p) every k iterations. In particular, the conver-
gence rate has an upper bound independent of «.

Before we can analyze the computational requirements of a
typical iteration of the algorithm, we must first define our
model of computation, which is done in the next section.

905

B. Model of Computation

Given that we are dealing with problems involving contin-
uous variables, discrete models of computation (such as
Turing machines [22]) are not suitable. We shall use instead
a continuous model in which arithmetic operations are per-
formed on infinite precision real numbers (see [23] and [29]
for related models).

Our model consists of three components:

a) A Mechanism for Reading the Input: The input to the
computation is provided by means of an ‘‘oracle’’ that works
as follows.

i) To obtain information about S, a computer submits to
the oracle ‘‘queries’’ consisting of an element e .4,". If
¢+ N S is empty then the oracle returns a special symbol to
indicate this fact; otherwise, the oracle returns an element in
¢t N S and the volume N,(t N S) of that set, where \,(-)
stands for the Lebesque measure.

ii) To obtain information about U(x), a computer sub-
mits to the oracle a pair (h, x) and the oracle returns a list of
the elements of the set U,,(X).

iii) Finally, to obtain values of g and P at some specific
points, the computer submits to the oracle a triple (y, x, u),
and the oracle returns the values of P(y|x, u) and g(x,
u).

b) The Nature of the Allowed Computations: We con-
sider a computing machine, or simply a ‘‘computer’’ that has
the capability of performing comparisons and elementary
arithmetic operations on infinite precision real numbers. Fur-
thermore, the computer can use the results of earlier compu-
tations to decide what queries to submit to the oracle. The
rules by which the computing machine decides at each step
what to do next will be referred to as an ‘‘algorithm.”’

¢) A Format for Representing the Output of the Com-
putation: In our case, the output of the computation is a
function J, which is simple on %,, where the discretization
parameter A is to be decided by the computer itself. One
possible format is the following. The computer first outputs
the value of A, which implicitly specifies the partition ¥, of
S. It then outputs the pair (¥, J,(X)), for every Xe §h.

There are some additional assumptions that have to be
made in our particular context: the computer is provided the
values of m and n (the dimensins of C and S, respectively),
the discount factor «, the desired accuracy €, and the con-
stant K of assumptions A.1-A.4. Furthermore, if a k-stage
ergodicity condition is assumed, the computer is also given
the values of k and of the ergodicity rate.

The computational cost of an algorithm (also called its
complexity) will be counted in a very simple manner: each
query to the oracle costs one unit; similarly, each arithmetic
operation or comparison costs one unit. (In a variation of this
model, a query asking for the elements of a set 17,,(x) could
have cost equal to the cardinality of the set returned by the
oracle. Our complexity estimates, however, are not sensitive
to minor variations of this type.)

Let us fix the dimensions m and n, the constant K of
assumptions A.1-A.4, and the constants k and p involved in
the ergodicity condition of Section IV. Once these parameters

906 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

are fixed, let #(«) be the set of all MDP’s with discount
factor « and let 2= U, % (). Let us consider an
algorithm + that given any € > 0 and any MDP in #,
returns an e-optimal cost function. We use C(vy; «, €) to
denote the worst case running time of this algorithm for a
particular value of e and where the worst case is taken over
all MDP’s belonging to #(«). We then define the complex-
ity #(c, €) of solving MDP’s as the minimum of C(y; a, €)
over all algorithms v with the aforementioned properties.

There is a similar definition of the complexity of solving
MDP’s that satisfy a k-stage ergodicity condition with ergod-
icity rate p. The details of this definition are analogous to the
one in the preceding paragraph. We use %oix (0, €) to denote
this complexity.

It is convenient to only consider order of magnitude esti-
mates when arguing about algorithm or problem complexity.
We thus introduce the following notation:

a) Let f, g:(0, 1] » [0, o) be functions of the grid size
h. We write f = O(g) if there exist constants ¢ and hy>0
such that f(h) < cg(h) for all he (O, hy]. We also write
S=Q(g) if g =0(f).

b) Let f, g:(0, 1) x (0, 1] = [0, o) be functions of «
and e. We write f= O(g), if there exist constants c,
€g >0, and ay < 1 such that f(e, o) < cg(e, a), for all
€€(0, €] and aelay, 1). We also write f= Q(g) if
&= 0.

C. The Complexity of Evaluating ThJ

We estimate here the complexity of evaluating T,,J ac-
cording to the formula
{g (X, @)

T,J(x) = min

geUy(x)
+a/ J(¥)B,(y] x, i) dy} (5.9)

for the case where J is a simple function on S, Since T, J
also turns out to be a simple function on Sy We only need to

determine the values of T J for xeS Thus, T J is
determined by
ThJ(’?) = min {gh(iv i)
aeUy(%)
+ta Y J(F)P (7] %, @)\ (y)} xe$, (5.10)
Jes,

where M, stands for the n-dimensional Lebesque measure. !
We make the following observations. Since |S,| =
O(h™™), and |U,,(x)| =< |C,,| = O(h™™), there are
O(h="*™) different pairs (¥,). Also, for any fixed ¥ and
i, the right-hand side of (5.10) can be computed with
O(h™") operations, with most of the work needed for the
summation. Thus, the total time spent in arithmetic opera-

1This formula should explain why we have assumed that the oracle can
provide information on the volume of certain sets [see item a)-i) in Section
V-B]. If such volume information were not directly available, then it should
be somehow estimated. Although this could be an important issue in
practice, its theoretical aspects are somewhat tangential to the present work.

tions and comparisons is O(hA~?"+™) (The number of
arithmetic operations needed in the normalization of P, is of
the same order.) Furthermore, O(h~®"+™) oracle queries
are sufficient for obtaining the required values of the func-
tions g,, Ph, and of the elements of the sets U,,(x) We have
therefore proved the following lemma.

Lemma 5.1: If J is a simple function on .#,, then the
complexity of computing T}, J is O(h~@7+m).

In our estimates, we have assumed that the minimization
with respect to # is carried out by exhaustive enumeration. In
practice, the dependence on u may have a special structure
that can be exploited to reduce the computational require-
ments. Nevertheless, our analysis will be carried out for the
general case where no special structure is assumed.

VI. SINGLE-GRID SUCCESSIVE APPROXIMATION AND ITS
COMPLEXITY

In this section, we describe the single-grid successive
approximation algorithm and analyze its complexity using the
model of computation of Section V-B. We consider sepa-
rately: i) the general case, where the problem is not assumed
to satisfy an ergodicity condition, and ii) the special case,
where the problem is assumed to satisfy a k-stage ergodicity
condition with ergodicity rate 2 p.

The basic idea in single-grid successive approximation is
that we choose a grid size 4 so that || J* — JN,Tf||c>° is small.
We then keep applying the _operator T hy until a sufficiently
accurate approximation of J,,f is obtained.

A. The General Case

Let € be the desired accuracy. From the discretization
error bound of Corollary 3.1, we have

’

17* = Iy llw = ——h,. 6.1
hy (1 _ 01)2 f ()
Thus, if we let
(1 - a)e
hp= —u-—— (6.2)

2K’

we obtain || J* — J,’," [= €/2. (Actually, Corollary 3.1 has
the condition 4 < 1 /2K This is of no concern because we
are interested in the cases where €0 and/or «t1. In these
cases, (6.2) shows that h, becomes arbitrarily small.) With
our choice of h,, the complex1ty of evaluating T,, J, for
some J that is simple on ,, is O([(1 — a)%e]~ 2=+m)
(cf. Lemma 5.1).

Let J%(x) =0 for all xeS, and apply T on JO for ¢
times, where ¢ is the smallest integer satlsfymg

2(1 — «)

Let J' be as defined in (5.5). Then, (5.6) yields I J,,
J' % < €/2, and the triangle inequality shows that || J .
J! ||,,_|\J*—J,’7"f||m+||J,, J'|w < €, as desired.

~ €
T,7% < —.
1T, 7" s 3

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

‘We now bound the complexity of this algorithm. Since
| T,J°| s = 2K, it is seen that

log———
g(1 —a)e

|log «|

- log[2K /((1 - @)¢)]

+1=0

|log e

Therefore, the complexity of the algorithm is
1

(1 — a)-e. [L1 :|2n+m
|logax | (1 -a)e

B. The Special Case

We now impose an ergodicity condition, with ergodicity
rate 2. Corollary 4.1 yields || J* - .7,’,"]"@ <=K"h; /(1 -
@). We wish to have || J* — Ji ||, < €/2 and this can be
accomplished by letting A, = (1 — a)e/(2K"). Accord-
ingly, the complexity of each iteration is O(1/((1 —
Ol) e)2n+m)‘

Let again J%(x) = 0 for all x€ S, and apply f’h/ on J°
for /k + 1 times. Equation (5.8) yields

log

(6.3)

- a-0' .
[A = m" T,J°)
1-»p !
=0, (6.4)

- 2(1 —a)

We now bound the complexity of the algorithm. We desire
to have || J; — J**!||,, < ¢/2 and, from (6.4), this can be
achieved with

2K
<—log(1__0[)e 1 = O{1 —1
=Toe(-0)] (°g<1—a>e)‘

So, the complexity of the algorithm is

0('°g @ - a)e [@ -)}>

VII. CoMpLEXITY OF ONE-WAY MULTIGRID SUCCESSIVE
APPROXIMATION

(6.5)

In this section, we introduce a ‘‘one-way’’ multigrid ver-
sion of the algorithm of Section VI and estimate its complex-
ity. The first iterations of this algorithm are executed with a
relatively large value of A (coarse grid) and the value of A is
gradually reduced (grid refinement) as the algorithm pro-
ceeds, hence the name ‘‘one-way.’’ Because most of the
iterations are executed on relatively coarse grids, the result-
ing complexity is smaller than that of the single-grid algo-
rithm, by a factor of log (1/((1 — a)e¢)). Furthermore, our
method has certain optimality properties, to be discussed in
Section VII-C.

907

General multigrid methods have been extensively studied
in the context of partial differential equations, and have been
found to lead to substantially faster convergence both theoret-
ically and in practice [8], [13], [15]. The use of one-way
multigrid algorithms has been suggested by various authors
(see, e.g., [17], [26]). However, our detailed and rigorous
complexity analysis of one-way multigrid algorithms, in the
context of dynamic programming, seems new. Some alterna-
tive methods [1], [19] are discussed in Section VII-D.

A. The General Case

The algorithm starts by fixing an appropriate coarsest
grid-level (discretization parameter) h,. The choice of A, is
independent of « and e, but we require that 4, < 1/2K, so
that the discretization error bound of Corollary 3.1 applies.
We then compute the function J exactly, and let Jj = J;.
We switch to a new grid-level by replacing #, by h, /2, and
use J,’,Z to initialize the computations at the new grid-level.

More generally, at any grid-level A, we do the following.
We start with an initial estimate J; and we compute f’,,’ J,
t=1,2,---, t(h), where t(h) is the smallest positive inte-
ger such that

2K’h
all —a)

(The fact that such a #(h) exists is evident because f",fJ,{
converges.) At that point, we let

1700 = T, s =

(7.1)

JF=T/®y!

o ~ ~
* Sy | min (T2 = T) ()

2(

+ max (T] - T,:(hHJ,{)(x)] (1.2)
X

which is our final estimate at the current grid-level. Then,
(5.6) yields

- o ~ -
1Jf = e = 5 1 TH0E = T
alth -
= mHThJﬁ = Jills (7.3)
If
K'h €

the algorithm terminates. Otherwise, we replace h by h /2
and use the final function J; of the current grid-level to
initialize the computations at the next grid level. That is,
JI n= JE. Tt is clear that after a finite number of grid-level
changes, (7.4) will be satisfied, and this shows that the
algorithm eventually terminates.

We now verify the correctness of the algorithm. Let 4, be
the final grid level at which the algorithm terminates. Using
Corollary 3.1, we have

K'h,

- €
”th J "c:oS E

908 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

Furthermore, (7.1) and (7.3) yield

~ o ~ ~
15 = Jh o < m” Ty, = T2
K'h, €
< m <7 (7.6)

Equations (7.5)-(7.6) and the triangle inequality yield || J*
= Jillw = €, as desired.

In order to develop a complexity estimate, we need to
bound the number #(4) of iterations at each grid level. This
is done in the following two lemmas.

Lemma 7.1: for he{hy /2, hy/4, -, h;}, and every
tef{l, -, t(h)}, we have |\T,,J,,||SS2K/(1 - a).

Proof The proof proceeds by induction. We have
15 2lls = I Tflls < 2K /(1 = @), by (3.14). Assume that
19715 = 2K /(1 = @) for some he thy /2, ho /4.7 b},
Then, using Lemma 3.3., ||7,J/|s< 2K/(1 - a) and,
continuing inductively, thc same bound holds for |7} J'|,
t= 1, 1(h). It is seen from (7.2) that | J; ,|s =
(A Ils—IIT’("’Jhlls<2K/(1 - a). Q.E.D.

Lemma 7.2: There exists a constant ¢, independent of o

and e, such that (k) < ¢/ |loga|, for h = hy/2,
h, /4, .

Proof Fix some he{hy/4, hy/8, -, h;} and let
J=Ti@M-1J1, (Thus, J is the function available just
before the last iteration at grid level 24.) Then, (7.1) yields

~ A K 4K’ h
1 Topd = s s ——. (7.7)
a(l —)
Using the triangle inequality, the fact that || - || < 2|| - ||,
(7.7), and Theorem 3.1, we have
|77, ZhJ“S
< ||T,T 2nd TTth"s + || TT,,J - Tthth”s
Ty Tond = ToyJ |l
=2(| 7T, J - T ||w

+||TT,,J - TthZhj”oo) + O‘“T2h‘i_ j”s
= 2((K1 + ak,| 7~w2hj||s)h
+(K1 +°‘K2"T2hj”s)2h)
4K’ h
+a———m—. (7.8)

a(l - @)

By Lemma 7.1, we have ||T,,J |, <
this inequality in (7.8), we obtain

2K /(1 — a). Using

“oa s o . 2K
17750 = ToJ s <6 K1+0‘K21 h

-
4K'h
=
(1-a)

where the last inequality follows from the fact K’ = K, +
2K, K [cf. Corollary 3.1]. Note that the left-hand side of

10K’

Tk (19)

(7.9) is equal to || T,,J{ — J!| 5. Using (7.9) and the fact that
T, is a contraction operator, with contraction factor «, with

respect to the span norm || + || 5, we obtain
I Tadi = Ti ' Tils < o« T di = I s
10K’
<ot h. (7.10)
l -«

In particular, if 7 is chosen so that 10a’ < 2, then the
termination condition of (7.1) is satisfied. This shows that
t(h) is no larger than the smallest ¢ such that 10’ < 2 and,
therefore, t(h) < ¢/ |log o, where ¢ = 5.

The proof for the case & = h /2 is identical, provided that
we define J= i = J,, We than have | T,,J — J| ¢ =
I Tho'lho J,’,'< s = 0 and (7.7) is trivially true. The rest of
the argument holds without any changes. Q.E.D.

Note that at each grid level » we start with a function J/
that is simple on .%,, and, therefore, simple on %,. Since
only simple functions are involved, Lemma 5.1 provides an
estimate of the complexity of each iteration. Using also
Lemma 7.2 to estimate the number of iterations at each grid
level, the total complexity of the algorithm is

C(a,¢€)

1
0| ——
(Ilogal
+(1/4R,)" 4])

2n+m 1 1
1+ =+ — 4
|loga| 2 4]

1 1 2n+m
=0 .
(llOgal[(l—a)ze})

(The last step in (7.11) uses the relation 4, = Q(e(l — @)?)
which is a consequence of the termination criterion (7.4).)
Note that we have ignored the computations involved at the
first grid level 4. This is justifiable because we can compute
.l,l with a number of operations that is independent of « and
€ (e g., using linear programming or policy iteration) and let
JE ho = J,’," In practice, we might only compute an appxoxima-
tion of J,, (e.g., by using the successive approximation
algorithm at grid level h). It is easily verified that such a
modification does not change our complexity estimate.

[(1/hf)2n+m + (l/2hf)2n+m

(7.11)

B. The Special Case

We now assume that the problem satisfies a k-stage ergod-
icity condition with ergodicity rate 2p. The algorithm is
almost the same except for the following differences. The
initial grid size A, is chosen to satisfy h, < h,, where h_ is
the constant of Theorem 4.2. Furthermore, the termination
criterion of (7.4) is replaced by

K" h €

< — 7.12
1l -« 2 ()

where K” is the constant of Corollary 4.1.

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

The proof of termination is the same as in Section VII-A.
Correctness of the algorithm also follows similarly, except
that we have to invoke Corollary 4.1 instead of Corollary
3.1. We now bound the number of iterations at each grid
level.

Lemma 7.3: For he{hy/2, hy/4, -+, h;} and every
tef{l,2, -+, t(h)}, wehave | T/* 1T s < 2(k + DK /p.
In particular, || J{'||s < 2(k + DK /p.

Proof: The proof is similar to the proof of Lemma 7.1
except that we use Lemma 4.2 instead of Lemma 3.3 and the
fact that || J4 »lls = | Jills < 2(k + DK /p.

Lemma 7.4: Under the ergodicity condition, there exists a
constant ¢, independent of « and e, such that #(4) < ¢, for
h="hy/2, hy[4, -, hy.

Proof: The proof is identical with the proof of Lemma
7.2. The only difference is that, under the k-stage ergodicity
condition, (7.10) gets replaced by

8 . -
W7 = Tedills = (U= o) I T, T = Ji s

As o is replaced by the absolute constant 1 — p, it follows
that #(A) is also bounded by an absolute constant independent
of . Q.E.D.

We now use Lemma 7.3 to estimate the complexity of the
algorithm. We obtain

Cmix(a’ 6)
- 0((1/hf)2n+m + (1/2hf)2n+m

+(1/4h)" 4)
- 0([%]'"[1 b]>
ol)

We have used in the last step the fact h, = Q(e(l —)
which is a consequence of (7.12).

(7.13)

C. Lower Bounds and the Optimality of Multigrid
Successive Approximation

The following lower bounds on the complexity of the
solution of MDP’s have been established in [10]:

1 2n+m
@ €)= Q| — . (114
cle) ”([(l—ooe]) 714

1 2n+m
m]) (7.15)

We stress that these lower bounds apply to any conceivable
algorithm (within our model of computation), not necessarily
of the successive approximation type.

By comparing these lower bounds to the complexity of
our algorithm [(7.11) and (7.13)], we note the following.

1) For problems satisfying the ergodicity condition, our

Cix(a, €)= Q(

algorithm is optimal; that is, its complexity is within a
constant factor of the lower bound.

2) Without an ergodicity condition, our algorithm is al-
ways within a factor of O(1/ |log «a|) = O(1/(1 — @)) of
the optimal. In particular, if « is fixed and we concentrate on
the dependence on ¢, our algorithm is again optimal.

Let us also mention that the above lower bounds hold for
any problem discretization. In fact, these are lower bounds
on the number of oracle queries needed in order to obtain
sufficient information to compute an e-approximation of J*
[10]. We then notice that the number of oracle queries in the
multigrid algorithm is equal to the lower bound. This implies
that our discretization scheme is optimal (within a constant
factor), in the sense that no discretization using a smaller
number of queries could accomplish the desired goal.

Finally, it is shown in [11] that if we restrict to iterative
algorithms of the successive approximation type that only use
the family of contraction mappings {7}, then, under certain
simplifying assumptions, non-one-way multigrid algorithms
cannot improve the complexity of our one-way multigrid
algorithm. This suggests that if the O(1/(1 — «)) complexity
‘‘gap’’ is to be closed, we have to exploit some additional
structure of the problem and consider a radically different
method.

D. A Comparison With Other Algorithms

We compare our multigrid algorithm with the algorithms
reported in [1] and [19]. The main differences are as follows.

1) The problems solved in these references involve contin-
uous time and lead to an elliptic partial differential equation,
while we are dealing with discrete-time problems that lead to
an integral equation.

2) The algorithms of [1] and [19] are based on policy
iteration whereas we use successive approximation. The pol-
icy iteration algorithm involves a ‘‘policy evaluation’’ step
which amounts to solving the linear equation T,J, = J,,
where p is a certain policy. It is then suggested that the
solution of this equation be carried out using a multigrid
algorithm. Whereas an algorithm similar to ours might be
suitable for that task, the multigrid algorithm of [1] and [19]
is radically different. Ours proceeds from coarser to finer
grids, whereas the algorithm in these references moves re-
peatedly up and down between different grids.

3) The complexity analysis in [1] is carried out only for a
specific example. Furthermore, the analysis is based on a
heuristic correspondence between policy iteration and New-
ton’s method, together with an implicit assumption that New-
ton’s method converges very fast. (There is again no com-
plexity analysis in [19], only the proof of convergence is
shown.)

There may be good reasons for choosing policy iteration
over successive approximation, because it often converges
faster in practical problems. On the other hand, the complex-
ity of policy iteration algorithms is very difficult to analyze,
in general; this is the reason why we have focused on
successive approximation methods.

Another important reason why our method is so different
from those of [1] and [19] is that it is designed to solve

910 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 36, NO. 8, AUGUST 1991

fundamentally different problems: discrete time rather than
continuous time. When one discretizes continuous-time prob-
lems (e.g., controlled diffusion processes), smaller time steps
lead to a contraction factor that approaches 1 and to an
ergodicity rate that approaches zero; in a sense, the condi-
tioning of the problem worsens. By moving up and down the
grids and using a ‘‘coarse-grid correction,”” multigrid algo-
rithms can remove this ill-conditioning and result in a con-
traction factor bounded above by a constant smaller than 1,
and independent of the grid size [13], [15]. Such multigrid
algorithms depend heavily on the available special structure.
Our results indicate that, in the absence of such special
structure, our one-way multigrid algorithm does not leave
much room for improvement. For example, suppose that we
are starting with a true discrete-time discounted problem, in
which « is given constant (rather than a discretization-depen-
dent parameter); alternatively, suppose that the ergodicity
rate p is not too close to 0. Then, the aforementioned
advantage of full multigrid methods is not pertinent because
the problem is well-conditioned to start with. Even if the
problem is ill-conditioned, our algorithms can be improved
upon only if there is some additional structure to be ex-
ploited.

VIII. CoMPUTING €-OpPTIMAL POLICIES

In this section, we consider the computation of an e-opti-
mal policy, that is, a stationary policy whose expected cost is
within e of the optimal. The main result of this section is that
the upper and lower bounds of Section VII are applicable to
this problem as well; furthermore, computing an e-optimal
policy is ‘‘as hard as’’ computing an e-optimal cost function
(that is, the cost of compting the former is within a constant
factor of the cost of computing the latter, and vice versa).

A. Definition of e-Optimal Policies

Given a value of the discretization parameter A, we con-
sider the set of I1, of all policies at grid-level A, as defined
in Section III-C. These policies are easy to deal with compu-
tationally because they are simple functions on %),. (Note
that if gz e H,,, we must have p(x) e U,,(x) for all xe S but
this does not imply that ;i eIl.)

Toeach p e ﬁ,, we associate the operator T: #(S) ~ #(S)
defined by

T,J(x) = g(x, i(x)) + « /

S

J(¥)P(y]x, &(x)) dy.

(8.1)
We also associate to g the operator fﬁ:%(S) ~ 2(S) defined
by
= &(x. A(x))
o / J()By(y] x, i(x)) dy. (8.2)

Similarly to 7, T; and T- are monotone contraction opera-
tors and satlsfy (2 7-(2. 8) Let J; and J~ be the fixed
points of 7; and T}, respectively. Note that J~ (respectively,
J-) can be mterpreted as the expected cost funcnons associ-

ated with stationary policy fi for the original MDP (respec-
tively, for the discretized MDP).

Definition 8.1: Let € > 0. A function j:S - C is called
an e-optimal policy if there exists some 4 > 0 such that
pell,, | J; - J*|.<eand | J, - J*|. <

We now proceed to analyze the complexity of computing
an e-optimal policy.

B. Upper Bounds for Computing e-Optimal Policies

We will show that computing an e-optimal policy is ‘‘no
harder than’’ (within a constant factor in cost of) computing
an e-optimal cost function; thus, the upper bounds of (7.11)
and (7.13) apply to the computation of an e-optimal policy as
well. To show this, we use the well-known fact that the
policy used in the final iteration of successive approximation
algorithm is basically an e-optimal policy. The proof of this
result depends on the following lemma. _

Lemma 8.1: Let Je #(S) and pell, be a policy that
satisfies T,,J T J then for all he (0, 1/2K], there hold:

D 17 = il = s T = s

- 1

b) | J; = Jille = m([(1 + aK, || J; |l)4, where K,

and K, are the constants of Theorem 3.1.
Proof:

a) The result follows easily from the triangle inequality and
(5.2) and (2.2).

b) It is clear from the definition of f;z and T,L and the proof
of Theorem 3.1 that

17,0 = T,J | < (K, + aK, || J|s)h, Ve #(S).
Using Lemma 3.2 yields the desired result. Q.E.D.

We now apply Lemma 8.1 to the general case. Suppose
that we compute an e-optimal cost function using the multi-
grid successive approximation algorithm of Section VII-A.
Let J = T"”f) 'Jh , so that T J corresponds to the last
successive approxlmatlon iteration [cf. (7.6)]. Let 4 be a
policy that attains the minimum in T,, J. Then by Lemma
8.1a)

o F

17,7~ Jlls<e (83)
-«
where the last inequality follows from (7.6). Furthermore,
since || J;||s = 2K /(1 —) [cf. (3.13)] we see from Lemma
8.1b), Corollary 3.1, and (7.5) that

IA

- 1

H-]g*‘]g”m j(K1+O‘Kz“J,:Hs)hf
KL (8.4)

< = —. .
(1 _ 01)2 f 2

Lastly, the choice of 4, [cf. (7.5)] ensures that the discretiza-
tion error

(AR

(8.5)

oo =

Nlm

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

Using the triangle inequality and (8.3)-(8.5), we conclude
that

I

1% = Tl = 1 = T+ 1T = Till s S

(8.6)
[7% = Lillw < 1% = Tl + 1Tz = T3l < 26 (8.7)

Thus, (8.6)-(8.7) show that p is a 2e-optimal policy. We
note that a similar reasoning yields the bounds of (8.6)-(8.7)
for the special case, where the ergodicity condition is as-
sumed.

We conclude that the work needed to compute an e-optimal
policy is no greater than that of computing an e /2-optimal
cost function, and the upper bounds of (7.11) and (7.13)
apply to the computation of an e-optimal policy.

Let us now consider the problem of computing an e-opti-
mal admissible policy, that is, a policy p €Il such that
| J, — J*|l. < € This can be done, in principle, by first
computing an e-optimal policy (for some smaller €) and
approximating it by an element of II, due to the following
lemma.

Lemma 8.2: Let Je #(S), pell, iell,, and let K be
the constant of Assumptions A.1-A.4. Then

IT,J - T/l < (K+ aK[[Jls)|n = illw-
Furthermore,

1

1V, - Jille = T_—(;(K +aK || L) e = Al
Proof: The first part of the lemma follows from assump-
tions Al and A.2; the second part follows from Lemma
3.2. Q.E.D.
For the general case, the computation of an e-optimal
admissible policy p proceeds as follows (A similar argument
applies to the special case.) We first choose a discretization
parameter 4 which is small enough so that the discretization
error K'h/(1 — @) is no greater than ¢/8. We use the
multigrid successive approximation algorithm to compute an
€ /4-optimal cost function and, according to our earlier dis-
cussion, we obtain as a by-product an e/2-optimal policy

pell,; thatis, | J* = J;|l, < e/2.

We note from Lemma 4.1 that there exists some pell
such that ||p — Bl < (K + 1)h; so, by Lemma 8.2, || J,

-l = l—(K + aK || ;]| s)(K + 1)h. It can be
-«

seen from the proof of Theorem 3.1 that K(K + 1) is less
than K, and K,. Proceeding as in (8.4), we obtain | J, -
Jill = €/8. So, by the triangle inequality

1% = Tl < 15 = Tl + 195 = Tl

Thus, J, is indeed an e-optimal admissible policy, as de-
sired.

911

If the method in the preceding paragraph is to be used, we
must be able, given any f € fIh, to compute an admissible
well such that || i — pll, < (K + 1)A. In general, this is
impossible under our model of computation; in fact, it is even
impossible, in general, to represent an element of IT using a
finite data structure. On the other hand, for problems that
arise in practice, the sets U(x) often have a simple structure
and this task is feasible. In those cases, the computation of an
e-optimal admissible policy is no harder (within a constant
factor) than the computation of an e-optimal cost function.

C. Lower Bounds for Computing e-Optimal Policies

We observe that an e-optimal policy, by definition, deter-
mines the optimal cost function J* to within ¢, so, the lower
bounds of Section VII-C [(7.14)-(7.15)] apply to the compu-
tation of an e-optimal policy as well. (See [10] for more
details.) Tt remains to argue that computing an e-optimal
policy is ‘‘no easier than’ computing an e-optimal cost
function (that is, the cost of computing the latter is within a
constant factor of the cost of computing the former).

For the special case where an ergodicity condition is
imposed, the upper bound for computing an e-optimal cost
function is within a constant factor of the lower bound [cf.
(7.13) and (7.15)]. We conclude that computing an e-optimal
policy is no easier than computing an e-optimal cost function.
Thus, we have shown for problems satisfying an ergodicity
condition that computing an e-optimal policy is ‘‘as hard as”’
computing an e-optimal cost function.

We now consider the general case. For « fixed and
concentrating on the dependence on e, the upper bound for
computing an e-optimal cost function is within a constant
factor of the lower bound [cf. (7.11) and (7.14)]. Arguing as
in the preceding pargraph, we conclude that, with respect to
the dependence on ¢, computing an e-optimal policy is as
hard as computing an e-optimal cost function. But because of
the “‘gap”’ of O(1/(1 — «)) between the upper and lower
bounds, we cannot draw the same conclusion for the depen-
dence on «. A different argument, with some additional
assumptions, is needed.

We will give only the main idea of the argument (see [9]
for details). We show that if an e /2-optimal policy is avail-
able, then an e-optimal cost function can be quickly com-
puted (with complexity better than the lower bound). Thus,
an algorithm can first compute an e /2-optimal policy, then
use the policy to compute an e-optimal cost function with
total computational cost within some constant factor of the
cost of computing the policy. It follows that computing an
e-optimal policy is no easier than computing an e-optimal
cost function. However, this argument requires the following
assumptions: i) the dimension of the control space m = 1,
and ii) the e-optimal policy to be computed belongs to 1 n
with # = Q((1 — «)%¢), namely, the policy is not ‘‘unneces-
sarily’’ complicated.

IX. EXTENSIONS

We discuss here certain extensions of our results. We will
only present the main ideas and the reader is referred to [9]
for more details.

912 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

A. Piecewise Lipschitz Continuous Dynamics

Assumption A.2 requires P(y|Xx, u) to be Lipschitz
continuous. This assumption is unnecessarily restrictive, and
rules out many interesting examples. In fact, our results
remain valid if | g(x, u)| < K for all xeS§, ueC,and
Assumption A.2 is replaced by the following.

Assumption B.2: There exists a constant K < 1 such
that:

D fs [P x,)= P(y|x', w)| dy=K|(x, u) -
(x', U)o, forall x, x’ €S and u, v €C;

ii) for every xe S and ue C, P(y| x, u) is a *‘piecewise
Lipschitz continuous’’ function of y.

By P being ‘‘piecewise Lipschitz continuous,”’ we mean
that we can partition the state space S into a finite collection
of disjoint subsets U; such that P(-|x, u) is Lipschitz
continuous, with Lipschitz constant K, on each set U,.
Furthermore, to rule out pathological cases, we require that
the sets U, have ‘‘piecewise smooth’ boundary. (An even
more general formulation, in terms of measures and stochas-
tic kernels, can be found in [9]; we have chosen not to
present the most general formulation in this paper to simplify
the presentation and emphasize the complexity results.)

With assumption A.2 replaced by assumption B.2, it can
be shown that the discretizations of Section III again satisfy
(cf. Lemma 3.1) [; | P(y|x, u) — P(y|x, u)| dy<
Kph, Yhe(0, hyl, and this property is the key to the
discretization error bounds of Theorem 3.1. Furthermore,
any ergodicity condition in the continuous problem is again
inherited by the discretized problem (cf. Theorem 4.2). As a
consequence, all subsequent results, as well as the complex-
ity analysis, remain valid.

B. The Case Where P Is Not a Probability Measure

Suppose that | g(x, w)| < K for all x,eS, ueC. We
can relax Assumption A.4 by assuming instead that there
exists some constant K = 1 such that for all x, ye S and
u € C we have

a) [P(y|x,udy=<l,

by P(y|x, uwyel0, K.

Such an assumption can be used to model those MDP’s in
which the system has some nonzero probability of entering a
zero-cost absorbing state.

In an even more general class of problems, we can assume
that

a) [s [Pyl x, w)| dy =<1,

v) | P(y|x, w]|el0, K1.

A convenient discretization rule for such problems is to
define

P(6,|d,, i),

if/ | P(6,|d,, @) | dz=1;
Pyl x, a) = s _

P(6,|6,, u) / | P(6.|6,, 0)| dz,
)

otherwise.

Since P is allowed to be negative, it is clear that 7 and fh
are now no longer monotone operators. However, they are

still contraction operators, with contraction factor «, and the
proof of Theorem 3.1 (discretization error bounds) remains
valid provided that ||| ¢ is replaced by 2| -||,. Using the
algorithm of Section VII (with some minor modifications) it
can be shown that the complexity of the multigrid successive
approximation algorithm is

(| [| }2n+m>
o T 2
l -« (l - a) €

exactly as in the case of MDP’s satisfying assumptions
A.1-A.4. Unlike the case where P corresponds to a proba-
bility measure, we cannot improve this complexity estimate
by imposing an ergodicity condition on P. In fact, the lower
bound for the case where P is a nonnegative subprobability
measure and satisfies an ergodicity condition is shown in [10]

to be
l: 1 j|2n+rn)
Q| —F .
((1 —a)e

This may seem counterintuitive, given the fact that the case
of a nonnegative subprobability measure can be always re-
duced to the case of a probability measure, by introducing an
additional absorbing state to which all of the ‘‘missing”’
probability is channeled. The catch is that the ergodicity
condition is destroyed in the course of this state augmenta-
tion.

(9.1)

C. Fredholm Equations of the Second Kind

A Fredholm equation of the second kind is an equation of
the form

8(x) + [Oy 0)7(3) v = I(x)

where S is a bounded subset of R”, g and G are given
functions, and J is the unknown.

The numerical solution of this equation has been well
studied (see, e.g., [15], [26], [30]). Let us assume that G is a
bounded function and that /| G(y, x)| dy <« for all
xe€ 8§, where a€(0, 1). If we let P(y| x) = G(y, x)/a, it
is clear that we are dealing with the problem discussed in
Section IX-B, except that the control variable u is absent.
(Thus, m = 0.) It follows that (under Lipschitz continuity
assumptions) our multigrid algorithm can be used to compute
an e-approximation of the solution and has complexity

| 1 2n
ofzlewm) e
Furthermore, the lower bound of (9.1) becomes
) 2n
Q([(l = > -

and therefore our algorithm is optimal as far as the depen-
dence on e is concerned.
Multigrid algorithms for Fredholm’s equation can also be

CHOW AND TSITSIKLIS: OPTIMAL ONE-WAY MULTIGRID ALGORITHM

found in [15] and [26], and they are different in the following
respects. First, the algorithms in these references are more
general because they do not require a contraction assumption.
Furthermore, these algorithms perform computations on fine
grids and then use certain coarse-grid corrections. This is in
contrast to our method that only proceeds from coarse to fine
grids. According to our results, for the problems we are
considering, our method has optimal dependence on the
accuracy parameter ¢ and close to optimal dependence on o.
(Note that o« can be viewed as a measure of ill-conditioning
of the problem.) It is unclear whether the algorithms in [15]
and [26] have any similar optimality properties (since they do
not consider the dependence of the algorithm on the problem’s
ill-conditioning). To the best of our knowledge closing the
O(1/(1 — «)) gap between the upper bound (9.2) and the
lower bound (9.3) in solving Fredholm’s equation of the
second kind is still open.

D. Different Norms
Let us consider the L ,-norm on #(S) defined by

= 1o a] " pelw).

Since the volume of S is bounded by 1, it is easily shown
that || J|| , < || /||, for any Je #(S) and any pe[l, o).
For this reason, the function J returned by our algorithms
automatically satisfies || J — J*|| , < e.

It also turns out [10] that the lower bounds on the computa-
tional complexity of the problem do not change when L ,-
norms are used to measure the error J — J*. It follows that
such a different choice of norms does not affect the optimality
properties of our algorithms.

E. Average Cost Problems

Our results can be extended to the case of average cost
Markov decision problems [9]. In particular, under an ergod-
icity condition optimal algorithms can be obtained. On the
other hand, without an ergodicity condition, average cost
problems are, in general, ill-posed and have infinite computa-
tional complexity. It is an interesting research problem to
find conditions that are weaker than ergodicity and that
guarantee well-posedness.

F. Another Formulation of Discrete-Time Stochastic
Control Problems

In an alternative formulation of discrete-time stochastic
control, we are given a dynamical equation of the form
X,41 = f(x,, u,, w,), where ¢ denotes the time index, x,
denotes the state, u, the control, and w, denotes a noise term
with known probability density Q(w, | x,, u,). Even though
such problems can be reformulated into our framework, the
resulting density P(-| x,, u,) is, in general, not Lipschitz
continuous. In particular, our results do not apply. An impor-
tant special case in which our results are inapplicable is the
case of deterministic systems where P corresponds to a
singular measure, as opposed to a density. The problem of
characterizing the best possible discretization error and the

913

design of optimal (or close to optimal) algorithms for such
problems is open to the best of our knowledge.

G. Some Practical Issues

Although our algorithm has excellent theoretical proper-
ties, a lot of systematic experimentation is needed to deter-
mine the classes of problems for which it may be practical.
Furthermore, in a practical implementation, several modifi-
cations are worth investigating.

a) Different discretization or approximation procedures can
be tried in an effort to exploit any additional smoothness in
the problem data. One possiblity is to use piecewise linear or
higher order, instead of the piecewise constant, interpolation.
(For example, see [21] and the references therein.) Nonuni-
form grids might also prove useful.

b) Many practical problems involve unbounded state
spaces, and ways must be found to handle such problems.

¢) Whereas our algorithm uses a priori bounds to decide
when to change grid level, one might be able to use informa-
tion generated by the algorithm and improve performance. In
particular, one might estimate the degree of smoothness of
J*, while the algorithm is running.

d) Finally, the implementation of the ‘‘oracle calls’* could
present several challenges. This is true especially for the
oracle calls that provide volume estimates and that generate
the sets Uh(x) of admissible controls for the discretized
problem.

e) In practice, the running time of successive approxima-
tion can be improved by using Gauss-Seidel iterations, and
by doing a Jacobi iteration only when successive approxima-
tion error bounds are needed.

X. CONCLUSIONS

We have studied the computational requirements of contin-
uous-state Markov decision problems and have obtained some
fairly definite conclusions, by presenting algorithms with
certain optimality properites. There are several problems that
remain to be addressed, having to do with alternative formu-
lations (Section IX-F), continuous-time formulations, algo-
rithmic implementation issues (Section IX-G). We see our
work as a contribution to the understanding of the computa-
tional issues associated with control theory. Such issues are
important because they will ultimately determine the practi-
cality of different facets of control theory.

REFERENCES

[11 M. Akian, J. P. Quadrat, and J. P. Chancelier, **Dynamic program-
ming complexity and application,”" in Proc. 27th IEEE Conf. Deci-
sion Contr., Austin, TX, Dec. 1988, pp. 1551-1558.

[21 R. B. Ash, Measure, Integration, and Functional Analysis.
York: Academic, 1972

[3] D. P. Bertsekas, ‘‘Convergence of discretization procedures in dy-
namic programming,’’ /EEE Trans. Automat. Contr., vol. AC-20,
pp. 415-419, 1975.

[4] ——, Dynamic Programming: Deterministic and Stochastic Mod-
els. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[5] D. P. Bertsekas and D. Castanon, **Adaptive aggregation methods for
discounted dynamic programming,”’ in Proc. 25th IEEE Conf.
Decision Contr., Athens, Greece, Dec. 1986, pp. 1840-1845.

[6] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The
Discrete Time Case. New York: Academic, 1978.

[71 D. Blackwell, ‘‘Discounted dynamic programming,”’ Ann. Math.
Statist ., vol. 36, pp. 226-235. 1965.

New

914

(101

(11

(12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]
[20]

213

(22]
[23]

[24]

[25]

(26]

[27]

[28]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8, AUGUST 1991

A. Brandt, ‘‘Multi-level approaches to large scale problems,” in
Proc. Int. Congress Mathematicians, Berkeley, CA, Aug. 1986,
pp. 1319-1334.

C.-S. Chow, ‘‘Multigrid algorithms and complexity results for dis-
crete-time stochastic control and related fixed-point problems,” Ph.D.
dissertation, Lab. Informat. Decision Syst., Dep. Electrical Eng.
Comp. Sci., M.I.T., Cambridge, MA, Tech. Rep. LIDS-TH-1934,
Dec. 1989.

C.-S. Chow and J. N. Tsitsiklis, **The complexity of dynamic pro-
gramming,”’ J. Complexity, vol. 5, pp 466-488, 1989.

——, ““‘One-way multigrid algorithms and their optimality for a class
of fixed-point problems,”” Lab. Informat. Decision Syst., M.L.T.,
Cambridge, MA, Tech. Rep. LIDS-P-1960, Mar. 1990.

E. V. Denardo, ‘‘Contraction mappings in the theory underlying
dynamic programming,”” SIAM J. Review, vol. 9, pp. 165-177,
1967.

C. C. Douglas, ‘‘Multi-grid algorithms with applications to elliptic
boundary-value problems,”” SIAM Numerical Anal., vol. 21. pp.
236-254.

A. Federgruen, P. J. Schweitzer, and H. C. Tijms, **Contraction
mappings underlying undiscounted Markov decision problems,”” J.
Math. Anal. Appl., vol. 65, pp. 711-730, 1978.

W. Hackbusch, Multi-Grid Methods and Applications.
York: Springer-Verlag, 1985.

R. Hartley, L. C. Thomas, and D. J. White, Eds., Recent Develop-
ments in Markov Decision Processes. New York: Academic, 1980.
A. Haurie and P. L’Ecuyer, ‘‘Approximation and bounds in discrete
event dynamic programming,”’ IEEE Trans. Automat. Contr., vol.
AC-31, pp. 227-235, 1986.

O. Hernandez-Lerma, Adaptive Markov Control Process.
York: Springer-Verlag, 1989.

R. H. W. Hoppe, ‘‘Multi-grid methods for Hamilton-Jacobi- Bellman
equations,”” Numerische Mathematik, vol. 49, pp. 239-254, 1986.
A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis.
New York: Dover, 1970.

P. L’Ecuyer, ‘‘Computing approximate solutions to Markov renewal
programs with continuous state spaces,”” Dép. d’Informatique, Uni.
Laval, Canada, Rep. DIUL-RR 8912,

H. R. Lewis and C. H. Papadimitriou, Elements of The Theory of
Computation. Englewood Cliffs, NJ: Prentice-Hall, 1981.

A. S. Nemirovsky and D. B. Yudin, Problem Complexity and
Method Efficiency in Optimization. New York: Wiley, 1983.

C. H. Papadimitriou and J. N. Tsitsiklis, ‘‘Intractable problems in
control theory,”” SIAM J. Contr. Optimiz., vol. 24, pp. 639-654,
1986.

——, **The complexity of Markov decision processes,”’ Math. Oper-
ations Res., vol. 12, pp. 441-450, 1987.

H. Schippers, ‘‘Multigrid techniques for the solution of Fredholm
integral equations of the second kind,”” Proceedings of a Collo-
quium on Numerical Treatment of Integral Equations, T. Riele,
Ed. Amsterdam, The Netherlands: Mathematisch Centrum, 1979.
P. J. Schweitzer, ‘‘Contraction mappings underlying undiscounted
Markov decision problems—I1,”" J. Math. Anal. Appl., vol. 132,
pp. 154-170, 1988.

K. G. Shin and N. D. McKay, **A dynamic programming approach to
trajectory planning of robotics manipulators,”” [EEE Trans. Au-
tomat. Contr., vol. AC-31, pp. 491-500, 1986.

New

New

[29] J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, Informa-
tion-Based Complexity. New York: Academic, 1988.
130] A. G. Werschulz, ‘*What is the complexity of the Fredholm problem

of the second kind?,”” J. Integral Equations, vol. 9, pp. 213-241,
1985.

W. Whitt, ‘‘Approximations of dynamic programs—I1,”” Math. Op-
erat. Research, vol. 3, pp. 231-243, 1978; and ‘* Approximations of
dynamic programs—I1,”" Math. Operat. Research, vol. 4, pp.
179-185, 1979.

[31]

Chee-Seng Chow (5'89-M’89-5°89-M’90) was
born in Malaysia, on February 22, 1961. He re-
ceived the B.Sc. degrees in electrical engineering,
computer science, mathematics, and physics, and
the M.Sc. degree in electrical engineering and
computer science in 1985, the Electrical Engineer
degree in 1987, and the Ph.D. degree in electrical
engineering and computer science in 1990, all from
the Massachusetts Institute of Technology, Cam-
bridge, MA.

He was a Research Student at Xerox Palo Alto
Research Center, CA, during the Summers of 1982 till 1984, and the rest of
1984. Since 1989 he has been a Research Staff Member at IBM T.J. Watson
Research Center, NY. His present research interests are in areas that
combine computation, control, and communications.

John N. Tsitsiklis (S’80-S’81-M’81-M"83) was
born in Thessaloniki, Greece, in 1958. He received
the B.S. degree in mathematics, the B.S., M.S.,
and Ph.D. degrees in electrical engineering, all
from the Massachusetts Institute of Technology,
Cambridge, MA, in 1980, 1980, 1981, and 1984,
respectively.

During the academic year 1983-1984 he was an
Acting Professor of Electrical Engineering at Stan-
ford University, Stanford, CA. Since 1984, he has
been with the Electrical Engineering and Computer
Science Department at the Massachusetts Institute of Technology, where he
is currently Associate Professor. His research interests are in the areas of
parallel and distributed computation, systems and control theory, and opera-
tions reserch.

Dr. Tsitsiklis is the coauthor, with D. Bertsekas, of Parallel and Dis-
tributed Computation: Numerical Methods (1989). He has been a recipi-
ent of an IBM Faculty Development Award (1983), an NSF Presidential
Young Investigator Award (1986), an Outstanding Paper Award by the IEEE
Control Systems Society (for a paper coauthored with M. Athans, 1986), and
of the Edgerton Faculty Achievement Award by M.LT. (1989). He is an
Associate Editor of Applied Mathematics Letters and the IEEE TRANSAC-
TIONS ON AUTOMATIC CONTROL.

