
Systems & Control Letters 20 (1993) 157-166 157 
North-Holland 

The sample complexity of worst-case 
identification of FIR linear systems * 

M u n t h e r  A.  D a h l e h ,  T h e o d o r e  V. T h e o d o s o p o u l o s  and  J o h n  N. Tsitsiklis 

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

Received 1 May 1992 
Revised 7 October 1992 

Abstract: We consider the problem of identification of linear systems in the presence of measurement noise which is unknown but 
bounded in magnitude by some 6 > 0. We focus on the case of linear systems with a finite impulse response. It is known that the 
optimal identification error is related (within a factor of 2) to the diameter of a so-called uncertainty set and that the latter 
diameter is upper-bounded by 23, if a sufficiently long identification experiment is performed. We establish that, for any K > 1, the 
minimal length of an identification experiment that is guaranteed to lead to a diameter bounded by 2K~ behaves like 2 Nf(1/r), 
when N is large, where N is the length of the impulse response and f is a positive function known in closed form. While the 
framework is entirely deterministic, our results are proved using probabilistic tools. 
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1. Introduction 

Recently, there has been increasing interest in the problem of worst-case identification in the 
presence of bounded noise. In such a formulation, a plant is known to belong to a model set ~¢', and its 
measured output is subject to an unknown but bounded disturbance. The objective is to use input/output 
information to derive a plant estimate that approximates the true plant as closely as possible, in some 
induced norm. For frequency domain experiments, algorithms that guarantee accurate identification in 
the , ,~ setting were furnished in [4,5,6,7]. For general experiments, algorithms that guarantee accurate 
identification in the / 1 sense were suggested in [17,18]. These algorithms are based on the Occam's 
Razor principle by which the simplest model is always used to explain the given data. The optimal 
asymptotic worst-case error is characterized in terms of the diameter of the 'uncertainty set': the set of 
all plants consistent with all the data and the noise model. Other related work on the worst-case 
identification problem can be found in [8,10,11,19]. In particular, [10] presents a specific experiment that 
uses a Galois sequence as an input, and shows that the standard Chebyshev algorithm results in an 
asymptotic error bounded by the worst-case diameter of the uncertainty set. A Galois sequence is 
constructed by concatenating a countable number of finite sequences, such that the k-th sequence 
contains all possible combinations of { - 1, + 1} of length k, and so it is rich enough to accurately identify 
exactly k parameters of the impulse response. The length of each sequence is clearly exponential in k. 
Finally, identification problems with bounded but unknown noise were studied in the context of 
prediction (not worst-case) in [12,13]. Other related work, for nonlinear systems, can be found in [3]. 

An important result from the work of [17,18] states that for the model set of all stable plants, accurate 
identification in the / 1 sense is possible if and only if the input excites all possible frequencies on the 
unit circle. This is due to two reasons: the first is that bounded noise is quite rich and the second is that 
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minimizing an induced norm such as the g'~ norm implies that the estimate has a very good predictive 
power. Inputs with such properties tend to be quite long, and this suggests that the sample complexity of 
this kind of identification problems tends to be quite high, as a function of the numbers of estimated 
parameters of the impulse response. 

In this paper, we will study the sample complexity (required length) of the inputs for worst-case 
identification of FIR plants, under the {~ norm, in the presence of arbitrary bounded measurement 
noise. It will be shown that in order to guarantee that the diameter of the uncertainty set is bounded by 
2K8,  where 8 is the bound on the noise and K is a constant (larger than 1), the length of the input must 
increase like 2 uf(l/K), where N is the length of the impulse response and f is a positive function. Since 
the worst-case error is at least half of the diameter, these results show that the sample complexity is 
exponential in N even if the allowable accuracy is far from optimal, and capture the limitations of 
accurate identification in the worst-case set-up. We also show that our sample complexity estimate is 
tight, in the sense that there exist inputs of length approximately equal to 2 Nf(I/K) that lead to a 2K6 
bound on the diameter. An interesting technical aspect of this paper is that the existence of such inputs 
is established by means of a probabilistic argument reminiscent of the methods commonly employed in 
information theory. 

Other researchers have also recently addressed the sample complexity of worst-case identification. In 
a personal discussion with Poolla (January 1992), he pointed out to us (specifically to Dahleh) that the 
optimal identification case had exponential complexity, as in the lower bound of our Theorem 2.1. We 
have recently received a preprint by Poolla and Tikku [14] which, among other results, contains 
exponential lower bounds for the sample complexity of suboptimal identification of FIR systems. These 
lower bounds are similar to, although somewhat weaker than, the lower bound in our Theorem 2.2. 
Chronologically, the results of [14] precede ours, although we didn't have knowledge of their results 
when writing our paper. Finally, [14] contains some upper bounds but, unlike our Theorem 2.2, they are 
far from being tight. Also, while writing our paper, we learned that Milanese [9] had arrived to results 
similar to the exponential lower bound in our Theorem 2.1. His report does not contain any discussion of 
the case where the error is within a factor of the optimal. 

2. Problem definition 

Let "/~¢N be the set of all linear systems with a finite impulse response of length N. Any element h of 
~t" u will be identified with a finite sequence (hi . . . . .  hN ) ~ ~U. Let U n be the set of all infinite real 
sequences {ui}~= 1 such that I ui [ < 1 for all i, and ui = 0 for i > n. Any element of Un will be called an 
input of  length n. Finally, for any positive number 6, let D 8, called the disturbance set, be the set of all 
infinite sequences d = {di}~= 1 such that ] d~ I < 3 for all i. 

We are interested in experiments of the following type: an input u ~ U, is applied to an (unknown) 
system h ~Jt" N, and we observe the noisy measurement 

y = h  * u + d ,  (2.1) 

where * denotes convolution, and where d ~ D~ plays the role of an output disturbance or measurement 
noise. It is clear that, for i > N + n, we have y~ = di, and Yi carries no useful information on the 
unknown system h. 

The set that contains all plants in the model set that are consistent with the inpu t /ou tpu t  data and 
the noise model is called the uncertainty set and is given by 

SN,n( y, u) = {¢b ~-.4~¢N [ I] Y -- ¢ * U I]oo < 8} 

The diameter diam(S) of a subset S of /1 is defined by 

d i a m ( S ) =  sup IIx-yll]. 
x ,y~S 
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We then define the worst case diameter  for a given input u ~ U n by 

Du,n(U) = sup sup diam(Su,n(U * ~b + d,  u ) ) .  
d~D a ~b~.~" N 

Any identification algori thm that  lets its plant  estimate be an e lement  of  the uncertainty set has an error  
uppe r -bounded  by the d iameter  of  the uncertainty set. Besides, it is shown in [15,16,17] that  the error  of  
any identification algori thm is lower-bounded by half  the diameter  of  the uncertainty set. Define 

D*N,n = inf D N , n ( U  ) . 
u ~ U,, 

It is shown in [17] that 

lim D *  = 28 .  (2 .2 )  N,n 

Thus, as the length of  the experiments increases, and with a suitable identification algorithm, the 
worst-case error  can be made  as small as twice the disturbance bound  8, but  no smaller than & A 
quest ion that  immediately arises is how long should n be for the error  to approach  28. We address this 
quest ion by focusing on the behavior  of  the diameter  of  the uncertainty set, as the inputs are allowed to 
become longer. 

Let  us define 

n * ( N )  = min{n I D*N,n = 28}. (2.3) 

It is far f rom a priori clear whether  n * ( N )  is finite. This is answered by the following theorem which also 
serves as motivat ion for the main theorem (Theorem 2.2) of  this paper.  

Theorem 2.1. i For any 6 > 0 and N,  we have 2 N-  1 + N - 1 < n * ( N )  < 2 N + N - 1. 

Proof. We start by proving the lower bound  on n * ( N ) .  Fix N and let us denote  n * ( N )  by m. Suppose 
that  m < 0% and let J ,  u E Urn, be such that  Ds,m(u)---- 28. Let c ~ { - 1 ,  1} m be defined by v i = 1 if 
u i >_ O, and v i = - 1 if u i < 0. For  notat ional  convenience,  we define u i = 0 for i < 0. We distinguish two 
cases: 

(a) Suppose that  for every ~b ~ { - 1, 1} N, there eixsts some i(~b) ~ {1 . . . . .  m - N + 1} such that  either 
4' or  -~b is equal to (Vi(6)+N_ 1, Vi(6)+N-e . . . .  , Vi(e,)). It is clear that  i(~b) can be the same for at most  two 
different values of  ~b. Since the number  of  different choices for ~b is 2 N, it follows that  m - N  + 1 > 2 N- l ,  
which proves that  m > 2 N-1 + N -  1. 

(b) Suppose now that  the assumption of  case (a) fails to hold. Let  ~b ~ { - 1, 1} N be such that both 4' 
and - 4 '  are different f rom (Vi+N_I, Vi+N_ 2 . . . .  ,Vi), for all i ~ { 1 , . . . , m - N +  1}. Suppose that  h = 
6 d a / ( N -  1). Then  

N 8 N . 

[ (h  * U)i[ = k~=lhkUi_k N - - 1  Y'~ d~Ui-k  (2.4) 
k=l  

Since 14~kl = 1 and l u i_k l  < 1, we see that  IEkU__ld,~ui_~ I _<g. Let i be such that  N < i < m .  By our  
assumption on d~, the signs of  ui_ k cannot  be the same as the signs of  of  ~b k for all k, nei ther  the same 
as the signs of  -~b k for all k, and this leads to the stronger inequality 

N 

k~=l ff)kUi-k ~ N - 1. (2.5) 

1 We acknowledge Professor Poolla for pointing out an error in the previous version of this theorem. 
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We finally note that for i ~ (N, m], at least one of the summands ~bkui_ ~ is equal to zero, which implies 
that (2.5) is valid for all i. Combining (2.4) and (2.5), we conclude that I(h * u)i[ _< 6 for all i. Therefore,  
there exists a choice for the disturbance sequence d under which the observed output h * u + d is equal 
to zero at all times. Using the same argument, we see that if h = - & b / ( N  - 1), there also exists another 
choice of the disturbance sequence for which the observed output is zero at all times. 

We have thus shown that it is possible to observe an output sequence which is identically equal to zero 
while the true system can be either 6 c h / ( N - l )  or - 6 c b / ( N - 1 ) .  This implies that the worst case 
diameter satisfies 

DN,m(U ) _> 2 II 6 d ~ / ( U  - 1)II, > 28. (2.6) 

But this contradicts the definition of m = n * ( N )  and shows that case (b) is not possible. Thus, case (a) is 
the only possible one, and the lower bound has already been established for that case. The upper  bound 
follows easily by using the input sequence proposed in [10,17]. Let u be a finite sequence whose entries 
belong to { - 1 ,  1} and such that for every 4 , ~ { - 1 ,  1} N there exists some i(~b) such that ~b = 
(ui~),  u i~, )+l , . . . ,  Ui~)+N-1)" Such a sequence, called a Galois sequence, can be chosen so that its length 
is equal to 2 N + N - 1 [10]. With this input, the worst case diameter  is equal to 28. [] 

Theorem 2.1 has the disappointing conclusion that the worst-case error is guaranteed to become at 
most 26 only if a very long experiment is performed. In practice, values of N of the order of 20 or 30 
often arise. For such cases, the required length of an identification experiment is prohibitively long if an 
error guarantee as small as 28 is desired. This motivates the problem studied in this paper: if the 
objective is to obtain an identification error within a factor K of the optimal value, can this be 
accomplished with substantially smaller experiments? Theorem 2.2 below is equally disappointing with 
Theorem 2.1: it shows that experiments of length exponential in N are required to obtain such an error 
guarantee. The exponent depends of course on K and we are able to compute its asymptotic value (as N 
increases) exactly. 

Theorem 2.2. Fix some K > 1 and let 

n * ( N , K ) = m i n { n l D *  < 2 K 6 } .  
g , n  - -  

Then: 
(a) n * ( N ,  K )  >_ 2 N f ° / K ) - I  - N  + 2 I N / K ]  - 1. 

(b) l i m N _ . ~ ( 1 / N )  log n * ( N ,  K )  = f ( 1 / K ) .  
Here, f : (0, 1) ~ ~ is the function defined by 2 

= + 1  [[---~)l-a Iog(---~)l-a +(l~-~-a) log[----~).[l+a] 
f ( a )  

(2.7) 

(2.8) 

Notice that the function f defined by (2.8) satisfies f ( a )  = 1 - H(½(1 - a)), where H is the binary 
entropy function. In particular, f is positive and continuous for a ~ (0, 1). Before going ahead with the 
main part  of the proof, we need to develop some lemmas that will be our main tools. 

Lemma 2.1. Let  X 1, X 2 . . . . .  X N be independent binomial random variables with PK X i = 1) = Pr(Xi = - 1) 
a for  every i. = 3  
(a) Let  u i ~ [ - 1, 1], i = 1 . . . .  , N. Then, for  every a ~ (0, 1), we have 

Pr ~ i= uiXi  >- a <_<_ 2 -Nft"). (2.9) 

2 In the definition of f, and throughout the rest of the paper, all logarithms are taken with base 2. 
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(b) 1(1  ) 
l im  ~ l o g P r  E X / > a  = - f ( a ) .  (2.10 / 

i=1 

Proof. Part (b) is obtained from the classical Chernoff bound [1] or from counting arguments [2]. Part (a) 
also follows from the Chernoff bound, if u i = 1 for all i. It remains to prove part (a) for the general case 
of u i ~ [ - 1 ,  1]. 

We first note that because of the symmetry in the distribution of X i, we can assume, without any loss 
of generality that u i ~ [0, 1] for all i. We then have 

( 1  ~ ) N N 
Pr ~ uiX i > a < inf I-I E[ es~"'xi-")] -< inf 1-I E[ es~xi-~)] = 2-Nf(a)" 

i=1 s>0 i=1 s>0 i=1 
The first inequality is obtained by following the steps in the standard proof of the Chernoff bound; the 
second inequality is obtained by verifying that e TM + e -s" _< e s + e -s for all u E [0, 1]; finally, the final 
equality is a simple calculation which is also part of the classical proof of the Chernoff bound. [] 

One consequence of Lemma 2.1 is that for any e > 0, there exists some N0(a, e) such that 

Pr N i =  Xi>--°t ~2-N(f(a)+e)' V g > N ° ( a ' e ) "  (2.11) 

The following lemma strengthens (2.11) and will be needed later in the proof. 

Lemma 2.2. Let  S 1 . . . .  , X N be as in L e m m a  2.1. Let  ON= {(01 ... . .  ON) E~_ ~N ]•N=l l Oi l =N}.  Then, for  
any e I > O, there exists some Nl(Ote 11 such that 

Pr O i X i > a  > 2  -N(f(a)+~O, V N > - N I ( O t e l ) , V O ~ O  N. (2.12) 
i 

Proof. Note that the random variables ~.,i~lOiSiN and EN=I l Oil X i have the same probability distribution. 
Therefore, without loss of generality, we can and will assume that 0 i > 0 for all i. We have 

Pr OiXi > a N  = P r  Y'~ OiXi > a N  ~ Xi  >_ a N  .Pr  > a N  
i i=1 i=1 l 

> 2-N(f(a)+~l/2) Pr OiX i _ X i > a N  , (2.13) 
i 

where the last inequality holds for all N large enough, as a consequence of (2.11). 
Given any sequence X =  (X~ . . . . .  XN),  let X k be its cyclic shift by k positions; that is, X k =  

(Xk+ 1, Xk+ z . . . . .  X N, X I , . . . ,  Xk) .  Let X/k be the i-th component of X k. By symmetry, the conditional 
N distribution of X and X k, conditioned on the event Ei=~X i _ a N ,  is the same. Therefore, 

( --~1 >---olg ~ g i >  ) 1 ~ ( --~1 >-°iN i~=1 ) Pr OiX i _ a N  = ~ Pr OiXi k X i > a N  
i Ii=1 k=l i 

> ~ P r  ::lk such that Y', OiXi ~ > Y'. X i > a N  
i=1 i=1 

1 
= ~ .  (2.14) 
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The last equality follows because if ~= ~X i >_ aN, then 

N N N N 

E E O i X i  k =  E O i E X ~ > - ' ~ N  2, 
k - 1  i - 1  i = 1  i : - I  

which immediately implies that there exists some k for which N k Ei=lOiXi  >_ olN, 
We conclude that (2.13) becomes 

Pr OiX i >_ a N  > - -2  -N(f(a)+el/2) > 2 -N(f(a)+e'), 
i - N - 

where the last inequality follows if N is large enough so that 1 /N  >_ 2 -N~1/2. [] 

Having finished with the probabilistic preliminaries, we can now continue with the main part of the 
proof of Theorem 2.2. We will start with the proof of part (a). 

Lemma 2.3. Suppose that the length n of an input sequence u ~ U n is smaller than 2 Nf(I/K)-J - N  + 
2[N/K] - 1. Then, there exists some h ~ { - K S / N ,  KS~N} N such that II u * h Iko < 6. 

Proof. Let n be as in the statement of the lemma. We will show the existence of such an h by showing 
that a random element of { - K 6 / N ,  KS/N}  N satisfies H u * h II= < 8 with positive probability. Indeed, 
let h be such a random element, under the uniform distribution on { - K 6 / N ,  KS~N} u. Then 

N+n N + n - [ N / K ] +  1 

Pr(llu*hlloo>6)<_ E Pr ( l (u  * h)jl  > 6 ) =  E Pr( l (u  * h)~l >_8) 
j= 1 j=[N/K]+ 1 

< ( U + n - Z [ U / K ] + l )  max P r ( l ( u *  h ) j l > 6 ) .  (2.15) 
I <_j<N+n 

where the equality on the first line holds because for j <_ [N/K], we have 

N J-lhiuj_i K8 ( I N ]  ) K 6  
I (u*  h )~ t=  i~=l h iu j - i  -~ i=1 ~ < ( j - 1 ) - ~ - -  < - 1 - ~ - < 8  

and for j > N + n - [N/K]  + 2, we have 

I ( u *  h ) j l  = i=l]~-~hiuj-i = i=~j-n h iu j - i  < ( g - j + n + l ) ~ - <  - 1  <6. 

Furthermore, 

Pr ( l (u  * h)~[ > 8 ) = P r  hiuj_ 1 >_8 
i 

1 ~ Nhi/KS)uJ i 1 )  = Pr ~ ( _ _> ~ _< 2-2  -Nf(1/K). (2.16) 
i = 1  

The last inequality follows from Lemma 2.1 (a), because the random variables Nhi/K8 are independent, 
take values in { -1 ,  1}, and each value is equally likely. Combining (2.15) and (2.16), we conclude that 

Pr( II u * h I1~ >-- 8) _ 2 N + n - 2 ~ + 1 2 -Nf(1/K). (2.17) 

If 2(N + n - 2[N/K] + 1) < 2 Nf(1/K), then the right-hand side of (2.17) is smaller than 1. This implies 
that there exists some h ~ { - K S / N ,  K S / N }  N for which II h * u I1~ < 8. [] 
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Suppose now that the length n of the input sequence u is as in Lemma 2.3, and let the unknown 
system h have the properties described in that lemma. Since I(h * u) i I < 8 for all i, there is a choice of 
the disturbance sequence d that leads to zero output. Consider next the case where the unknown system 
is actually equal to - h .  We also have I ( - h  * u)l <6 ,  for all i, and a zero output sequence is still 
possible. Thus, if the output sequence is equal to zero, both h and - h  could be the true system. For any 
identification algorithm, the worst-case error will be at least equal to one half of the distance of these 
two systems, which is II h II1 = K6. In fact, the same argument can be carried out if h is replaced by 
(1 + e)h, where e > 0 is small enough so that the property (1 + e) l (h  * u ) i l <  8 holds. We can then 
conclude that the worst-case diameter will be at least 2(1 + e)K& We have therefore shown that if 
n < 2 N-f(1/K)-I - N +  2IN/K]  - 1, then Du,n(u) > 2K8. Equivalently, n*(N, K)  > 2 Nf (1 /K) - I  - N +  
2IN~K] - 1, which completes the proof of part (a). 

We now turn to the proof  of part (b) of the theorem. Part (a) implies that lim 
infu_.~o(1/N) log n*(N, K)  > f ( 1 / K ) .  The proof will be completed by showing that 

lim s u p ( l / N )  log n*( U, K)  <_f(1/K).  
N--* oo 

To show this, we have to show the existence of an input sequence u of length close to 2 ufo/r)  that 
results in an uncertainty set of diameter bounded by 2K8. Although we are not able to provide an 
explicit construction of such an input sequence, we will prove its existence using a probabilistic argument. 

We now provide the details of the construction of the input sequence u. Let us fix some q~ > 0. Let 
M ( N )  be the smallest integer larger than 

M( N )  >_ 2 N(f(e + I/K)+ ze). (2.18) 

For every k ~ {1, . . . ,  M(N)}, we choose a vector u k = (Ul ~ . . . . .  uku) ~ {-- 1, 1} u. The input u is then 
defined by 

u = (u 1, u 2 . . . .  , uM(U)), (2.19) 

and has length NM(N) .  

Lemma 2.4. Let the input u be constructed as in the preceding paragraph. Furthermore suppose that the 
entries of the vectors u k are independent random variables, with each value in the set { - 1, 1} being equally 
likely. Then, there exists some N2(e) such that 

Pr (3h  ~-geu such that Ilhlll ___K6, Ilu * hll=___ 6) < 1, V N > N 2 ( e  ). (2.20) 

Proof. Let QN be the left-hand side of (2.20). Notice that if i is an integer multiple of N, with i = raN, 
we have 

N 

(u * h)i = Y', u'~hN_j, i= mN. (2.21) 
j=l 

We then have 

QN = P r (3h  ~4tv N such that II h II1 >- K &  II u * h I1~ -< 8) 

= Pr(: lh ~¢'N such that II h II1 = KS, II u * h I1® --- 8) 

= Pr(=lh ~ v  N such that II h II1 = N, II u * h I1~'--- N / K )  

< Pr 3h  ~ N  such that II h II1 -- N, ~, uThu_ j <_ N / K ,  m = 1 . . . .  , M ( N  , (2.22) 
j = l  

where the last inequality follows from (2.21). 
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Let us choose a finite subset ~'~) of " ~ N  such that for every h ~(-N with It h II~ = N, there exists some 
h' ~ .~} satisfying II h'  [11 = N and fl h - h'  IL < e. In particular, .ff~ can be chosen as a subset of the set 
of all elements of ~N for which each component is bounded by N and is an integer multiple of , / N .  It is 
then clear that ~t'~; can be assumed to have cardinality bounded by ((2N + 1)/e)  '~. We then have 

( N ) 
Pr 3h  ~ ' N  such that II h I1~ N, ~ '~ _ = uj h Ni]  < N / K ,  m = 1 , . . . , M ( N )  

j=l 

< P r ( = l h ' ~ - . ~  suchtha t  j~=lU~h~_j < N ( e + l / K ) , m = l  . . . . .  M ( N ) )  

< - - -  max Pr umhL • < N ( e  + l / K )  m = 1, M ( N )  (2.23) 
e 11~= h ' ~ ' f ¢  " 1 J m - j , " ' ' ,  " 

We provide an upper bound to the probability in the right-hand side of (2.23) by applying Lemma 2.2. 
(Here, u~' and h~v_ i correspond to Xg and 0g in the notation of that lemma.) Indeed, Lemma 2.2 is 
applicable because ]1 h '  [[~ = N and the components of the input are i.i.d random variables, with the same 
distribution as the variables X~ of Lemma 2.1. A minor difference is that the components of h' could be 
negative, while in Lemma 2.2 we assumed that the components of 0 are nonnegative. Nevertheless, if we 
replace each component of h'  with its absolute value, the distribution of the random variables 
E,y - m h, j=lUj U-j remains the same. We therefore conclude that there exists some N2(K, e) such that 

Pr . < N ( e + I / K )  < 1 - - 2  -N(fte+l/K)+e) Vm, V N > N 2 ( K , e  ). (2.24) 
j ~ = l  1 N -  1 - -  , - -  

By combining (2.22), (2.23), (2.24), and using the statistical independence of the vectors u m, we obtain 

QN < ( ( a N +  1 ) / e ) U ( 1  - 2-N(f(e+l/K)+e)) M(N) 

< ( ( 2 N +  1 ) / e )  u e x p { - M ( N ) 2  -N(f(~+1/K)+~)} < ( ( 2 N +  1 ) / e )  u exp{--2~U}, (2.25) 

where the second inequality follows from the fact ( 1 -  1 / x Y < e  -1, for every x >0 ,  and the last 
inequality follows from the definition of M ( N )  [cf. (2.18)]. It is then easily seen that QN converges to 
zero as N increases, which establishes the desired result. [] 

Lemma 2.4 establishes that, if the input u is constructed randomly as in the discussion preceding the 
lemma, then, with positive probability, u will have property P below: 

P: if h ~.-4~ N and I1 u * h H= < 3, then II h 111 < K~. (2.26) 

In particular, there exists at least one u, of length n = M ( N ) N  that has property P. 3 

Lemma 2.5. I f  an input u has property P of  (2.26), then DN,n(tt) <_ 2K& 

Proof. We apply the input u and measure the output y = h * u + d, where h is the unknown plant and d 
is the disturbance sequence. Given the observed output y, we can infer that h belongs to the set of 
uncertainty 

SN,n(Y, U) = {4, I II Y --  4' * U --< a } .  

Let X and qJ be two elements of SN,n(y, u). Then, I l y - x  * ulL_<a and I l y - q J  * u ] l~<&  Using 
the triangle inequality, we obtain II u • ( x -  0 ) / 2  IL-< ,~. Since u has property P, we conclude that 

3 In fact, it is easily seen that QN converges to zero very rapidly, which implies that most u's will have property P. 
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II(x - q , ) / 2  II1 - K 6  or II x - ~ II1 -< 2K6. Since this is true for all elements of SN, n(y, u), the diameter of 
SN,n(Y, u) is at most 2K& [] 

As discussed earlier, if N is large enough, there exists an input of length n = M(N)N that has 
property P and, by Lemma 2.5, leads to uncertainty sets whose diameter is bounded above by 2K& It 
follows that n*(N, K) <M(N)N. Using the definition of M(N) [cf. (2.18)], we see that 

limsup(1/N) logn*(N,K)<limsup(1/N)logM(N)N<_f(e+l)+2e. (2.27) 
N ~  N--*~ 

Since Eq. (2.27) is valid for all e > 0, and since f is continuous, we conclude that 

lim s u p ( l / N )  log n*( U, K) <_f(1/K), 
N ~  

which concludes the proof of Theorem 2.2. [] 

3. Conclusions 

This paper addresses issues in the sample complexity of worst-case identification in the presence of 
unknown but bounded noise. Two main results are furnished: the first is a lower bound on the length of 
inputs necessary to approximate N steps of an impulse response to an accuracy within a factor K of the 
best possible achievable error. This bound has the form 2 Nf(1/K), and hence is exponential in N. The 
second result shows that this lower bound in asymptotically tight, i.e. for large enough N, there exists an 
input of length close to the lower bound that allows the identification of N steps of the impulse 
response. 
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