
Information Processing Letters 46 (1993) 219-224 

Elsevier 

9 July 1993 

An efficient algorithm for multiple 
simultaneous broadcasts in the hypercube * 
George D. Stamoulis * * and John N. Tsitsiklis 
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

Communicated by D. Gries 

Received 8 December 1992 

Revised 30 March 1993 

Abstract 

Stamoulis, G.D. and J.N. Tsitsiklis, An efficient algorithm for multiple simultaneous broadcasts in the hypercube, 

Information Processing Letters 46 (1993) 219-224. 

We analyze the following problem: Each of K nodes of the d-cube wishes (at the same time) to broadcast a packet to all 

hypercube nodes. We present a simple distributed algorithm for performing this task efficiently for any value of K and for 

any K-tuple of broadcasting nodes, and some variations of this algorithm that apply to special cases. In particular, we obtain 

an easily implementable algorithm for the multinode broadcast task (K = 2d), which comes within a factor of 2 from the 

optimal. 

Keywords: Broadcast; distributed systems; hypercube communications; routing algorithms 

1. Introduction 

During execution of parallel algorithms in a 
network of processors, subsets of processors 
sometimes wish to broadcast simultaneously 
pieces of information to all others. We present an 
efficient, yet simple to implement, algorithm .for 
performing such simultaneous broadcasts in the 
hypercube network. 

We consider the d-dimensional hypercube (or 
d-cube); see e.g. [2]. This network consists of 2d 
nodes. numbered from 0 to 2d - 1. Associated 

Correspondence to: J.N. Tsitsiklis, Laboratory for Information 
and Decision Systems, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA. Email: jnt@athena.mit.edu. 

* Research supported by the NSF under Grant ECS-8.552419 

and by the AR0 under Grant DAALO3-86-K-0171. 
* * Email: stamouli@theseas.ntu.gr. 

with each node z is a binary identity (i!d, . . . , zl), 
which coincides with the binary representation of 
the number z. There exist arcs only between 
nodes whose binary identities differ in a single 
bit. That is, arc (z, y) exists if and only if zi = yi 
for i#m and z,#y, for some m~{l,...,d]. 
Note that (z, y) stands for a unidirectional arc 
pointing from z to y; of course, if arc (2, y> 
exists, so does arc (y, z). The d-cube has d2d 
arcs and its diameter is d. Other properties of the 
hypercube that are used in our analysis are pre- 
sented in Section 2.1. 

The underlying assumptions for communica- 
tions are as follows: The time axis is divided into 
slots of unit length; all nodes are following the 
same clock. Each piece of information is trans- 
mitted as a packet of unit length. Only one packet 
can traverse an arc per slot; all transmissions are 
error-free. Each node may transmit packets 

0020-0190/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 219 



Volume 46, Number 5 INFORMATION PROCESSING LETTERS 9 July 1993 

through all of its output ports and at the same 
time receive packets through all of its input ports. 
Moreover, each node has infinite buffer capacity. 

In the problem analyzed in this paper, it is 
assumed that each of a subset of K nodes of the 
d-cube wishes to broadcast a packet. We observe 
in Section 3.1 that, for any routing algorithm, the 
time required to perform these simultaneous 
broadcasts in the absence of other transmissions 
is R(max{d, K/d}), for any K-tuple of broadcast- 
ing nodes. We then devise a simple distributed 
algorithm which for any KG 2d and for any K-tu- 
ple of broadcasting nodes, comes within a factor 
of 6 of the lower bound. For K B d2, the algo- 
rithm is within a factor of 2 of the lower bound. ’ 
The algorithm works even if no node of the 
hypercube knows K or the identities of any other 
broadcasting nodes. It uses a first phase, during 
which the broadcasting nodes coordinate in a 
decentralized fashion; this phase involves a paral- 
lel prefix task (see Section 2.2). We also present a 
randomized variation of this algorithm, which 
does not involve the prefix task; when randomiza- 
tion is employed, the completion time is 
CNmax{d, K/d)) and the task is accomplished 
correctly with high probability. Finally, in Section 
3.3, we present some other efficient algorithms 
for the special cases K = O(d) and K = d. 

The simplest communication task involving 
broadcasting is the single node broadcast, where 
exactly one of the nodes wishes to broadcast a 
packet. This can be accomplished in d time units, 
by using a spanning tree with shortest paths. The 
single node broadcast is an extreme case of the 
problem analyzed in this paper, corresponding to 
K = 1. The other extreme case, namely K = 2d, 
corresponds to the multinode broadcast, where all 
nodes wish to perform a broadcast at the same 
time; see [2]. For hypercubes, the minimum possi- 
ble time for this task, ](zd - 1)/d], is attained by 
an algorithm by Bertsekas et al. [ll. Previously, 
Saad and Schultz [61, as well as Johnsson and Ho 

1 In subsequent work, Varvarigos and Bertsekas [7], devised 

an algorithm whose completion time is faster by about a 

factor of 2 and which is within an additive constant of the 

optimal for K z+ d2. 

220 

[31, had constructed optimal or nearly optimal 
multinode broadcast algorithms for hypercubes, 
under somewhat different assumptions on packet 
transmissions. Our algorithm specialized to the 
multinode broadcast problem completes in time 
2[2d/dl + 2d - 1; this is a factor of 2 from the 
optimal, but the algorithm is much simpler and 
easier to implement than previously available al- 
gorithms. The multinode broadcast task arises in 
the distributed execution of iterative algorithms 
of the form x :=f(x), where f : R” + R” and 12 is 
the number of nodes; typically, node i knows the 
function fi and updates xi. Assume that the 
problem is dense, i.e. each entry of the function 
f(x) depends explicitly on almost all entries of x; 
then, once xi is updated, its new value must be 
broadcast to all other nodes, in order to be used 
in their subsequent calculations. If all nodes are 
perfectly synchronized, then all entries of the 
vector x are broadcast at the same time, which 
gives rise to a multinode broadcast. However, 
there are cases where not all of the xi’s are 
updated at the same time; e.g., in multigrid or 
Gauss-Seidel algorithms. It is in such cases that a 
simultaneous broadcast by a subset of K # n 
nodes arises. 

2. Background material 

2.1. Definitions 

Let z and y be two nodes of the d-cube. We 
denote by 2 @ y the vector (zd @ yd, . . . , zi 8 yi), 
where 8 is the symbol for the XOR operation. 
The ith (from the right) entry of z @ y equals 1, if 
and only if zi # yi. For j E (1,. . . , d}, we denote 
by ej the node for which all entries of its binary 
identity equal 0 except for the jth one (from the 
right), which equals 1. Nodes e,, . . . , ed are the 
only neighbors of node (0,. . . , 0). In general, each 
node z has exactly d neighbors, namely nodes 
z@e i,. . . , z @ ed. Clearly, arc (z, y) exists if and 
only if z$y=e, for some mE{l,...,d). Such 
an arc is said to be of type m; the set of arcs of 
type m is called the mth dimension. 



Volume 46. Number 5 INFORMATION PROCESSING LETTERS 9 July 1993 

2.2. The completely unbalanced spanning tree 

For two nodes z and y, let i, < . . . <i, be 
the only entries of z @ y that equal 1; k is called 
the Hamming distance between z and y. Any 
shortest path from z to y consists of k arcs, with 
one of them being of type i,, one of them being 
of type i,, etc. A packet originating at z will 
reach node y if it traverses exactly one arc of 
each of these types, regardless of the order in 
which it crosses the various hypercube dimen- 
sions. 

A completely unbalanced spanning tree rooted 
at some node z is defined as the spanning out- 
tree 2 with the following property: Every node y 
is reached from the root z through the unique 
shortest path in which the hypercube dimensions 
are crossed in increasing index-order. That is, if 
i,< **f < i, are the dimensions to be crossed in 
any shortest path from z to y, then the tree 
under consideration contains that shortest path 
where the first arc belongs to dimension ii, the 
second arc to dimension i,, etc. One can easily 
see that this collection of paths constitutes a tree. 

A completely unbalanced spanning tree T 
rooted at node z had d subtrees T,, . . . , Td. Each 
of them is rooted at one of the neighbors of z. 
Subtree q consists of all nodes y with the follow- 
ing property: yi =zi,..., yi_i =zi_i and yi#zi. 
Therefore, 7;. contains 2d-i nodes, hence the 
terminology “completely unbalanced”. By consid- 
ering different index-orders for crossing the hy- 
percube dimensions, we can obtain other trees, 
isomorphic to the tree T defined earlier. Hence- 
forth, we call all of these trees completely unbal- 
anced, as well. Completely unbalanced trees have 
been used extensively in algorithms for hypercube 
communications (see [6], [3] and [l]). Johnsson 
and Ho [3] use the terminology “spanning bino- 
mial tree”. 

2.3. The d disjoint spanning trees 

Johnsson and Ho [3] have constructed an 
imbedding of d disjoint (directed) spanning out- 

’ All spanning trees considered throughout the paper are 

directed, unless otherwise specified. Also, an out-tree is a 
tree emanating from its root. 

trees in the’ d-cube; they call them “d Edge-Dis- 
joint Spanning Binomial Trees” (dESBT). This 
imbedding consists of d completely unbalanced 
trees T(l), . . . , TCd). Tree T(j) is rooted at node ej. 
The index-order of crossing the hypercube di- 
mensions in the paths of tree T(j) is as follows: 

(j mod d) + 1, [(j+ 1) mod d] + l,..., 

[(j + d - 1) mod d] + 1. 

2.4. Parallel prefijc 

Let a 0,...,a2d_1 be given scalars. A special 
case of the prej?x problem [4] is defined as 
follows: Compute all partial sums of the form 
CtL;l aY. This prefix problem can be solved 
efficiently in parallel in time 2d, by using 2d+1 - 1 
processors connected in a complete binary tree 
with bidirectional arcs [5]. It can also be solved in 
the d-cube in time 2d, by embedding such a tree 
in the d-cube [5]. At the end, node x knows the 
value of C2yt;l aY. 

3. The results 

3.1. Lower bounds 

We observe that under any routing algorithm, 
K broadcasts involve a total of at least (2d - 1)K 
packet transmissions while at most d2d transmis- 
sions may be performed in each slot. Taking also 
into account that the diameter of the d-cube is d, 
we see that the task of interest requires at least 

Pd-ll) 
7 d2d K} =fl(max(d, a}) 

slots. In the analysis to follow, the K broadcast- 
ing nodes will be assumed distinct, unless other- 
wise specified. 

As already mentioned in Section 1, we are 
interested in an algorithm that attains the opti- 
mal order of magnitude @(maxId, K/d}) of the 
completion time, for any K and for any K-tuple 
of broadcasting nodes. The simplest possible dis- 
tributed algorithm for our task would be as fol- 

221 



Volume 46, Number 5 INFORMATION PROCESSING LETTERS 9 July 1993 

lows: Each of the 2d nodes of the hypercube is 
confined to broadcast its packet (if it has one> 
along a prespecified spanning tree. Unfortu- 
nately, such an algorithm would not always attain 
the optimal order of magnitude for the comple- 
tion time. Indeed, for any fixed node x and for 
any of the 2d prespecified trees except for the 
one rooted at x, there exists exactly one arc of 
the form (X @ej, X) that belongs to the tree. 
Thus, there exists some arc (X $ ej*, x) that be- 
longs to at least (2d - 1)/d of the trees. There- 
fore, as long as K Q (2d - 1)/d, an adversary can 
choose the K broadcasting nodes in such a way 
that all of the packets will be received by node x 
through arc (X @ej*, x1; in such a case the 
broadcasts last for at least K time units. The 
above argument shows that, in the worst case, the 
completion time of the task will not be of the 
optimal order of magnitude, unless there is some 
flexibility in choosing the paths to be followed by 
the packets. 

3.2. The algorithm 

In this subsection, we present a distributed 
algorithm for performing K simultaneous broad- 
casts in time @(maxId, K/d}) for any choice of K 
and of the broadcasting nodes. The main idea of 
the algorithm is as follows: The K packets to the 
broadcast are split evenly among the d disjoint 
spanning trees; each of the packets is sent to the 
root of one of these d trees, which will eventually 
broadcast the packet along that tree. In more 
detail, the algorithm consists of three phases: 

Phase 1: A prefix task is implemented (see 
Section 2.2), with input a,, . . . , a2d_1, where a, = 
1 if node x wishes to broadcast a packet, and 
a, = 0 otherwise. This task lasts for 2d time units. 
After completion of thisprefix computation, node 
x knows the value of Ct=;’ ay =def rx; notice that 
if node x is to broadcast a packet, then r, equals 
its rank under the decreasing order within the 
subset of broadcasting nodes. Clearly, we have 
r0 = K; node (0,. . . , 0) also has to transmit this 
value to its neighbors e,, . . . , ed. The total dura- 
tion of this phase is 2d + 1 slots. 

222 

Phase 2: For each broadcasting node x, its 
respective packet is sent to the root ejcx) of tree 
T(jcx)), where the index j(x) is determined by the 
following rule: j(x) =def (rX - 1) mod d + 1. Let 
Nj be the number of packets to be received by 
root ej; since the rX’s of the broadcasting nodes 
are distinct and consecutive, taking all the values 
K , . . . ,l, it follows easily that Nj equals either 
[K/d] or [K/d], for all j E (1,. . . , d}. Therefore, 
the packets to be broadcast are split among the d 
disjoint trees as evenly as possible. The path to be 
followed by the packet of node x is the reverse of 
the path from ejcX) to x that is contained in 
T(j(“)). Since the d disjoint trees remain disjoint 
after reversing all their constituent arcs, packets 
sent to different roots do not interfere. Due to 
pipelining, all Nj packets destined for root ej will 
have been received after at most Nj + d - 1 slots 
from the beginning of the present phase. There- 
fore, all the transmissions involved in this phase 
will have been completed after maxj,i,., ,,d(Nj + 
d - l} = [K/d 1+ d - 1 slots. Termination of the 
phase can be detected individually by each root ej 
at time [K/d] + d - 1, because nodes e,, . . . , ed 
received the value of K at the last slot of the first 
phase. (Notice that the rest of the nodes do not 
have to detect termination of this phase, because 
they are not supposed to trigger the next phase.) 

Phase 3: Each of the roots e,,. . . , ed broad- 
casts the packets received during the second 
phase. Root ej broadcasts the corresponding Nj 
packets along T(j); just after forwarding the Njth 
packet, root ej starts broadcasting [along T(j)1 a 
termination packet. Again, packets broadcast 
along different trees do not interfere. By pipelin- 
ing successive broadcasts over the same tree and 
taking the termination packets into account, it 
follows that this phase lasts for maxi= 1, ., , dINj + 
d} = [K/d] + d slots. 

It follows from the description of the algo- 
rithm that its total duration is 2[ K/d] + 4d, which 
is O(max{d, K/d)). For K zs- d2, the completion 
time of the algorithm exceeds the lower bound 
max{d, ((2d - l)/d2d)K} by a factor that is very 
close to 2. In fact, for the case K = 2d, which 
corresponds to a multinode broadcast, the first 



Volume 46, Number 5 INFORMATION PROCESSING LETTERS 9 July 1993 

phase of the algorithm is not necessary, because 
it is known that rX = 2d -n for every node X. We 
thus obtain a multinode broadcast algorithm with 
duration 212d/dl + 2d - 1, which exceeds the op- 
timal value [(2d - 1)/d] by a factor of 2. How- 
ever, the suboptimal algorithm just derived is 
much simpler to implement than the multinode 
broadcast algorithms of [6], [3] and [l]. Indeed, 
our algorithm involves a total of d + 1 spanning 
trees, whereas the latter involve a total of at least 
2d trees; also the trees used by the algorithm 
discussed above can be described in a rather 
concise way, which reduces its memory require- 
ments even further. For K GL d2, the completion 
time of the algorithm exceeds the lower bound 
maxld, ((2d - l)/d2d>K) by a factor that is close 
to 4; finally, for K = 0(d2), the corresponding 
factor is between 2 and 6, with the worst case 
arising for K = d2. (It should also be noted that 
the quantity max{d, ((2d - l)/d2d)K) is not nec- 
essarily a tight lower bound for the completion 
time of the task.) It is worth noting that K= 
O(d2> is the largest order of magnitude for K 
that can possibly lead to a completion time of 
O(d), i.e. of the same order of magnitude as the 
time for a single node broadcast. 

Finally, it should be noted that the first phase 
can be avoided, by employing randomization. In- 
deed, assume that each of the broadcasting nodes 
x selects randomly the value of j(x), with Pr[j(x) 
= i] = l/d for all i E 11,. . . , d). Using the Cher- 
noff bound, we obtain 

max{N,,...,N,} .CG 
e CK/d 

1 0 
<2d c - (1) 

We distinguish two cases. If K > 2d log d, then, 
for any fixed C > 2e, some straightforward alge- 
bra yields 

Pr(max{N,,..., N,} 2 CK/d) < 2-‘. 

It follows that the algorithm is guaranteed to 
terminate within 4CK/d + 2d time units, except 
for an event whose probability is bounded by 2-‘. 
In the second case that we consider, we assume 
that KG d2/2e. (For large enough d, these two 
cases are exhaustive.) Using (1) with C = d2/K, 
we see that Pr(max{N,, . . . , Nd} 2 d) G 2d. 2-d 

and the algorithm terminates in time 4d, with 
high probability. We point out that because ‘the 
duration of phase 2 is random, the algorithm has 
to be refined somewhat so that the root nodes 
can find out when this phase has ended. Alterna- 
tively, we can allow the root nodes to start broad- 
casting (phase 3) as soon as they receive the first 
packet to be broadcasted but let phase 3 packets 
have priority over phase 2 packets. 

It has been assumed so far that the K broad- 
casting nodes were distinct. If this is not the case, 
the value of a, (in the prefix computation) should 
be set to the number of packets to be broadcast 
by node z; K now stands for the total number of 
packets to be broadcast. If node x has a, > 2 
packets, then it should send the mth packet to 
the root indexed by (rX - a, - 1 + m) mod d + 1, 
for m = l,...,a,. 

3.3. Further results for some special cases 

Next, we present some simple algorithms for 
cases where K is known to have a special value. 

3.3.1. The case K = O(d) 
Consider the following distributed algorithm: 

Each of the K nodes broadcasts its packet along 
a completely unbalanced spanning tree rooted at 
itself, with all these trees having the same index- 
order of crossing the hypercube dimensions; e.g. 
the increasing index-order. Suppose that a copy 
9z,j(~> of the packet originating at a node x 
wishes to traverse some arc (z, z f~ ej> at the 
same time with the copy 9z,j(y) of another packet 
originating at node y. Then, both 9z,j(x) and 
9z,j(y) are destined for the same subset of nodes, 
namely all nodes of the form z CB u with u1 = . . . 
= uj_i = 0 and vi = 1. Therefore, if 9z,j(~> tra- 

verses arc (z, z, @ ej) before 9z,j(y), then 
9z,j(y) (or copies thereof to be generated later) 
will never be delayed again due to copies of the 
packet originating at node x. This argument im- 
plies that each copy of a packet suffers at most 
K - 1 units of delay caused by contention; thus, 
the algorithm terminates after at most d + K - 1 
time units. Unfortunately, this upper bound for 
the completion time is of the optimal order of 
magnitude @(maxId, K/d)) only if K is O(d); 

223 



Volume 46, Number 5 INFORMATION PROCESSING LETTERS 9 July 1993 

moreover, since each node is confined in a pre- 
specified spanning tree, there are cases where the 
algorithm does not complete in @(maxId, K/d)) 
time units (see Section 3.1). The algorithm above 
is faster than the one presented in Section 3.2 for 
all KG 3d. 

3.3.2. The case K = d 
For K = d, the algorithm of Section 3.3.1 lasts 

for at most 2d - 1 slots. Below, we present an 
algorithm that completes in d time units; how- 
ever, this algorithm assumed that each broadcast- 
ing node x knows its rank rx within the d-tuple 
of broadcasting nodes. The algorithm is as fol- 
lows: Node x will broadcast its packet along the 
completely unbalanced spanning tree (rooted at 
X) in which the hypercube dimensions are crossed 
in the following index-order: rx mod d + 1, (rX + 
1) mod d + 1,. . . , (rx + d - 1) mod d + 1; more- 
over, at the mth slot, the packet of node x may 
only cross the permissible arcs of dimension (r, + 
m - 2) mod d + 1. To see that copies of different 
packets never collide, it suffices to see that (rx + 
m-2) mod d+l#(r,+m-2) mod d+l for 
x # y; this follows from the fact rx # ry while both 
r, and ry belong to (1,. . . , d}. 

As already established in Section 3.2, the ranks 
of the broadcasting nodes can be computed in 2d 
time slots, by running a parallel prefix phase. If 
this overhead is taken into account, then the total 
duration of the algorithm would be 3d slots; this 
is better than the time 4d + 2 taken by the algo- 
rithm of Section 3.2, but it exceeds the comple- 
tion time attained by the simple algorithm of 
Section 3.3.1. Of course, if the same d-tuple of 
nodes is to perform a simultaneous broadcast 

several times, then the computation of the ranks 
should be carried out only once; in such a case, 
the present algorithm might be preferable. In the 
extreme case where ooze node has d packets to 
broadcast, then the parallel prefix computation is 
redundant, and the algorithm takes d time units, 
which is the fastest possible. 

Acknowledgment 

The authors are grateful to Tom Leighton for 
helpful suggestions. 

References 

ill 

121 

[31 

[41 

151 

[61 

171 

D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng and 

J.N. Tsitsiklis, Optimal communication algorithms for hy- 

percubes, J. Parallel Distributed Comput. 11 (1991) 263- 

215. 
D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed 
Computation: Numerical Methods (Prentice-Hall, Engle- 

wood Cliffs, NJ, 1989). 
S.L. Johnsson and C.-T. Ho, Optimum broadcasting and 

personalized communication in hypercubes, IEEE Trans. 
Comput. 38 (1989) 1249-1267. 
R.E. Ladner and MI. Fischer, Parallel prefix computa- 

tion, J. ACM 27 (1980) 832-838. 
T. Leighton and C.E. Leiserson, hheory of parallel and 

VLSI computatiot$ Laboratory for Computer Science/ 

Rept. LCS/RSS3 @LT., 1990. ; 2-i *_ 

Y. Saad and M.H. Schultz, Data communication in hyper- 

cubes, Dept. of Computer Sciences, Research Rept. 

YALEU/DCS/RR-428, Yale University, 1985. 

E.A. Varvarigos and D.P. Bertsekas, Dynamic broadcast- 

ing in parallel computing, Tech. Rept. LIDS-P-2111, Lab- 

oratory for Information and Decision Systems, M.I.T., 

Cambridge, MA, 1992. 

224 


