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Abstract—This paper investigates the intrinsic limitation of
worst-case identification of LTI systems using data corrupted by
bounded disturbances, when the unknown plant is known to
belong to a given model set. This is done by analyzing the
optimal worst-case asymptotic error achievable by performing
-experiments using any bounded inputs and estimating the plant
using any identification algorithm. First, it is shown that under
some topological conditions.on the model set, there is an identi-
fication algorithm which is asymptotically optimal for any input.
Characterization of the optimal asymptotic error as a function
of the inputs is also obtained. These results hold for any error
metric and disturbance norm. Second, these general results are
applied to three specific identification problems: identification
of stable systems in the I, norm, identification of stable rational
systems in the H_ norm, and identification of unstable rational
systems in the gap metric. For each of these problems, the
general characterization of optimal asymptotic error is used to
find near-optimal inputs to minimize the error.

I. INTRODUCTION

RECENTLY, there has been a growing line of work
with the common theme that system identification
should be performed so that the worst-case error of the
resulting model is small in a metric compatible with
robust control [8]-[10], [26], [37]. This paper addresses the
questions of asymptotically optimal identification algo-
rithms and experiment designs from this point of view.
Our emphasis is less on finding efficient algorithms and
more on finding the fundamental limitations in identifica-
tion accuracy achievable by any identification algorithm in
the limit of observing more and more data corrupted by
nonstochastic noise. Thus, this work is in the flavor of the
questions posed by Zames [41].

We will deal exclusively with discrete-time, single—input
single—output linear time-invariant systems. In this formu-
lation, the unknown plant is @ priori known to be in a
certain subset I of the space of all LTI systems; this
subset will be called a model set M. The model set is
endowed with a general metric p which can be any
uncertainty measure suitable for designing robust con-
trollers. To identify the plant, one is allowed to perform
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one or more finite but arbitrarily long experiments using
input sequences chosen from a given input set 1. (Typi-
cally, I is some norm-bounded set.) The measured out-
puts are corrupted with additive disturbance sequences
which are bounded in an /, norm | - ||, but can otherwise
be arbitrary. The problem is to analyze the smallest
worst-case error, over all plants in I% and all admissible
disturbances, achievable by using any inputs from I and
any identification algorithm to estimate the plant from
arbitrarily long but finite data records (ie., asymptotic
error). Our goal is to investigate the key properties of
model sets which can be identified with a small optimal
error, and in particular how large the model set can be to
still yield a finite optimal error. Furthermore, we are
interested in robustness issues: does the optimal error
vanish as the bound on the output disturbance decreases
to zero? Answers to these questions give a characteriza-
tion of the difficulty of identification using a given model
set.

A natural framework to study worst-case identification
is provided by information-based complexity theory [21],
[35], [36]. This theory provides a general mathematical
framework for analyzing the optimal error achievable in
solving a problem using a given amount of possibly inac-
curate and partial information. Information plays the cen-
tral role in this theory: the results depend only on the
information used by an algorithm but are independent of
its structure. Our work, like many others in worst-case
identification, has employed some of the basic concepts of
this theory, but the key results we derived are completely
new.

Although mainstream system identification research
adopts stochastic models for the noise, there is a line of
work which deals with worst-case identification under
bounded disturbances [5], [16], [22]-[24], [28], [32], [15].
More recently, specific identification algorithms are pro-
posed in [8]-[10], [26] for worst-case identification in the
H_, metric from noisy frequency response data and in [12],
[25] for identification in the /, metric from time series
data. In contrast to these works, we deal with general
aspects of optimal worst-case asymptotic identification in
a general error metric. Moreover, the issue of optimal
experiment design, although considered in stochastic sys-
tem identification (e.g., [7], [20], [43]), has not been satis-
factorily addressed in the worst-case setting. Issues of
complexity and tradeoffs between the length of experi-
ments and accuracy has been recently reported in [3], [13],
[18], [31].
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The contributions of this paper are two-folded. At a
more general level, it introduces a framework for the
analysis of optimal worst-case asymptotic error under
bounded disturbances. The central result here is that,
under some topological conditions on the model set,
infinite-horizon experiments, where the entire infinite data
record is available to compute estimates, can be viewed as
a limit of finite-horizon experiments, where only finite
data records are available. Analysis of optimal asymptotic
error is then reduced to finding optimal inputs to mini-
mize the worst-case error for the infinite-horizon problem.
At a more specific level, concrete results are obtained by
applying the general framework to three specific identifi-
cation problems: identification of stable systems in the [,
and H, metrics, and identification of unstable systems in
the gap metric. In all these problems, the required topo-
logical conditions for consistency are verified and the
infinite-horizon problem is analyzed to find good input
designs.

The organization of the paper is as follows. In Section
11, the identification problem is formulated and the opti-
mal worst-case asymptotic error achievable by any identi-
fication algorithm is defined. In Section III, we present
consistency results establishing infinite-horizon experi-
ments as limits of finite-horizon ones. In Section IV, the
general results developed are applied to analyze three
specific identification problems. Section V contains our
conclusion.

I1. PROBLEM FORMULATION

Let X be the class of all causal, single—input
single-output, linear time-invariant, discrete-time sys-
tems. We identify ¥ with the space of all one-sided
real-valued sequences, R®. Let I € X be the model set
which is assumed to contain the unknown plant A to be
identified. The set I captures the experimenter’s a priori
knowledge about A. Some examples of I are the set of
all stable systems, the set of stable systems with a bound
on the decay rate, the set of all finite-dimensional systems
with a bound on the order, etc. Also given is an input set
1 which contains all the input sequences that can be used
in the identification experiments. Typically, 11 is a norm-
bounded set, to reflect physical limitations, power restric-
tions, safety, or to maintain the validity of the linear
model of the plant.

An experiment is conducted by choosing an input se-
quence u € Il and measuring the output sequence y,
related to u by

2.1

where * denotes the convolution operator and d is the
disturbance sequence which corrupts the measurements.
(Note that h,u,y,d are all one-sided real-valued se-
quences; kb = (hgy, hy, hy,+, etc.). The disturbance d is
assumed to be bounded in a given norm, ||d|l, < & for
some known 8, but can otherwise be arbitrary. The distur-
bance may arise from actual measurement noise, such as
quantization, or it may reflect nonlinearities and time-

y=hxu+d
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variation of the plant. In the latter case, the true plant is
actually nonlinear and time varying but is assumed to be
approximated well at the operating range by an LTI
component, which is the object of identification.

One point to note is that we assume that the system is
initially at rest before an experiment is started. Having an
unknown nonzero initial condition is equivalent to having
an additional, unknown, additive disturbance u~ * A,
where 1~ is the (unknown) input before time ¢ = 0. If the
model set I is bounded in the operator norm from the
input space to the disturbance space, then u™*# is
bounded if u~ is, and this additional uncertainty can be
accounted for by grouping into the original additive dis-
turbance term. If this is not the case, however, then the
problem cannot be treated in the present framework.

Now suppose N such independent experiments are
performed. The question whether more than one input is
needed to identify plants in a given model set will be
addressed. We then have:

yO =uyDxp +d0, i=1,2,,N 22)
where y and 4 are the output and disturbance se-
quences in the ith experiment. This can be written in a
more compact notation:

y=uxh+d ldll, = max [ld”ll, <& (2.3)

i
where y = [y, y™] u = [u®,+,u™), and d =
[dD,., d™] are vectors of sequences; convolution of A
with a vector of inputs is just element-wise convolution
with every input. Also note that the vector of inputs u is
in ¥,

An identification algorithm is a mapping ¢ which gener-
ates, at each time instant n, an estimate A =
¢(P,u, P,y) € X of the unknown plant , given the input
and output sequences in the experiments. Here, P, is the
truncation operator, defined by P,x = (x,, x,+, x,,) for
each infinite sequence x. Its use signifies that the algo-
rithm ¢ generates at each time instant an estimate based
only on the input-output data it has seen so far. Gener-
ally, we will assume that the algorithm has access to what
the model set M is and also the value of §, the bound on
the disturbance. In the terminology of Helmicki et al. [12],
the algorithm is tuned. However, in some cases, we will be
able to give stronger results using algorithms which are
untuned to the value of 8.

Also given is an extended metric p(-,-) on &, p: ¥ X X
— R U {0}, which evaluates the accuracy of 4" as an
estimate of 4.

Given an identification algorithm and a chosen set of
input sequences for the experiments, we would like to
consider the limiting situation when longer and longer of
the output sequences are observed. To this end, the
worst-case asymptotic error is defined as follows.

Definition 2.1: Fix the inputs u. The worst-case asymp-
totic error, e($, M, u, 8), of an algorithm ¢ is the small-
est number r such that for all plants 2 € ¥t and for all
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disturbances d with ||d||, < 3§,

lim sup p(p(P,u, P(uxh + d)),h) <r.

n—ow
Equivalently,
e, M, u, 8)

= sup sup limsupp(d(P,u, P(uxh + d)),h).
hel |dile<é n—w

According to this definition, no matter what the true
plant and the disturbances are, the plant can be eventu-
ally approximated to within e,(¢, I, u, 8), using the esti-
mates generated by the identification algorithm. This is
quite analogous to the notion of convergence of estimates
to the true plant in the classical probabilistic framework
of identification. However, since the disturbances here are
assumed to be arbitrary and not necessarily stationary,
such convergence is not possible in general. Instead, we
only require the estimates to enter and stay within a ball
around the true plant rather than to converge to the exact
plant.

In the above definition of the worst-case asymptotic
error, although convergence of the estimates to within
e($, M, u, 8) is guaranteed for all admissible plants and
disturbance sequences, the rate of convergence may be
arbitrarily slow for some plants and some disturbances.
The worst-case asymptotic error is said to be uniform if
the rate of convergence is uniform over all admissible
plants and disturbance sequences. If the convergence is
uniform, the worst-case asymptotic error defined above is
the same as the limit of the worst-case error taken at each
finite time #, i.e.,

sup sup limsup p(p(P,u, P(u*h + d)),h)

heM dl.<s n—o»

= limsup sup sup p(d(P,u,P(uxh +d)),h)
heM |d|l.<8

n—oo

This allows one to a priori determine the experiment
length required to guarantee that any plant in the model
set can be identified to a prescribed accuracy. It is the
notion of convergence considered by Helmicki et al. in
their framework [11].

Demanding uniform convergence is too restrictive a
formulation for a general theory of fundamental limita-
tions of worst-case identification. Although such uniform
convergence is certainly desirable, it is impossible to
achieve for many interesting model sets. In fact, for many
inherently infinite-dimensional model sets, the worst-case
error at each finite time is always infinite, while the
worst-case asymptotic error can be made small using an
appropriate identification algorithm and inputs. Our for-
mulation thus allows us to discuss optimal worst-case
identification and optimal inputs for a much broader class
of model sets. Besides, in some applications of identifica-
tion, such as adaptive control, uniform convergence of
estimates is not necessary to fulfill the desired objectives.
However, because of the special importance of uniform
convergence, we will give additional conditions on the
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model set for this to take place. It will be seen that these
conditions are quite strong and essentially require the
model set to be finite-dimensional. It is worthwhile to
note that the model set considered in [8), [9] satisfies these
conditions.

The optimal worst-case asymptotic error E,(u, I, &) is
defined as the smallest error achievable by any algorithm:

E(u,M,8) = igf e, M, u,sd).

Any algorithm for which the infimum is attained is said to
be asymptotically optimal. We will obtain a general charac-
terization of the asymptotically optimal algorithms and
the resulting optimal worst-case asymptotic error, for given
inputs u. For specific problems, we will find conditions on
the inputs u to make this optimal worst-case asymptotic
error small.

It should be noted that the asymptotically optimal algo-
rithms to be derived are valid for arbitrary inputs u. This
allows the complete separation of the problem of devising
optimal algorithms and the problem of designing optimal
inputs. This is particularly important when there is no
complete control over the choice of the inputs into the
plants, such as in closed-loop experiments or in adaptive
control. In these problem, this “separation principle” fa-
cilitates the derivation of necessary conditions on the
input signals for accurate identification to take place.

We would also like to point out that there are some
recent asymptotic optimality results in the general
information-based complexity framework [14]. However,
their notion of optimality is that of the rate of convergence
of the worst-case error for any fixed problem element,
and their results only make sense if the error converges to
zero. In contrast, in the worst-case identification problem
we are dealing with, the error does not typically converge
to zero, and our notion of optimality is that of the
nonzero limit supremum of the error.

II1. ASYMPTOTICALLY OPTIMAL IDENTIFICATION

In this section, the inputs will be assumed to be fixed.
The characterization of asymptotically optimal algorithms
and optimal worst-case asymptotic error is in terms of the
important notion of the uncertainty set, an important
notion in information-based complexity theory.

Definition 3.1: Let u and y be the input and measured
output sequences, and 8 be the bound on the distur-
bances. The finite-horizon uncertainty set at time #n is
defined to be

S,(M,u,y,8) ={geM: |P,(uxg -y, < 8}
and the infinite-horizon uncertainty set is
SAM,u,y,8) ={geM: luxg —yll, < 8}.

The set S, contains all the plants in the model set
consistent with the output data seen until time n. It
characterizes the uncertainty at time n: any plant in S,
can be the actual plant from the experimenter’s point of
view. Similarly, S, contains all the plants that are consis-
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tent with the entire output sequences. It measures the
uncertainty that the experimenter would still have even if
he could perform infinitely long experiments and could
see the entire output record. It is easy to see that the
finite-horizon uncertainty sets become smaller with in-
creasing n.

For any set A C X, define the diameter and radius of
the set A as

diam(A4) = sup p(g,h),
g, heA

rad (4) = inf sup p(g, h).
8€¥ pey
Note that diam(A4)/2 < rad(A4) < diam(4). We shall
now define two important quantities.

Definition 3.2: Given a choice of the inputs u, define
the infinite-horizon diameter of information D(u, IR, &)
and radius of information R(u, I, §) to be respectively
the diameter and radius of the largest possible uncertainty
set:

D(u,M,8) = sup sup diam (S (M, u,u*xh +d,3s))
heM |dfl.<8

R(u,IM,8) = sup sup rad (S (M,u,u*h +d,5)).
he ||dll.< 8

In information-based complexity terminology, these
quantities correspond to the diameter and radius of infor-
mation for the infinite-horizon problem where the infor-
mation available is the entire infinite output sequence.
The quantity D(u, IR, 8) is the largest distance between
two plants for which there are admissible disturbances
such that the plants give exactly the same outputs. It turns
out that it is precisely this quantity that characterizes the
optimal worst-case asymptotic errors. First we show that
half the infinite-horizon diameter of information is a
lower bound to the optimal asymptotic error.

Proposition 3.3: Let I be any model set, u be any
vector of inputs and & > 0. Then

e, M, u,8) >Du,M,8)/2

for any algorithm ¢.

Proof: Let ¢ be an algorithm for the infinite-horizon
problem, i.e., given the entire input and output sequences,
¢ generates an estimate for the plant. The worst-case
error achieved by this algorithm is:

sup sup p(y(u,u*h +d),h)
heM |dllo<8

and the infinite-horizon optimal worst-case error achiev-
able by any algorithm is

inf sup sup p(yY(u,uxh +d),h).
¥ heR |dl.<s

3.4

One should note that while the algorithms allowed in
this infinite-horizon problem have access to the entire
infinite input—output sequences, the algorithms for the
asymptotic problem have access to only finite but arbitrar-
ily long portions. Consequently, the infinite-horizon opti-
mal worst-case error lower bounds the optimal asymptotic
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error E(u, M, 8). On the other hand, by a central result
in information-based complexity theory [35], this
infinite-horizon optimal error is given by the infinite-
horizon radius of information R(u, I, 8), which in turn is
lower bounded by half the diameter of information
D(u, I, 8). Hence, the result follows. _ m]

The key question now is whether there exists an opti-
mal algorithm which can always generate estimates with
error converging to this lower bound. By the definition of
the infinite-horizon uncertainty set, there exist two plants
at a separation of D{(u, IR, 8) which can give rise to

. exactly the same output measurements. Thus in the worst

case, there is no way for any finite-duration experiments
to distinguish between them, and this gives rise to the
lower bound proved above. Conversely, any two plants
with a separation greater than D(u, ¢, 8) can be distin-
guished if we perform experiments of sufficiently long
length. That is, if 4 is the true plant, and 4’ is another
plant which is far away from # (separation greater that
D(u, M, 8)), there exists a time 7(h') for which one
needs to observe the output to eliminate k' from consid-
eration as a possible candidate. However, to guarantee
that an accurate estimate at time # can be obtained, one
needs T(h') < n for all plants k' that are far away from
h. Otherwise, although the identification algorithm always
picks estimates which are consistent with the output seen
so far, the estimates may nevertheless diverge from the
true plant.

The issue discussed above is really one of consistency
between finite-horizon experiments, where only a finite
data record is available for computing estimates, and
infinite-horizon experiments, where the entire infinite data
record is available. The question is when the latter can be
viewed as a limit of the former. In [17], such a consistency
result is established by placing a stationarity assumption
on the noise and then appealing to the law of large
numbers. As far as we know, this issue has not been
considered in an unknown-but-bounded noise setting. In
fact, it will now be shown that a compactness condition on
the model set will guarantee consistency.

The following theorem shows that, under a o-compact-
ness assumption on IR, D(u, M, §) is an upper bound for
the optimal asymptotic error. Combining with Proposition
3.3, we have upper and lower bounds that agree, within a
factor of 2. Thus, the study of the optimal asymptotic
error is reduced to the study of D(u, I, 8), if we ignore
this factor of 2.

Theorem 3.4: Suppose that the model set I is o-
compact in the p-topology, M = U, M;, M;c M., ¥,
I, compact and on each M, convergence in the p-topol-
ogy implies component-wise convergence of the impulse
response. Then there is an identification algorithm ¢*
such that e(¢*, M, u, §) < D(u, M, §) forall u and & >
0.

It should be noted that by an elementary result in
information-based complexity theory, the optimal worst-
case error achievable when the algorithm has full access
to the entire infinite input—output sequences is also
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bounded between the infinite-horizon diameter of infor-
mation and half the diameter of information. Our two
results (Proposition 3.3 and Theorem 3.4) are of an en-
tirely different nature: they assert that the optimal worst-
case asymptotic error achievable when the algorithm has
access to finite but arbitrarily long data records also
satisfies the same bounds. The assumed topological condi-
tions are crucial for the validity of Theorem 3.4.

Before proving Theorem 3.4, we need one more defini-
tion and a few lemmas.

Definition 3.5: For given inputs # and bound 8 on
disturbances, and g,k € X, define T, (g, h) to be the
smallest integer k such that ||P,(u (g — A)Il, > 28. If
no such k exists, then 7, ,(g, k) is infinite.

Lemma 3.6: For any two plants g, h € I, T, (g, ) is
the smallest k such that there is no output y with g and
h in the same uncertainty set S, (I, u, y, 8).

Proof: It n =T, ;(g,h), then (Pfu=x(g~ h), >
28, so for every output sequence y, either |1Pfuxg—
W > 8 or |P{uxh -y}, > 5, by the triangle inequal-
ity. Hence, g and % cannot be in the same uncertainty set
S.(M,u,y,8) for any y. Conversely, if n < T, ,(g, h),
then [P {u+(g — ml, < 28, so picking y = u*(g +
h)/2 yields [[P{u*g — y}l, < & and [|P{uxh -y, <
6. Hence, g,h € S,(M, u, y, 5). O

Thus, given two plants g and A, T, 5(g, h) is the mini-
mum duration for which one has to observe the output to
ensure that at least one of the two plants can be elimi-
nated from consideration as the true plant.

Lemma 3.7: Let g,h € M. If p(g, h) > D(u, m, 8),
then 7, ;(g, k) < .

Proof: Suppose T, ,(g,h) = ». Then |1Pfu (g -
MM, < 28 for every £, so |lu *(g — M, < 28. Now con-
sider the disturbance d = w*(h — 8)/2, and the
infinite-horizon uncertainty set SAM,u,uxg +d,8),
arising when g is the true plant. (Note that ||d|| p<8)
But lluxh — (uxg +dll, = llux(h — g)/2ll, < 8, so
the plant 4 is also in the set S, (I, u,u*g+d, ). Hence,
by definition of the infinite-horizon diameter of informa-
tion, p(g, h) < D(u, M, 8). m]

The desired topological condition involves the topology
of component-wise convergence of sequences, or the so-
called product topology [27].

Lemma 3.8: Fix the inputs u € BEY and 6> 0. Let
A I XM be compact in the product topology, and
suppose T, 5(g, ) is finite for every (g,h) € A. Then
SUP, me 4 I, 5(8, h) is also finite.

Proof: Suppose SUP(e, nye 4 T, 5(8, A) = 0, Then there
exists a sequence of plants (g, A)) in A such that
lim; . T, ;(g®, h) = oo; furthermore, the sequence can
be assumed to converge (in the product topology) to a
pair of plant (g*, h*) € 4 since A is compact. Let n* =
T, 5(8* h*) < =. By definition, |P,.(u *(g* — ), >
26. Since the norm of a sequence is a continuous function
of finitely many of its components, it follows that
I P,(u*(g ~ m)ll, is a continuous function of (g, 4) in
the product topology. Hence, there exists a ball B (in the
product topology) around (g*, #*) such that for every
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(g",#") € B, 1P (ux(g" — ), > 28, ie., T, s(g',h")
< n* for every (g’, k') € B. But this contradicts the fact
that lim, , , 7, ;(8, A)) = o since (g, hD) — (g*, h*).
Hence, it can be concluded that SUP(, e 4 T, 5(8, h) is in
fact finite. O

Basically, this lemma says that if each plant in the
compact set 4 can be eventually ruled out as the true
plant, there is a finite time after which all of them can be
simultaneously ruled out.

Now we are in a position to prove Theorem 3.4.

Proof: Define the identification algorithm ¢* as fol-
lows: at each time n, the algorithm generates as an
estimate by picking any arbitrary plant 4™ in the set
S, N M, where S, is the uncertainty set after observing
the output data until time #, and & is the least integer i
such that S, N M, is nonempty. We claim that this algo-
rithm will have an asymptotic error of at most D(u, M, 8)
for all inputs u and & > 0.

Fix the unknown plant # € I and let € > 0. Also let
), be the smallest of the compact subsets IM;’s which
contains 4. Define the set

Alh,e) ={ge M,: p(g,h) > D(u, M, 8) + €} (3.5)
and the number

T(h,e) = sup T, ,(g,h). 3.6

g€A(h, €)

Since A(h, €) is a closed subset of M, (with respect to
the p-topology), it is also compact in the p-topology. Since
the p-topology is finer than the product topology in ¢,
A(h, €) is also compact in the product topology. By Lemma
3.7, T, 5(g, h) is finite for all (g, h) € A(h, €). Hence, by
Lemma 3.8, T(4, €) is also finite.

Now consider the estimates 4™ generated by the algo-
rithm ¢*. Since A™ is picked from the least & such that
S, N M, is nonempty, A is guaranteed to be in M, for
all n. (This is because S, N M, is nonempty: it contains
the true plant £.) Also A™ is in the uncertainty set S,
and by Lemma 3.6, T, a(ﬁ(:‘), h) > n. If we now take any
n > T(h, €), we have T, ;(h™, h) > T(h, ¢€) so A™ is not
in A(h, €). But A" is in M, so it follows that p(A™, )
<D(u,M, 8) + €.

Since € is arbitrary, it can now be concluded that

lim sup p(A™, k) < D(u, M, §)
n—w

completing the proof. m|

The above construction of the asymptotically near-
optimal algorithm ¢* can be viewed as an application of
Occam’s Razor—that one should always use the “simplest”
theory to explain the given data. Here, as is true in
general, there is no absolute measure of simplicity. Rather
it is defined by the choice of the nested partitioning of the
model set, M = U, M. Given this nested structure, plants
in the smaller IR’s are considered to be simpler than
those in larger 9t,. Convergence of the estimates is guar-
anteed by always choosing the simplest plant that is con-
sistent with the data seen so far. This avoids overfitting of
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data, a problem which crops up all the time in statistics
and pattern recognition. It is interesting to note that this
same principle of Occam’s Razor has also been applied to
guarantee convergence in distribution-free probabilistic
learning problems [1], [30].

In contrast to the o-compactness condition that guaran-
tees convergence, a stronger compactness condition guar-
antees uniform convergence.

Proposition 3.9: Suppose convergence in the p-topology
on I implies component-wise convergence of the im-
pulse response. If the model set R is compact in the
p-topology, then there is an algorithm ¢ the estimates of
which will converge uniformly to within D(u, M, &) of the
true plant; i.e., for all € > 0, there exists a time 7(e) such
that for all £ € I, |ldll, < &

p(¢(Pu,P(uxh +d)),h) <Du,M,8) +¢
Vn > T(e).

Moreover, the algorithm does not require the knowledge
of 8, the bound on the disturbances, to compute its
estimates.

Proof: An algorithm ¢ is defined as follows: for each
n,

¢(P,u,P,y) = argmin | P(uxg —y)l,. (3.7

geM

The minimum must exist since IR is compact and
IP(u+g—yll, is a continuous function of g in the
product topology and hence in the p-topology. Also note
that computing this estimate does not require the knowl-
edge of 8.

Now y =u=*h + d for some true plant A and distur-
bance d satisfying [|d||, < 8. By definition, the estimate at
each time » satisfies

1P (u* ¢(P,u, P,y) — ), <IP(uxh -y,
= ”Pnd”p <é

and hence ¢(P,u, P,y) € S, (M, u, y, 8) for each n, where
S, is the finite-horizon uncertainty set at time n. We shall
use only this property of the estimates of ¢ to show that
they uniformly converge.

Let € > 0. For each plant # € Ik, define

A(h,e) ={g e M: p(g,h) > D(u, M, 8) + €}. (3.8
Also, consider the number

T(e)=sup sup T, ,(g,h) 3.9

heM ged(h, €)
where the function 7, ; has been defined earlier. T(¢)
can be rewritten as SUp, 4y p(e) Ly, s(A"), where

B(e) = {(g,h) € M?: p(g,h) > D(u, M, 8) + €}.

It is clear that B(e) is a closed set and hence compact
in the p-topology, being a subset of M2 Hence, B(e) is
also compact in the product topology. Now, 7, 5(g,h) is
finite for all (g, k) in B(e), by Lemma 3.7. Hence, by
Lemma 3.8, T(e€) is finite.
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Now if n > T(e), then for any plant £ &€ IR and |ldll,
< 8, the estimate 4" generated by the algorithm must lie
in the uncertainty set -S,(I,u,u*h + d, 8). Hence, by
Lemma 3.6, T, ;(A™, h) > n > T(e). This unphes

p(h™, ) < D(u, M, 8) + €.

Since this holds for all 4 and d, the convergence is indeed
uniform. O

IV. APPLICATION OF GENERAL FRAMEWORK TO
SPECIFIC PROBLEMS

The above results state that under some compactness
conditions on the model set, the optimal worst-case
asymptotic error achievable by any identification algo-
rithm is characterized by the function D(u, I, ), mea-
suring the worst-case uncertainty from infinite-horizon
experiments. It describes the intrinsic difficulty of identify-
ing plants in a given model set, independent of the spe-
cific identification algorithm used. This result enables us
to move from the analysis of the error of specific algo-
rithms to the analysis of the function D(u, IR, 8). In
specific problems, we would like to find inputs u such that
D(u, N, 8) is small or, at the very least, vary continuously
with the noise bound & at 8 = 0. This would imply that
identification accuracy is robust to measurement noise.

The value of the diameter of information D(u, M, §) is
in general difficult to evaluate because it is the supremum
over the diameter of all possible infinite-horizon uncer-
tainty sets. However, if the p metric comes from a norm,
it turns out that for an important class of model sets, D(u,
IR, 8) has a simple characterization. These are the model
sets which are convex and balanced. (A set A is said to be
balanced if for every & in A, —h is also in A.) The
following proposition gives the characterization, and it
follows from a basic result in information-based complex-
ity theory [21].

Proposition 4.1: Suppose p(g, h) =llg — hllx for some
norm || - [|z. If M is a balanced convex subset of X, then
the worst-case diameter is attained when the true plant
and the disturbance are both 0. That is,

D(u,M,8) = sup sup diam (S (M,u,u*xh +d,5))
heM |dllo<8

= diam (S (I, u,0, 8)).

Now we will apply the general results proved above to
analyze specific identification problems. We take our in-
put set 11 to be BI, ={u: |lull. <1}, where [lul. =
sup, |u;|. (The 1 is taken for normalization purpose.) The
disturbance is assumed to be an /,, signal d, with lid|l. < 8.

A. Identification of Stable Plants in the I, Norm

Here the metric considered is p(g, #) = llg — All;, and
we restrict ourselves to stable plants with impulse re-
sponses of finite /; norm. We shall first prove a general
lower bound for D(u, I, 8) which holds for all inputs =
and for a wide class of model sets.
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Proposition 4.2: Assume the model set % contains two
plants at an /; distance of 26 apart. Then for any number

of experiments N and any set of inputs u € _B_lg,
D@u,I, 6) > 26.

Proof: Let g,h € M satisty ||lg — hll, = 26. Suppose
that u are the inputs used in the identification experi-
ments and 4 is the actual plant. Let the disturbance be
d = u+(g — h)/2. Note that ||d|l. < |lull.l(g — h)/2[l, =
d.

The observed outputis y =uxh +d =u (g + h)/2.
Now, lluxg = yl. = l1/2ux(g — Wl < (1/Dllull.
llg = Ally < 8. Therefore, g€ S(M, u,y,s). Since A is
also in S.(IM, u, y, 8), it follows that

diam (S(M, u, y, 8)) = lig — hll; = 2.

Since D(u, IR, 8) is the diameter of the largest possible
uncertainty set, the desired lower bound follows. O

We now demonstrate that in fact, for all balanced and
convex model sets of stable plants, this lower bound can
be reached using just one input, provided that it satisfies a
persistent excitation property.

Definition 4.3: Let U be the set of all finite sequences
of I’s and —1’s:

A={(aj,ay,,a,): k>1,a,€ {1, -1}, Vi}. (4.10)

The sequence v & BI_ is said to contain all finite se-
quences of 1’s and —1’s if for every finite sequence
a € ¥, there exist m, n such that (v,,, v, 1, y,.,,) = a.

Theorem 4.4: Assume I is balanced and convex and
contains only stable plants. If u* contains all finite se-
quences of 1’s and —1’s, then

D(u*, M, 8) < 28.

Proof: By Proposition 4.1, the diameter of informa-
tion is given by the diameter of the uncertainty set cen-
tered at 0:

D(u*, M, 8) = diam (S, (M, u*,0, 5)).

Consider any g € S,(I, u*,0, §) and let € > 0. Since gis
stable, there exists I such that

o

Y lg,l < e.

k=M+1

(4.11)

Now consider the finite sequence
(sgn (g ), sgn (gyr—1),,5gn (g,)) € A

where sgn is the signum function such that sgn(x) = 1 if
x>0andsgn(x) = —1if x <0.

By definition of the sequence u*, there exists m such
that

U, = sgn(gy),ul,, = sgn (gy_ 1),
Up iy = 5gn (go).
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We then have

m+M
I(u**g)m+M| = Z U M- 1Bk

k=0
M m+M

=|Xut iyt X U o1 8k
k=0 k=M+1
M m+M

= sgn (g8 + XL Ui, u 18k
k=0 k=M+1
M m+M

= Ylgl— Y gl
k=0 k=M+1

= llgh — e 4.12)

But 8§ € Sm(ED%’ u*, 07 8), SO |(u** g)m+M| < é. HCI’ICC, it
follows from inequality (4.12) that ||gll, < 8 + €. Since
this is true for every € > 0, it follows that ||g|l; < & for
any g € S, (M, u*,0, ). Thus,

D(u, M, 6) = diam (5, (M, u*,0, 5))

= sup
LESAM,u*,0,8)

2lglly < 28. O

An input satisfying the above condition has been pro-
posed independently by Makila [25] for /, identification. It
is also of interest to note that the random binary se-
quence, a commonly used identification input generated
by randomly and independently picking each value to be 1
or —1, has the desired property of containing all finite
sequences of 1’s and —1’s, with probability 1.

Using the above result on the infinite-horizon diameter
of information, we shall analyze the optimal asymptotic /,
error for stable model sets.

The consistency result proved earlier applies to o-
compact model sets. The following technical lemma con-
cerning the asymptotic /; error enables us to extend the
result to model sets which are closure of o-compact
model sets as well. _

Lemma 4.5: For any model set I, inputs u € Blf,
algorithm ¢ and 8 > 0,

el(p,u, I, 8) < li\{r;ei(@u,%,x)

where I is the closure of M with respect to the /-
topology on X. (The superscript “1” emphasizes that the
metric used is the /; norm.)

Proof: By definition, for all x > 0, and YA € It and
d with [|d|l. < x, we have

limsup | ¢(P,u, P,(uxh + d)) — hll, < eX(d,u, M, x).
(4.13)
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Let € > 0. Take any & € M and ||d|l < 8. There exists
a h' € I such that ||k — A'll; < €. Therefore

limsup | ¢(P,u, P,(uxh + d)) — hll,

n—o

4.14)

< limsupll ¢(Pu, P(uxh' +u*(h —h') +d))

n-—o

—hlh+ e (4.15)

Now, |le +(h — k') +d|l. < 8 + €, so applying inequality
(4.13) with x = 8 + ¢,

limsup |l ¢(Pu, P(u*h' +u*(h —h') +d))

n—oo

~h'lhi <el(d, M, u,5+€). (4.16)
It follows that
limsup | ¢(P,u, P(u*h + d)) — hl,

n—o

<el(p,M,u,6+¢€)+e. (417

Letting € go to 0 gives the desired result. O

We now show that we can get very good asymptotic
error even if there is no additional prior knowledge about
the plant other than the fact that it is stable.

Proposition 4.6: Take the model set to be /;, the space
of all stable plants. There is a single experiment, using any
input u* € BI_ containing all sequences of 1’s and —1’s,
such that for every 8 > 0, the optimal asymptotic /, error
satisfies

EMu*,1,,8) < 2.

Proof: The space [, is separable, i.e., it is a closure of
a countable set .. Since a countable set is clearly
o-compact, by Theorem 3.4, there is an algorithm ¢* such
that for every 8 > 0 and inputs u,

el(¢*, M, u,8) <D, M,, 5). (4.18)

Now, using any input #* containing all sequences of 1’s
and —1’s, we have

eoIO( d’*’ EIRstab’ u*’ 5)

limel(¢*, M..,u*,x) by Proposition 4.5
x| &

IA

A

lim D(u*, M., x)
x|9d

<26,

Hence, to identify a plant accurately in the limit, it is
enough to know a priori that it is stable; no additional
information, such as bounds on decay rate and gain, is
necessary. The achievable accuracy varies continuously
with the noise bound 8 for small §; thus, identification
can be performed robust to measurement noise. One
should also note that there are many other choices of
decomposing the model set into compact sets. The decom-
position should be done to facilitate a more efficient
implementation of the identification algorithm. We will
discuss this at the end of this section.

Next, we look at the issue of uniform convergence. For
the model set /;, it can at once be seen that although

by Theorem 4.4. O
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convergence to a small asymptotic error is possible, such
convergence cannot be uniform,

Proposition 4.7: Let ¢ be any algorithm and u be any
input. Then for every n and for every M, there exists an
heM,,,, such that

| ¢(P,u, B,(uxh)) —hll, > M.

Proof: This is clear because making n measurements
gives no information on the part of the impulse response
after time n, which can have arbitrarily large uncertainty
in the /, norm. ' : ]

To guarantee uniform convergence, we need to look at
compact model sets.

Proposition 4.8: Let M € M, be a compact set (in
the /,-topology) or a subset of a compact set in M. For
the single input %* which contains all finite sequences of
1’s and —1’s, there is an algorithm the estimates of which
converge, uniformly for all # € M and all [|d|l < 5, to an
I, ball of radius 28 around the true plant. Moreover, the
algorithm does not require the knowledge of the value of
8 to compute its estimates.

Common examples of such compact model sets are the
uniformly stable ones, of the form M(g) = {h: k| < gl
for all i} where g is any stable plant. The specific model
sets considered in [8] and [9] belong to this class.

Identification Algorithms for Stable Plants: For certain
parameterizations of the space of stable plants, it is possi-
ble to device algorithms based on the Occam’s Razor
Principle that involve linear programming problems. De-
fine the compact sets:

M, ={hell:lh| <kM,h, = 0Vi=k}

and M is any positive real number. It can be immediately
seen that '

1, = closure of |J I,.
k=1

Fix some tolerance level e. The estimator can be de-
scribed as picking a feasible element in the set

M, NS, (M,u,y,d+€)

for any input-output pair. Of course, this set is character-
ized by linear constraints and finding a feasible plant is
equivalent to solving a linear programming problem. The
estimate is picked from the smallest 3¢, for which the
above set is not empty.

Suppose that the model set is equal to IR (g) where
ge€l, and g =0 Vi>1l This set contains only FIR
plants of length /, with a bound on the impulse response.
For this model set the near-optimal algorithm ¢* is given

by

¢*(Pu,P,y) = argmin [|P(y —uxh)l,

lhil<lgil, i=0,1,-1

which is computable by linear programming. We finally
note that work on algorithms is still an active area of
research [34].
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B. H, Identification of Stable Rational Plants

We now analyze optimal identification using the model
set RH,, space of all stable plants with rational transfer
functions. The error metric used is the H, norm. The
model set RH, is o-compact in the H,-topology. (For
example, it can be decomposed as a countable union of
compact sets of the form {A: |k,| < Aa"} with 4 tending
to infinity and o tending to 1.) Convergence in H,
implies component-wise convergence of the impulse re-
sponse in each of these sets. Hence, the consistency result
applies and we are reduced to the analysis of the
infinite-horizon diameter of information.

Since the H,-norm of a plant is always upper bounded
by its /; norm, Theorem 4.4 implies that, measured in the
H_ norm, the infinite horizon diameter of information
D(u*, RH,,, 8) using an input u* containing all finite
sequences of 1’s and —1’s is also bounded by 28. Hence,
the worst-case asymptotic error using this input is also
bounded by 238. The following result shows that this input
is optimal to within a factor of two.

Proposition 4.9: For any number of experiments N and
any choice of inputs u € BI:, the H, infinite-horizon
diameter of information satisfies:

D(u,RH,, §) = 28.

Proof: The proof is trivial. Take g = (8,0,0, ),
=(-6,0,0,--), d = —6u, d' = Su. Then uxg+d =
uxh +d'so D(u, RH,, 8) > |lg — hlly, = 26. O

A similar result on frequency response experiments is
given by [9].

h

C. Hdentification of Unstable Plants in the Gap Metric

Our general framework of optimal asymptotic identifi-
cation applies, to a large extent, to unstable as well as
stable systems. In particular, the consistency and uniform
convergence results, for arbitrary inputs, hold regardless
of whether the model set contains stable or unstable
systems. There is, however, an important issue in the
identification of unstable systems which is not dealt with
in this framework. While stable systems can be identified
in the open-loop, identification experiments for unstable
systems are almost always performed in the closed-loop to
avoid unbounded outputs. As opposed to open-loop iden-
tification, there is no complete freedom in choosing the
inputs u for closed-loop identification experiments, as
there is a coupling between the input and the output. This
makes the experiment design problem much more diffi-
cult. In this section, we shall ignore the coupling and
confine ourselves to deriving necessary and sufficient con-
ditions on the inputs for accurate asymptotic identifica-
tion of unstable systems. The question of whether one can
design closed-loop experiments to achieve such conditions
is left open.

An appropriate error metric to use for unstable plants
is the gap metric [6], [33], [42]. The important property of
the gap metric is that it generates the graph topology [40],
which is the weakest topology in which closed-loop stabil-
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ity is a robust property, or in which the closed-loop system
varies continuously as a function of the open-loop system.
Intuitively, this means that identifying plants accurately in
the gap metric is the least that one must do to be able to
design controllers to guarantee that the closed-loop per-
formance will be close to the desired.

The gap between two possibly unstable plants is given
in terms of their graphs, so we will first define this notion.
The graph G, of a plant 4 is a subset of the space I, X 1,
defined by

G,={(x,hxx):x€l,, hxx €1,}.

Thus, the graph of a plant describes its behavior on
bounded-energy inputs which yield bounded-energy out-
puts. The directed gap between two graphs G, and G, is
defined as

g(Gh,Gg) = sup inf llx —yll,.
x€Gy, lIxll,<1 Y€ G
The gap between two plants is given by the maximum of
the two directed gaps between the two graphs:

8(g, h) = max(5(G,, G,), 8(G,,G,)).

It can be verified that the gap is indeed a metric, and that
its value is always bounded between 0 and 1.

In the analysis below, we shall restrict ourselves to the
space of finite-dimensional systems, EIRfd, with rational
z-transform.! In this space, convergence in the graph
topology can be expressed in terms of the coprime factors:
P, —> P in the graph topology iff there exist co-prime
factorizations P, = N;/D,, P = N/D such that N, > N
and D; » D in the H_-topology. Results obtained for
finite-dimensional plants are also valid for infinite-
dimensional systems that can be approximated by finite-
dimensional systems in the gap metric.

To apply the consistency results we proved earlier, we
have to investigate the topological properties of M¢,.

Proposition 4.10: Let p, g be nonnegative integers, k,
be positive real numbers and M ,,(p, g, K, «) be the class
of all finite-dimensional systems having z-transforms

b,z? + b, 12771 + - +b,

29+ a, 297 + - +a

with bounded parameters: |a;| < K and |b;| < k for all i,
and with the distance between any pole-zero pair > a.
M, p,q, K, @) is compact in the graph topology, and on
this set the graph topology is finer than the product
topology.

Proof: Let {P(z)} be a sequence of plants in
M;,(p, q, K, a), and suppose P, = N,/D;, with deg N, <
D, deg D; = q, D; monic, and the coefficients of N, and D,
bounded by K. Clearly, N; and D; lie in sets which are
compact in the H_-topology. Hence, there exist a subse-
quence N, — N* and D, — D* We now verify that
P* = N*/D*is in M p, q, K, a). We first note that H,

'In this paper, the z-transform of a system with impulse response A is
Yoo bzt



TSE et al.: OPTIMAL ASYMPTOTIC DISTURBANCES

convergence of polynomials of bounded degree is equiva-
lent to convergence of their coefficients. Hence, deg N*
< p, deg D* = g, D* is monic, and their coefficients are
bounded by K. Moreover, since the location of the zeros
of a polynomial is continuous of its coefficients, the zeros
of N.,D, must converge to those of N*, D*, respec-
tively, and the separation between poles and zeros is
maintained at a distance of at least a. Hence, P* €
Mi(p,q,K, @), and P, — P* in the graph topology.
This shows that M ,(p, q, K, a) is compact in the graph
topology. Also, in M ,(p, g, K, a), convergence in the
graph implies convergence in the coefficients of the ratio-
nal transfer function, which in turn implies the conver-
gence in each component of the impulse response. This
latter fact follows by inspection of the inversion formula
for z-transforms. O

It is clear that the space of all finite-dimensional sys-
tems I, is a countable union of sets of the form
WM,(p,q, K, ). It then follows that Theorem 3.4 can be
applied on M;, equipped with the gap metric, and the
infinite-horizon diameter of information Dy, (u, My, 8)
characterizes the optimal asymptotic error E,(u, M ;,, 8).

We shall first derive necessary conditions on the inputs
u for the robustness of the asymptotic error to measure-
ment noise, i.e., when D,, (u, M ,, §) approaches 0 as &
approaches 0. This is in terms of the notion of stability
testing: inputs u = [u®, u®,---, u™] are said to be able to
test the stability of plants if for every unstable h € M, at
least one of the inputs u yields an unbounded output.
We have the following result on the loss of robustness
when the inputs are not rich enough to test stability.

Proposition 4.11: If the inputs u cannot test stability,
then D, (u, My, 8) = 1 for all § > 0.

Proof: Let 6 > 0. Consider the infinite-horizon un-

certainty set centered at the origin:

Sm(fmfd,u,o, 6) = {g € EIRfd: ”u*g”m < 8}.

Since u cannot test the stability of plants in M;,, there
must be an unstable plant 4 € M,y such that uxh is
bounded; by appropriate scaling, we can assume that
h € Sy, u,0,8). Since the zero plant is also in this
uncertainty set and the gap distance between the zero
plant and any unstable plant is 1 [6], the diameter of this
uncertainty set must be 1. Hence, the diameter of infor-
mation, which is the diameter of the largest uncertainty
set, is also 1. 0

We now give explicit necessary and sufficient conditions
for inputs to be able to test stability. We begin with two
definitions. ‘

Definition 4.12: For a sequence u € [, let Z(u) denote
the set of all zeros of its z-transform U(z) inside the
open-unit disk. (Note that U(z) is analytic inside the
open-unit disk.)

Definition 4.13: A sequence u is said to excite at fre-
quency w € [0,27] if
n
Y e kel =
k=0

lim sup

n—w
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i.e., the Fourier series of u at  is unbounded. Let Q(i)
denote the set of all frequences at which u excites.

We shall now give the following result, the proof of
which can be found in the Appendix.

Theorem 4.14: M, is testable for stability by bounded
inputs 4®,---, 4™ if and only if the inputs have the
following properties:

N
1 U Q@®) = [0,27]

i=1

N
2) N 2 = .

i=1

Hence, the inputs can test the stability of finite-dimen-
sional plants if and only if they excite at all frequences
and have no common zeros in the unit disk.

We have the following corollary.

Corollary 4.15: M, is testable for stability by a single
input u € Bl if and only if u excites at all frequencies
and its z-transform has no zeros inside the open-unit disk.

Neither the existence nor the nonexistence of a bounded
input having both the properties required by Corollary
4.15 has been established. However, bounded inputs which
excite at all frequencies do exist. In fact, Lusin [19] has
constructed a sequence which excites at all frequencies
despite the fact that the sequence actually tends to 0.

Stability testing is a necessary property the inputs must
satisfy in order to have robustness in the asymptotic error.
It will now be shown that stability testing combined with
the property of containing all finite sequences of 1’s and
—I’s are in fact sufficient to guarantee robustness.

Theorem 4.16: If the inputs # can test stability and at
least one of them contains all finite sequences of 1’s and
—1’s then for all 8 > 0,

D, (u, M, 8) < 28.

Proof: Consider now the infinite-horizon uncertainty
set S.AM,,u,0, 8) centered at the origin. Since all the
plants in this set give zero output on the inputs and the
inputs test stability, all the plants in this set must be
stable. Moreover, one of the inputs contains all finite
sequences of 1's and —1’s. We are now in a similar
situation as in Theorem 4.4, which applies to the stable
plant case. Exact arguments as in the proof of that theo-
rem show that the diameter of this uncertainty set mea-
sured in the I, norm is bounded by 25. Since M, is
balanced and convex, the diameter of information equals
diameter of this set (measured in the /; norm). Finally, by
a result proved in the Appendix, the gap distance between
two plants is always bounded by the H,, distance, and
therefore also by the /; distance. Hence, the diameter of
information D, ,(u, M,, 8) measured in the gap metric
is bounded by the diameter of information measured in
the /, norm, and hence also bounded by 2. a

We will now exhibit two inputs which have the above
desired properties. First, it will be demonstrated that any
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input that contains all finite sequences of 1’s and —1’s
excites at all frequencies.
Proposition 4.17: Let u be any sequence which contains
all finite sequences of 1’s and —1’s. Then Q(u) = [0, 27 ].
Proof: Let w, be an arbitrary frequency in [0, 27].
Take any M > 0. The sum T, lcos kw,| is divergent, so we
can find an integer L such that L_ jcos kw, | > M. By
the definition of the sequence u, there exists an integer n,
such that

(u,,l, Up 415" un1+L)

= (1, sgn (cos w), sgn (cos 2w,), -, sgn (cos L w,)).

(4.19)
Now,
n+L n+L
Y we ke = ¥ sgn (cos (k — n,) w,)e %0
k=n, k=n,
L
=| Y sgn (cos kw,)e /%o
k=0
L
>| X sgn (cos kw,) cos kwy | > M.
k=0

This is true for every M, so limsup, _, ,, [T} _, ue /%o =
o, O

Using two inputs, one of which contains all finite se-
quences of 1’s and —1’s and the another the unit impulse,
will suffice to test stability, since the former excites at all
frequencies and the latter’s z-transform has no zeros in
the unit disk. It follows immediately from the Theorem
4.16 that an optimal worst-case gap error of 28 can be
achieved with these two inputs,

This result shows that for finite-dimensional plants,
identification in the gap metric can be performed robust
to the noise level §, i.c., as & goes to zero, the identifica-
tion error also goes to zero. However, we have not yet
shown that the two experiments are optimal or near
optimal. A lower bound to the optimal asymptotic gap
error using any bounded inputs will now be derived. This
will show that for small 8, the above experiment design is
no more than a factor of two from optimality.

Proposition 4.18: For any N and inputs u € B, the
optimal worst-case asymptotic gap error for finite-dimen-
sional plants satisfies

8

Vi+ 82

Proof: To prove this result, it suffices to show that
the infinite-horizon gap diameter of information satisfies

Ef(u, My, 8) >

Dgap(u7 wtfd, 8) > 2

)
Vi+62~
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We make use of the following lower bound for the gap
metric [44];

Al
8(h,0) 2 ——or.
V1+lally,
Now,
Dy, (u, M1y, 8)

= sup sup diam,,, S(M,,u,h+u +d,3)
heDgy ldll.< 8

> diamgap Sw(ﬂRfd, u,0,8)

= sup 26(g,0)

8EMyy, llg + ul< s
since 8(g,0) = 8(—g,0)
) llglla,

sup T
gy ligxulless Y1+ g7,

using the lower bound to the gap
28

V1 + 82

choosing g to be an impulse with magnitude 5.
a

v

\%

Finally, we note that this theorem has interesting impli-
cations to identification in the closed loop. To accurately
estimate the plant, it is necessary that the input satisfies
the conditions in Theorem 4.14. In general it is not known
whether there exists one input with that property. If not,
then more information about the model set should be
known. An example of such information is the knowledge
of a stabilizing controller of the plant to be identified.
Details on this can be found in [29], [39].

V. CONCLUSIONS

In this paper, we have approached the problem of
analyzing the intrinsic limitations of identification by con-
sidering the optimal worst-case asymptotic error achiev-
able using any input and any identification algorithm. This
gives an intrinsic measure of the difficulty of identifica-
tion, given the @ priori knowledge (model set and distur-
bance class) and the constraints on the allowable experi-
ments (input class).

The analysis is performed in two steps. First, for fixed
inputs, a lower bound on the error of any identification
algorithm is expressed in terms of the diameter of the
worst-case infinite-horizon uncertainty set, and it was
shown that under some compactness conditions on the
model set, there exist algorithms which achieve to within a
factor of two of this bound asymptotically. These results
hold for any error metric and disturbance norm. Second,
for specific identification problems, characterization of
inputs which makes this infinite-horizon diameter of infor-
mation small is given. In particular, we considered identi-
fication in both the /, and the H, norms for stable plants,
and in the gap metric for unstable finite-dimensional
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plants of arbitrary order. The significance of these error
metrics is that if the worst-case error is small in these
metrics, methods exist for synthesizing controllers to
achieve robust performance [2), [4].

The results show that accurate identification is possible
in the worst case for a specific choice of inputs depending
on the model set. For identification in the /; norm,
algorithms for computing estimates are based on linear
programming and are easily implementable. For the iden-
tification in the gap metric, robust identification was shown
to be more or less equivalent to stability testing. This has
important implications on closed-loop identification in
which one does not have direct access to the input.

There are many issues in worst-case identification that
need to be resolved. The issue of computational complex-
ity and implementation of the algorithm is a central issue.
In particular, it is beneficial to relate the complexity of
the model set to the complexity of the required experi-
ments and the algorithms. Another issue is the relation-
ship between the identification in the frequency domain
and the time domain, particularly as it relates to algo-
rithms and complexity. Deeper study of identification of
unstable plants in a closed-loop setting is needed. The
relations of all of this to adaptive control is of course one
of the prime motivations for this work and will be the
subject of future research.
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APPENDIX
A. PROOF OF THEOREM 4.14

To prove this result, we need the following lemma, the
proof of which is elementary but tedious, and can be
found in [38]. _

Lemma A.I: Let u € Bl, and let h be a complex-
valued impulse response (i.e., the sequence values can be
complex) with a strictly proper rational transfer function
! o2
(z - ey

(It has a single pole repeated M times at e/“)) Then:

1) If u excites at frequency w, the output u*# is
unbounded.

2) If u does not excite at » and M = 1 (the pole is
simple), the output u * A is bounded.

Armed with this lemma, we can now prove Theorem
4.14.

Proof:

(if part)

Let u®, u®.,.u™ Bl be N inputs satisfying
properties (1) and (2). Let & € M, with a rational z-
transform H(z), and assume that the outputs u® xh,
i =1,---, N, are all bounded. We shall show that # must
be stable.

Suppose that H(z) has a pole z = z, inside the open-
unit disk. Since the inputs have no common zeros, then

H(z) =
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one of the inputs, say 4, has no zero at z = z,. Hence,
the output y must have a pole at z = z,, and therefore
cannot be bounded.

Thus, H can only have poles on or outside of the unit
circle. Write

H(z) = H/(z) + H(z) (A.20)

where H(z) contains the stable poles (outside the unit
circle) and the finite impulse response (FIR) part of H(z),
and H,(z) is strictly proper with all poles on the unit
circle. Let h, and h, be the inverse transforms of H, and
H,, respectively. Since the output u * h, corresponding to
the stable part must be bounded, one needs only to verify
that the boundedness of u®xh, for every i implies
h,=0.

Suppose that H, is not identically 0 and has L > 0
poles (counting multiplicities) on the unit circle at distinct
frequencies ®,, w,,**, wy. Then H (z) can be decom-
posed as

M
HJ(z) = Y H(2) (A.21)

i=1
where
Li—1 k
Lyloayz

H(z) = —
z (z _ ejwi)L'

(A22)

and L, is the order of the pole at z = ¢/,

Consider a minimal state space realization of the sys-
tem with transfer function H,(z), where the states x
consist of the modes corresponding to each pole of the
system. The dimension of the realization is L and some of
the states are complex but they occur in conjugate pairs.
(These correspond to conjugate poles.) Since U ¥, Q (u?)
= [0,27] the frequency w, lies in Q(v) for some input
v € {u",---,u™}, By Proposition A.1,

yO = vxh® g, (A.23)

where A is the impulse response whose z-transform is
H(2).

If x® are the modal states (of dimension L,) corre-
sponding to this pole at w,, the system A" can be
realized minimally as

xN =4 xP + By, yV=Cx® (A24)
for some matrices A4,, B,,C,.

Since y® is unbounded but v is bounded, it follows
from (A.24) that the modal states x'" must be unbounded
given input v. But the overall state x for the entire system
H/(z) is an aggregation of the modal states and hence
must become unbounded too when input v is applied. The
last step is to show that this implies that the output of the
overall system must be unbounded also.

Let the minimal state space realization of H, be

xn+l = Axn + an’ y,, = an- (A.25)
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From (A.25), a sequence of equations is obtained as
Yn = Cx,
Yne1 = CAxn + Can

L-2
Yarr-1=CA" x, + ¥ CA'Bu,.
i=0
Let
Yn C
Y cA4
yn = .+1 ’ QO(A’ C) = M ’
yn+'L—1 CAL—I
0
CB
E = :
YL 2 CA'B

The sequence of output equations can then be written
as

Yo = Q0(4,0)x, + Ev,. (A.26)

Note that Qu(A,C) is the observability matrix of the
system by the minimality of the realization, Q,(A4,C) is
invertible. Since x, becomes unbounded and y, is
bounded, the output y, must be also unbounded. This
contradicts our original assumption and hence H,=0.
The original system % must be stable and the inputs
u®,+- 4™ can test stability in My

(only-if part)

We now show that the two conditions for the inputs are
also necessary to test the stability in My

Suppose the first condition is not satisfied; consider an
wy € [0,27] but wy & UX, Qu®). Consider the unsta-
ble system h, ~ cos(nw,). Lemma A.1(b) implies that
u® = e/*0 is bounded for all i. Since u® * 4 is the real
part of u(®*e/m%0 it is also bounded for all i. Thus, the
inputs cannot test stability in M, This shows that the
first condition is necessary.

Now suppose that the second condition is not satisfied,
so that there exists some z, = rye/*0 (0 < r, < 1) which is
a common zero in the open-unit disk of the z-transforms
of all the inputs; that is,

Y udrkekeo =0, Vi, (A27)
k=0

Since the inputs are real, their zeros occur as conjugate
pairs, i.e.,

™

urke=ikoo = 0y, (A.28)

k=0
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Now consider the unstable finite-dimensional system
h, = rg" cos(nw,y). For each i, n,

n
Y udry ™0 cos (n — k) w,
k=0

(u® % 1), =

1 noo . .
‘_ran Z uiz)réc(e/(n—k)wu + e*!(”—k)wo)

2 k=0
1 n
- b £ e
k=0

k=n+1

hnd r
—n k _
<" X "o—l_r‘
k=n+1

Thus the output for each of the inputs is bounded. Hence,
the inputs u’s cannot test the stability in WMy O

B. AN INEQUALITY BETWEEN THE GAP AND H,
DISTANCES

Proposition B.1: Let h and g be two plants. Then
8(g,h) <lih —gllg,.
Proof: We assume that llh —glly, < o otherwise
there is nothing to prove. Now,
8(g, h) = max(5(G,,G,), §(G,,G,)
where
Gy={(u,h*xw)ely:xcl,,hxx el

and

sup inf [lx - yll,.

8(G,.G,) =
X€Gy, Ixll,<1 YE€GC;e
Now, since |[g — Ally, < =
(u,h*u) € G, = (u,g*u) G,.
We have

g(G,,,Gg) < sup inf l(u,h*uw) ~yl,

heuely, lull,<1 Y<GCe

ICu, hxu) — (u, g *wll,

A

sup
hxuel,, lull;<1

Ik — g)*ull,

sup
hxuel,llull<1

Ih — gl
Hence, the result follows. 0

A
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