IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

725

Efficient Routing Schemes for
Multiple Broadcasts in Hypercubes

George D. Stamoulis and John N. Tsitsiklis, Member, IEEE

Abstract—We analyze the following problem: Each node of the
binary hypercube independently generates packets according to a
Poisson process with rate \; each of the packets is to be breadcast
to all other nodes. Assuming unit packet length and no other
communications taking place, we observe that the system can
be stable in steady-state only if the load factor p*<')\(2¢ - 1)/d
satisfies p < 1, where d is the dimensionality (diameter) of
: the hypercube; moreover, we establish some lower bounds for
_ the steady-state average delay D per packet. We devise and
. analyze two distributed routing schemes which are efficient, in
the following sense: Stability is maintained for all p < p*, where
p* does not depend on the dimensionality d of the network, while
the average delay D per packet satisfies D < Kd(1 + p) for
small values of p (with constant K). The performance evaluation
is rigorous for one scheme, while for the other we resort to
approximations and/or simulations.

Index Terms—Communications, dynamic, hypercubes, multin-
ode broadcasts, parallel computation, queueing theory, stochastic.

I. INTRODUCTION

URING the execution of parallel algorithms in a network

of processors, it is often necessary that one of the
processors broadcasts a message to all others; subsequent
broadcasts (possibly by different processors) may also take
place, until the algorithm terminates. In this paper, we consider
a problem where the nodes (i.e., processors) of the hypercube
network generate packets to be broadcast at random time
instants. We propose several routing schemes for performing
these broadcasts and we analyze their throughput and delay
properties in steady-state.

The context of our analysis is the d-dimensional binary
hypercube (or d-cube); the definition and main properties
of this network are presented in Section II. The underlying
assumptions for communications are as follows: The time axis
is divided into slots of unit length; all nodes are following
the same clock. Each message is transmitted as a packet of
unit length. Only one packet can traverse an arc per slot; all
transmissions are error-free. Each node may. transmit packets
through all of its output ports and at the same time receive
packets through all of its input ports. Moreover, each node
has infinite buffer capacity.

Manuscript reccived July 25, 1990; revised May 24, 1991 and April 12,
1992. This work was supported by the NSF under Grant ECS-8552419, with
matching funds from Bellcore Inc. and Du Pont, by the ARO under Grant
DAAL03-86-K-0171, and by a Fellowship from the Vinton Hayes Fund.

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139.

IEEE Log Number 9209549.

The problem to be analyzed is as follows: Each node of
the d-cube generates packets according to a continuous time
Poisson process with rate \; different nodes generate their
packets independently of each other. All packets generated
are to be broadcast to all nodes; it is assumed that no other
packet transmissions are taking place in the network.

As will be proved in Section III-A, the inequality

def, 24 — 1

pP=A <1

is a necessary condition for stability; p will be called the load
factor of the system. Thus, for p > 1, the total number of
packets whose broadcast is not completed grows to infinity as
time elapses. Henceforth, it is assumed that p < 1. Clearly,
the simplest approach to our problem is for each node to
choose a spanning tree rooted at itself and broadcast all of
its packets along that tree. However, depending on the choice
of the trees used, the stability region may vanish as d increases,
which constitutes a very poor performance. Thus, we are
interested in devising routing schemes maintaining stability
for all p < p*, with p* being a constant independent of
d (also, p* < 1). In Section IV-B, we propose schemes
that are stable even when the traffic is high (namely, for
p =~ 1); the underlying idea is to perform multinode broadcasts
periodically. Unfortunately, these periodic schemes introduce
very high delay even in light traffic (namely, for p =~ 0). Thus,
in addition to a nonvanishing (for d — oo) stability region,
we also require that the average delay D induced per packet
satisfy D < Kd(1 + p) for small values of p (with K being
constant). Note that D is defined as the steady-state average
time spent by a packet in the system until its broadcast is
completed. This requirement for the delay is motivated by the
fact that it takes d time units to perform a single node broadcast
in the d-cube in the absence of other transmissions. (Recall
that the diameter of the d-cube equals d; see also Section II-
A.) Thus, it is desirable that contention does not increase this
delay by more than a factor depending on the load of the
network. We are mainly interested in the case of light traffic,
because two lower bounds for D (derived in Section III-B)
imply that the delay is necessarily large under heavier traffic.
In Sections IV-C and V, we present two distributed routing
schemes that meet the aforementioned performance objectives.
The scheme discussed in Section IV-C is characterized as
direct, because cach packet is broadcast along a spanning
tree rooted at the node where it was generated. It is stable
for all p < 1, while it seems to satisfy the required delay
properties; we provide some strong evidence for this, based

1045-9219/93$03.00 © 1993 IEEE

726

on an approximate model and simulation. In Section V, we
present an indirect routing scheme; that is, all packets are
sent to one of a set of special nodes, which are in charge of
performing the various broadcasts. This scheme is based on
a construction of d disjoint spanning trees by Johnsson and
Ho [7]. It will be proved to meet both of the performance
objectives set above; in particular, the scheme is stable for
all p < (2/3)(1 — (1/2%)) =~ 2/3, while it satisfies D =~
3d + 1 + (9/4)p-for small p. In evaluating the performance
analysis of the various schemes, we also consider the steady-
state average queue-size @ per node; our schemes appear to
be efficient also with this respect. Study of the behavior of
the measure () aims at estimating the buffer capacity required
for applying the schemes in practice. The indirect scheme of
Section V will be seen to be deadlock-free when implemented
with finite buffers; for the direct scheme, deadlock prevention
can be achieved by using standard techniques.

Motivation for studying the problem introduced arises from
the context of asynchronous computation. To illustrate this, let
us consider the distributed execution of an iterative algorithm
of the form z := f(z), where f : R — R™ and n is the
number of nodes; typically, the ith node knows the function
[and updates z;. Assume that the problem is dense, i.c., each
entry of the function f depends explicitly on almost all entries
of z; then, once z; is updated, its new value must be broadcast
to all other nodes, in order to be used in their subsequent
calculations. If all nodes are perfectly synchronized, then all
entries of the vector = are to be broadcast at the same time.
This prototype communication task is called the multinode
broadcast. The minimum possible time for performing this
task (in the d-cube) is [(2% — 1)/d] and it can be attained by
an algorithm by Bertsekas et al. [3]. However, there are cases
where the new values of the z;’s are not all computed at the
same time, due to variability in communication delays or to
variability in the difficulty of evaluating f;(z) for different
choices of ¢ and z. In such a case, broadcasts by different
processors are initiated at rather unpredictable times, best
modeled by stochastic processes. For analytical tractability, we
have assumed in this paper that packets are generated by the
various nodes according to independent Poisson processes; we
hope that our analysis will be suggestive of the results holding
under more general packet-generating processes.

There exists considerable literature on algorithms for com-
munication tasks in various interconnection networks. How-
ever, most of the related articles analyze “one shot” commu-
nications, where each task has to be performed only once,
and no other packet transmissions are taking place at the
same time. In particular, for the hypercube network, Bertsekas
et al. [3] have devised optimal algorithms for a variety of
communication tasks. Previously, Saad and Schultz [11], as
well as Johnsson and Ho [7], had constructed optimal or nearly
optimal algorithms for hypercubes, under somewhat different
assumptions on packet transmissions. The interested reader
may find more references in these three papers and in [2].
The communication tasks considered in the aforementioned
papers as well as the respective algorithms do not employ
any randomization in path selection. In his famous paper [15},
Valiant has demonstrated how to use randomization in order to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

perform a deterministic task. In particular, in the context of the
d-cube, he considered the permutation task and showed that it
may be accomplished in time ©(d) (namely, of the order of
magnitude of the diameter d) with high probability, by using
a randomized algorithm. In a later paper, Valiant and Brebner
[14] modified this algorithm, thus simplifying considerably the
analysis.

To the best of our knowledge, there is only one problem
involving repetitive packet transmissions in the hypercube that
has been studied before, the following: Every node generates
packets according to some random process; each packet has a
single destination, which is uniformly distributed among the
nodes of the hypercube. Approximate and/or numerical studies
of certain communication algorithms for this problem can be
found in Abraham and Padmanabhan [1], Greenberg and Hajek
[6], and Varvarigos [16]; related also is the work by Chang and
Simon [5]. Rigorous results for a “greedy” routing scheme
have been obtained by Stamoulis and Tsitsiklis in [13].

II. BACKGROUND MATERIAL ON THE HYPERCUBE NETWORK

A. Definitions

We consider the d-dimensional binary hypercube (or d-
cube); e.g., see [2]. This network consists of 2¢ nodes,
numbered from 0 to 2¢ — 1. Associated with each node z is a
binary identity (24, - -, 21), which coincides with the binary
representation of the number 2. There exist arcs only between
nodes whose binary identities differ in a single bit. That is, arc
(z,y) exists if and only if z; = y; for i # m and zm # ym (or
equivalently |2 — y| = 2™~1) for some m € {1,---,d}. Note
that (z,y) stands for a unidirectional arc pointing from 2 to
y; of course, if arc (z,%) exists, so does arc (y, z). Clearly,
the d-cube has d2¢ arcs.

The Hamming distance between two nodes z and y is
defined as the number of bits in which their binary identities
differ. Any path from 2z to y contains at least as many arcs
as the Hamming distance between z and y. Moreover, there
always exist paths that contain exactly that many arcs; these
paths are characterized as shortest. It is easily seen that the
diameter of the d-cube equals d.

For two nodes z and y, we denote by 2 @ y the vector
(24 D Yd,*+,21 D Y1), where @ is the symbol for the XOR
operation. The ith (from the right) entry of z @ y equals 1, if
and only if z; # yi. For j € {1,---,d}, we denote by e; the
node numbered 27~ 1; that is, all entries of the binary identity
of e; equal O except for the jth one (from the right), which
equals 1. Nodes ey,---,eq are the only neighbors of node
(0,---,0). In general, each node z has exactly d neighbors,
namely nodes z @ e, - -,z ® eq. Thus, arc (2, y) exists if and
only if 2 ® y = e,, for some m € {1,---,d}. Such an arc is
said to be of the mth type; the set of arcs of the mth type is
called the mth dimension.

B. The Completely Unbalanced Spanning Tree

For two nodes z and y, suppose that the ith entry of
2@ y equals 1, ie., z; # y;; in this case, a shortest path
from 2z to y contains one arc of the ith type. In general, let

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 727

e

000 J

001

Fig. 1.

11 < 12 < --- < i be the only entries of z @ y that equal 1.
Then, any shortest path from z to y consists of & arcs, with one
of them being of the ¢;th type, one of them being of the #sth
type, etc. Thus, any packet originating at z will reach node y
if it traverses exactly one arc of each of the aforementioned
types. Such a packet will reach node y regardiess of the order
in which it crosses these hypercube dimensions.

The completely unbalanced spanning tree rooted at some
node z is defined as the spanning tree with the following
property: Every node y is reached from the root z through
the unique shortest path in which the hypercube dimensions
are crossed in increasing order. That is, if ¢} < io < --- < i
are the dimensions to be crossed in any shortest path from z to
y, then the tree under consideration contains that shortest path
where the first arc belongs to the i;th dimension, the second
arc to the i5th dimension, etc. One can easily see that this
collection of paths constitutes a tree. A completely unbalanced
spanning tree of the 3-cube is presented in Fig. 1; the root of
that tree is node (0,0,0). As already mentioned in Section
I1-A, the hypercube arcs are unidirectional; thus, all spanning
trees considered throughout the paper are directed.

A completely unbalanced spanning tree 7' rooted at node z
has d subtrees Th,---,Ty. Subtree T; is hanging from node
2@ ey, and consists of all nodes y with the following property:
y; = zj forall j < ¢ and y; # z; (see Fig. 1). Therefore,
T; contains 2¢7% nodes. Another interesting property of a
completely unbalanced spanning tree is that it has 24~ leaves.

By considering different orders for crossing the hypercube
dimensions, we can obtain other spanning trees, isomorphic
to the tree T defined earlier. Henceforth, we call all of these
trees completely unbalanced, as well.

Completely unbalanced spanning trees have been used ex-
tensively in algorithms for hypercube communications (see
[11], [7], and [3]). Johnsson and Ho [7] use the terminology
“spanning binomial tree.”

III. LIMITS ON THE ACHIEVABLE PERFORMANCE

A. A Necessary Condition for Stability

The average total number of packets generated in the net-
work during one slot equals A2¢. Broadcasting a packet (using

110 T,

101
_ — type of arc

A completely unbalanced spanning tree, for d = 3.

any routing scheme) requires at least 2¢ — 1 transmissions.
Therefore, during each slot, an average total demand for at
least A2¢(2¢ — 1) packet transmissions is generated in the
system. Since at most d2¢ packet transmissions may take place
during each slot, it follows that the system can be stable only
if A2¢(2¢ — 1) < d2¢. Thus, we have the following necessary
condition for stability:

of 29— 1
pEA

<1 1@

where p, as defined above, will be called the load factor of
the system. This terminology is appropriate, because when
p = 1 all hypercube arcs are almost always busy, even if no
redundant packet transmissions take place.

B. Lower Bounds on the Average Delay per Packet

In the present subsection, we establish a universal lower
bound on he steady-state average delay D; that is, a bound that
applies to any routing scheme. (Recall that D is defined as the
stationary average of the time elapsing between the moment
a packet is generated until the completion of its broadcast.)
Since we are not sure whether this bound is tight, we also
establish a sharper lower bound applying to a certain class of
routing schemes. First, we present the universal bound.

Proposition 1: The average delay D per packet induced
by any routing scheme satisfies

d _
2 - ID(d;p)} = a(d+ —d(l’:p))

where D(d; p) is the average delay for an M/D/d queue with
unit service time and arrival rate dp. (The notation §2(A) means
“of larger order of magnitude than A.”) O

Outline of the Proof: We fix a node z; let L(x) be the set
of arcs incoming at node z; i.e., Lﬁ(m)dﬁf{(z Dej,x) | j=
1.+ ,d}. Under any legitimate routing scheme, all packets
generated by nodes y # z have to traverse at least one arc
of L£(z). It can be seen that the average delay until a packet
reaches z will not increase if we change the original system by
one in which the following conditions hold: Packets generated
by z never traverse the arcs of £(z); each packet generated
by a node y # z is present at all neighbors of xz immediately

D > max {d,

728 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

upon generation, and it only traverses the first available arc
of £(z). In this ideal case, the d arcs of £(z) would operate
as an M/D/d queue with unit service time and arrival rate
A(2¢ — 1) = pd [recall the definition of p in (1)], and this
provides a lower bound for the average delays in the actual
system. Thus, we obtain

24 _ 1
54)]

where the factor (2¢ — 1)/2¢ accounts for the fact that packets
generated by node z do not cross the arcs of £(x). Further-
more, it is known [4] that D(d; p) satisfies

__r
2d(1-p)’
The proof is easily completed by using this inequality, (2), and
the obvious fact D > d. Q.E.D.

As suggested by the proof of Proposition 1, a scheme
attaining the universal lower bound on the delay D (if there
exists such a scheme) would probably schedule transmissions
by making use of global information. This claim is further
supported by Proposition 2, which establishes a lower bound
on D applying to the class of oblivious routing schemes. Under
such a scheme, each packet decides (upon generation) which
paths to follow, independently of all other packets in the
network; also, each packet insists on traversing the selected
paths, regardless of the contention encountered. Note that
packets generated by the same node z follow the same rules.
Clearly, the oblivious class comprises all schemes where each
packet independently selects which tree to be broadcast along
by using a randomized rule depending only on the identity
of its origin node. The routing schemes discussed in Sections
IV-A and IV-C are of this type.

We now present the lower bound on the delay induced by
oblivious schemes.

Proposition 2: The average delay D per packet induced by
any oblivious routing scheme satisfies

= [1 * e ,,)]}

=od+).
1-p

Qutline of the Proof: This proof is similar to that of
Proposition 1. Again, we fix a node x and we consider the
set £(x) of arcs incoming at x. Each packet generated at a
node z will attempt to traverse some of the arcs of L(z);
which arcs will be traversed is determined by a randomized
rule depending only on node z. As in the proof of Proposition
1, we assume that each packet generated at a node z # x
crosses only one arc of £(z), while the ones generated at
cross no such arcs; also, a packet to traverse arc (z @ e;, x) is
taken as present at node = @ e; immediately upon generation.
Under these conditions, arc (x @ e;,z) is fed by a Poisson
stream with rate r;, because packets choose their respective
paths independently; thus, each arc (z @ e, x) operates as an
M/D/1 queue with rate r;, which implies

D> D(d; p)

1
D(d; p) > 2 +

D> max{d,

3

where we have used the expression for the delay of an M/D/1
queue [8]. Notice now that [l + (r/2(1 —r))] is a convex
function of r; it may also be seen that Z?ﬂ ri=A2¢-1) =
dp. Therefore, the right-hand quantity in (3) is minimized for
ri = =rq = A(2%—1)/d = p. This implies that

24 -1 p
1 .
2 [+2(1—p>]’

the proof is easily completed by using this inequality and the
obvious fact D > d. Q.E.D.

Proposition 2 implies that, for a rather broad class of
schemes, the universal lower bound on the delay D is loose;
notice that the factor 1/d is present only in the bound of
Proposition 1. Suppose now that we allow packets generated
by each node z to look at the routing decisions taken by
packets previously generated by the same node. It is an
interesting open question to investigate whether Proposition 2
still holds. We believe that this may possibly be true because
each packet has a very limited knowledge of the routing
decisions taken within the entire network. If this is indeed
the case, then a scheme attaining the universal lower bound
on D should either involve centralized coordination or some
form of adaptive routing.

D>

IV. DIRECT ROUTING SCHEMES

A. A Simple Approach to the Problem

The simplest approach to our problem is as follows: Each
of the nodes broadcasts its packets along a certain spanning
tree emanating from itself. Such a scheme can have rather
poor performance. In fact, its performance depends heavily
on the selection of the trees. For example, consider the case
where each node routes its packets along the corresponding
unbalanced spanning tree in which the hypercube dimensions
are crossed in increasing order (see Section II-B). Every node
2z receives through its adjacent arc of the jth type all packets
originating at all nodes « satisfying z,, = 2, for m > j and
z; # z;. Thus, during each slot, there are generated an average
of A27~1 packets that will eventually have to traverse arc
(2 @ e;, 2). Therefore, the simple scheme under analysis may
be stable only if A27~1 < 1 for j = 1,--,d, or equivalently

<308

Hence, the maximum load factor that can be sustained by the
above simple scheme vanishes as the dimensionality d of the
hypercube increases. The reason for this undesirable behavior
is that some of the arcs are shared by far more trees than the
others.

A potential remedy to the above problem is to select 24
trees (one rooted at each node) such that all arcs are shared
by approximately the same number of trees. There does exist
such a set of trees, namely the ones used in the optimal
multinode broadcast algorithm of [3]. Since this algorithm

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 729

lasts for [(2¢ — 1)/d] slots, it follows that each arc is shared
by at most [(2¢ — 1)/d] of the trees; thus, broadcasting the
packets along these trees will create no bottleneck in any of
the arcs. This scheme is mainly of theoretical interest, because
it is rather hard to implement; this is due to the fact that the
trees used are complicated to describe. An alternative way
of balancing traffic over the hypercube arcs is to use multiple
trees per node and randomly distribute among them the packets
to be broadcast. An efficient routing scheme that is based on
this idea is presented in Section IV-C. This scheme is closely
related to a periodic scheme presented in Section IV-B.

B. Performing Multinode Broadcasts Periodically

Another simple approach to our routing problem is to run
periodically an efficient algorithm for multinode broadcast(s),
such as the optimal algorithm of [3] and the nearly optimal
ones of [7]. These algorithms utilize the hypercube arcs almost
fully (during their respective running times); thus, the resulting
periodic schemes would be stable even for p ~ 1 (see
also below). On the other hand, any algorithm for multinode
broadcast(s) takes at least [(2¢ —1)/d] slots. (To see that
this quantity is a lower bound on the time required for the
multinode broadcast, just notice that each node receives 2¢ — 1
packets during this task and it may only receive at most d
of them during each slot.) Hence, a periodic routing scheme
would induce an average delay of £2(2¢/d) even for p =~ 0,
which is too high.

We now present a periodic scheme that is based on the
optimal algorithm by Saad and Schultz [11] for the d simul-
taneous multinode broadcasts. For this communication task,
every node z has d packets to broadcast; each of these packets
is routed along a completely unbalanced spanning tree rooted
at node z (see Section II-B). In particular, the first packet is
routed along that tree where the hypercube dimensions are
crossed in the order 1,2,---,d; the second packet is routed
along that tree where the hypercube dimensions are crossed
in the order 2,3, ---,d, 1, etc; the dth packet is routed along
that tree where the hypercube dimensions are crossed in the
order d,1,2,---,d — 1.

The above-described algorithm takes time 2¢ — 1 [11].
By pipelining successive instants thereof, each node may
broadcast d packets every 2¢ — 1 time units; this applies if the
tree to be assigned to each packet is determined either on the
basis of availability, or randomly with all d permissible trees
being equiprobable. Henceforth, we focus on this randomized
scheme, which is seen to be stable if (\/d)(2¢ — 1) < 1,
or equivalently p < 1. This is the broadest possible stability
region, due to the necessary stability condition in (1). Since
each period of the scheme lasts for 2¢ — 1 slots, we have
D = Q(2%) even for p ~ 0, which is too high.

The unsatisfactory delay performance of the periodic
schemes is primarily due to the extensive occurrence of idling,
caused by the periodic feature of these schemes; that is, it
often occurs that arcs are idle while packets have to wait
for the next period in order to cross them. As will be seen
in the next subsection, avoidance of this idling phenomenon
improves performance dramatically.

C. A Nonidling Direct Scheme—An Approximate
Delay Analysis

In the present subsection, we consider the nonidling version
of the periodic scheme described in Section IV-B (namely,
of that using the algorithm of [11]). The scheme to be
presented performs very satisfactorily. Unfortunately, exact
analysis seems to be impossible; thus, we proceed by means
of an approximate model, which we then validate using
simulation.

The nonidling scheme to be discussed is as follows: Each
packet chooses randomly one of the d completely unbalanced
trees permissible (see Section IV-B) and traverses the corre-
sponding arcs as soon as possible. This scheme belongs to the
oblivious class defined in Section III-B.

By introducing an appropriate priority discipline for con-
tention resolution, we can achieve the following: the order
of the various packet transmissions is preserved when the
periodic routing scheme is converted to a nonidling one. This
implies that, under this priority discipline, each packet arrives
at its destination no later than under the periodic version of
the routing scheme. Since the periodic scheme is stable for
all p < 1, it is seen that the nonidling scheme is also stable
for all p < 1, which is the broadest possible stability region.
Henceforth, we assume that contention is resolved on a FIFO
basis, which is a more natural priority discipline.

Regarding the steady-state average delay D per packet, it is
easily proved that lim,_,o D = d+ (1/2); the term d accounts
for the average of the maximum propagation time per packet
(which equals the depth of the trees used); the term 1/2 is
the average synchronization time, namely the average of the
time elapsing from the moment a packet is generated until the
beginning of the next slot. (Recall that packets are assumed
to be generated in continuous time, while transmissions may
only start at the beginning of each slot.) Below, we derive
an approximate expression for D, which will be seen to be
in excellent agreement with simulation outcomes when p is
not large.

In the analysis to follow, it is assumed that the various
random processes involved are in steady-state. We fix a node
. Let Yk(’) be the number of packets waiting to cross arc
(z,z®e;) at the beginning of the kth slot, including the packet
to be transmitted. Moreover, let By be the number of packets
generated by node z during the kth slot; since arc (z,z @ e;)
belongs to all of the d trees that may possibly be selected by
a packet generated by x, all By newly generated packets will
join the queue for this arc. Also, let P,Em") be the number of
packets received by node z (during the kth slot) through arc
(® em, x) and wishing to traverse arc (z,z ®e;). Notice that
P{™" € {0,1}; that is, all of these random variables are of
the Bernoulli type. Clearly, we have

fork=1,---,

@

d

v = -t + Bet Y R,
m=1

where [a]* stands for max{a,0}.

By symmetry, the traffic is split evenly (on the average)
among the various arcs; thus, each of them is busy at a

730 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

particular slot with probability p. Using also the definition
(m,3) ;
of P,""", we obtain

E[P{™] = pgm,; Q)

where g, ; is the probability that a packet has to cross arc
(z,z @ e;) given that it has crossed arc (z & €,,,x). Taking
into account the d possible orders of crossing the hypercube
dimensions, it may be proved [13] that

2[(m—i) mod d]_,

T ¥(m,i) € {1,---,d}% (6)

Im,i =
notice that, by symmetry among the various nodes, the pa-
rameters g, ; are independent of x. Also, there holds g; ; = 0,
which is due to the fact that no packet having crossed arc
(z @ e;,) attempts to cross arc (z,z D e;).

Next we introduce two approximating assumptions. These
assumptions will only be in effect in the present subsection.

Assumption A: For any pair (m,4), the random variables
(P,gm")),ml,... are taken to be independent and identically
distributed.)

Assumption B: The processes (P,El’l))kzly_,_ NI
(P,Sd’l)),czl,‘__ are taken mutually independent.

These assumptions are of similar spirit as those used in [1]
and [6] for a considerably different routing problem. In the
analysis to follow, all equalities to be derived are approximate
(unless otherwise specified), since they are based on the two
assumptions above.

We define the random process (AS)) k=1,.. as follows:

d
APDE B, + Y P, %)
m=1
(Bk)k=1~,.., is (actually) a renewal process, and is independent
of (P,El'l))kzl,m, e (P,Ed”))kzl,m. Thus, under our approxi-

mation, (Ag))k=1,... is taken as a renewal process that assumes
the distribution of a random variable A(), Since B is a
Poisson random variable with mean), it follows from (5)
and (7) that

d
E[AD] =X+ " pgmsi,

m=1

and

d
var[A®] = X + Z Pgm.i(1 = pgm.i)

m=1

d d
=AY gmi—p Y gk
m=1

m=1

where var[A()] denotes' the variance of A®). Using (6), it
follows (after some algebra) that
E[A®]=p and

var[A®] = p — p2ﬁ [a+ %(44 ~1)-2024 - 1)].

®

The leftmost result is actually true and could have been taken
for granted; indeed, it may be seen from (9) that E[A()] is the
average input traffic rate for arc (z,z ® e;), which equals p.
Furthermore, combining (7) with (4), we obtain

YO =y -1t + 4P, fork=1,-- (9
Since the arrival process (Afc')) k=1,... was taken as a renewal
process, it follows from (9) that (Yk(’))k=1,... may be ap-
proximated by the process of the number of customers in a
discrete-time G/D/1 queue with unit service time. Let D®
be the average delay associated with this queue, including the
transmission time over that arc. The expression for D(®) is
well-known (e.g., see [9]); in particular, we have

0 _ E[A®(AG) — 1)]
D=1+ 2E[AD](1 — E[A®)])
var[A®D] + (E[AD])2 — E[A®]
2E[A®D](1 — E[A®)])

1 + var[A()]
T2 2E[A®](1 - E[A®])’
Combining this with (8), we obtain
; 1 1
@O_-4__ -
DY =s+3a=p

x (1— (zd—fl)‘z[d+%(4d‘1)‘2(2d‘1)])’

fori=1,---,d. (10)

Due to complete symmetry, the above expression is indepen-
dent of ¢ and of the fixed node z.

So far, we have derived an approximate expression for the
average delay suffered by a packet while waiting to cross an
arc of the ¢th type. The overall delay of a packet will be
approximated with the delay suffered in the longest path; this
path consists of d arcs, one from each of the d hypercube
dimensions. Thus, using (10) and taking also the average
synchronization time into account, we obtain the following
approximate formula for the average delay per packet:

d d
D’rb"§+‘———2(1_p)
x (1—ﬁ[d+%(4d—1)—2(2d—1)]>+%.

amn
For d not being very small (say d > 10), the above formula
may be simplified to the following:
d d
D~ -+ ——
2 + 2(1 - p)

Furthermore, for small p, we have

N 1 P
1-5Y4 - =d+ - +d—-—"—.
(1-3)+3=d+3+ 3(1-p)

1 d
D=xd+ -+ -p. 12
t3t+3gp (12)
As will be seen below, the approximate formula (11) is in
excellent agreement with the simulation outcomes, for p < 0.3.
This together with (12) supports the conjecture that, for small

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 731

TABLE I TABLE 11
d=28 p=0.10
14 Simulation Approximation Relative Error d Simulation Approximation Relative Error
0.050 8.620 8.641 0.24% 5 5.659 5.696 0.65%
0.100 8.763 8.799 0.41% 6 6.705 6.729 0.31%
0.150 8.950 8.974 0.27% 7 7.729 7.763 0.44%
0.200 9.165 9.172 0.08% 8 8.725 8.799 0.85%
0.250 9.480 9.396 —0.89% 9 9.806 9.835 0.30%
0.300 9.808 9.652 —1.59% 10 10.819 10.871 0.48%
0.350 10.246 9.947 —2.92% p=0.15
0.400 10.733 10.291 —4.12% d Simulation Approximation Relative Error
0.450 11.295 10.699 —5.28% 5 5.800 5.811 0.19%
0.500 12.201 11.187 —831% 6 6.844 6.863 0.28%
7 7.881 7918 0.47%
. . R 974 0.46%
p, there holds D ~ d + (1/2) + K dp with constant K; thus, it 8 8.933 89 ¢
. . 9 10.043 10.031 —0.12%
appears that the routing scheme using d trees per node meets
b . . 10 11.091 11.089 —0.02%
the performance objectives set in Section L. 530
Next, we investigate the accuracy of (11). In Table I, we P=2 — -
: . . : . d Simulation Approximation Relative Error
compare the simulation outcomes for the eight-dimensional < 854 Sow0 T
hypercube with the estimate given by (11) for d = 8; each ' : SIS
. . . . 6 7.001 7.002 0.01%
of the simulation outcomes was obtained over a period of ; 2100 2092 0.12%
5000 slots. Clearly, there is excellent agreement between : ’ e
- . : 8 9.177 9.172 —0.05%
the experimental results and the corresponding approximate 10253 025%
estimate for D, for values of p ranging from 0.05 to 0.3; for all o 10.227) e
10 11.379 11.335 —0.39%

such values of p, the magnitude of the relative error is less than
2%. In fact, the agreement for values of p < 0.25 is striking; in
all simulations performed, the relative error did not exceed 1%
for p < 0.25. Unfortunately, the accuracy of the approximate
formula (11) deteriorates gradually for p > 0.3 and is quite
bad for for p > 0.5. In Table II, we investigate the accuracy
of (11) for different values of the hypercube dimension d;
again, excellent agreement is observed for d = 5, - - -, 10 under
moderately light traffic (namely, for p = 0.10, p = 0.15, and
p = 0.20). The experimental results of Table II were obtained
over periods of 1000 slots.

V. AN INDIRECT ROUTING SCHEME
BASED ON d DISJOINT TREES

Consider the following simple routing scheme: All packets
are sent to a specific node, which broadcasts them along a
spanning tree emanating from itself. By pipelining successive
broadcasts, it is seen that this scheme can route one broadcast
per slot. Thus, stability can be maintained only if A\2¢ < 1, or
equivalently p < (1/d)(1 — (1/24)). Therefore, the maximum
attainable value for the load factor is ©(1/d). (The notation
©(A) means “of the same order of magnitude as A.”) The
reason for this poor performance is that only a fraction 1/d
of the available hypercube arcs are used for broadcasting the
packets.

The above discussion leads to the following idea: Suppose
that we could broadcast packets along d disjoint spanning trees
T, ... T, with each tree receiving the same amount of
traffic; then, the maximum load factor might possibly be ©(1),
which coincides with one of our performance objectives. A
routing scheme of this spirit is presented in this section; the
scheme uses the set of d disjoint spanning trees introduced by
Johnsson and Ho [7] (see Section V-A). Under this scheme,

each packet is sent to the root of T, for some j, and then
it is broadcast along this spanning tree. Since packets are not
broadcast directly by their respective origins, the scheme to
be presented is characterized as indirect.

It will be established rigorously that the routing scheme
analyzed in this section is stable for all p < (2/3)(1 —
(1/24)) =~ 2/3, while it satisfies D ~ 3d + 1 + (9/4)p for
small p and our performance objectives. The indirect scheme
has one more interesting property, namely it is deadlock-free
when implemented with finite buffers (see Section V-E). In
Section V-G, we compare the indirect scheme with the direct
scheme analyzed approximately in Section IV-C.

A. The d Disjoint Spanning Trees

Johnsson and Ho [7] have constructed an imbedding of d
disjoint spanning trees in the d-cube; they call them “d Edge-
Disjoint Spanning Binomial Trees” (dESBT). This imbedding
consists of d completely unbalanced trees T(1,. - .| T4 Tree
TG) is rooted at node e;. The order of crossing the hypercube
dimensions in the paths of T is as follows:

(7 mod d) + 1, (5 + 1)mod d] + 1,
[+d—1) mod d] + 1.

Tree TV has d subtrees denoted as T, - -\ T, with T?
having 2¢~% nodes.

B. The Rules of the Routing Scheme

In what follows we present the set of rules for routing the
packets. Rules A, B, and C are the main ones, and require that
a packet is sent to the root of one of the trees T(1), ... T,

732 1IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

from where it is actually broadcast; transmissions towards the
roots may only be performed every three slots, while the rest
of the time is dedicated to transmissions away from the roots.
Rules D and E are only introduced for analytical tractability.

Rule A: Each packet generated at some node selects the
tree along which it will be broadcast. Selection is randomized,
with the only permissible trees being TV, ..., T(4); each of
them is assigned an a priori probability 1/d. Different packets
make their selections independently.

Rule B: Consider a packet, originating at some node y, that
has chosen tree T(). This packet must be sent to the root e;
of this tree, which will actually perform the broadcast; the
path to be followed is the reverse of the path from e; to y
that is contained in T(). That is, this packet will traverse
the reverse of those arcs of TU) that lead from e; to y.
Note that packets generated by the root nodes ey, - - -, eq also
follow Rules A and B, as well as the ones presented below.
Thus, it may occur that a packet generated by node e,, is
sent to some other root e;, in order to be broadcast along
TG,

Rule C: Consider an arc (z, z®e;) belonging to T7), while
its reverse arc (2@e;, z) belongs to some other of the d disjoint
trees, say to T(™). Because of Rule B, it is possible that some
packet to be broadcast along T{™) has to traverse arc (z, zde;)
while heading towards the root node e,,; we impose the
restriction that such an arc traversal is permissible only every

three slots. In order to make this rule more specific, we define

Cof{t>0:tmod3 =0}, C;E (¢t >0t mod3 =1}

and Czdéf{t > 0:tmod3 = 2}. Arc (2,2 & e;) may be
traversed by packets that have selected tree T (where the
arc belongs) only during time slots in C; U C;. Moreover, this
arc may be traversed by packets that have selected tree T(™)
(where its reverse arc (z @ e;,2) belongs) only during time
slots in Cy. Thus, every three slots, each of the d trees is
reversed, and all of its arcs point towards its root. Slots in
the set Co are used for sending packets to the respective root
nodes, while slots in the set C; UC; are used for the broadcasts.
Note that the d arcs (0, e;)i=1,...,« do not belong to any of the
d disjoint trees (see [7]); these arcs are only used during slots
in Co.

Rule D: Consider a packet generated at some node y that
has selected tree T, If y is not a leaf of T, then before
the packet considers to cross the first arc of its path to e; it
has to traverse one virtual arc located at node y (see Fig. 2 for
the case d = 3, and compare it with Fig. 1). Such arcs may be
traversed only during lots in Cy. It is assumed that packets to be
routed along different trees have to cross different virtual arcs,
even if they have been generated at the same node. Obviously,
virtual arcs can be realized by appropriately delaying packets
in their respective origins.

Rule E: Every root node e; has a pair of buffers B; and
B,. Consider a packet that has selected tree T7); let node y
be he origin of this packet. If y belongs to the largest subtree
T, then it will be placed in buffer Bj; if y belongs to any
subtree other than Tl(’) (or if y = e;), then it will be placed
in buffer Bs; see Fig. 2. During slots ¢t + 1, ¢+ 2, with ¢ € Cg,
root node e; broadcasts one packet from each of buffers By

and B>. Which of the two packets will be broadcast first is
determined by tossing a fair coin. In the case where one of
the two buffers is empty, only one packet is broadcast; again,
the slot when the broadcast will start is determined by tossing
a fair coin. Of course, if both B; and B, are empty, then no
further action is taken.

Prior to evaluating the performance of the proposed scheme,
we present some results to be used in the analysis to follow.

C. Auxiliary Results

First, we consider a tree T of n paths of the same length,
with all paths having their final arc in common. Packets arrive
at the starting nodes si,---,s, of the paths and exit only
at the common end f [see Fig. 3(a)]; packets are stored
in the intermediate nodes of the tree (if necessary) and are
forwarded as soon as possible. All packet transmissions start
at the beginning of slots and each of them lasts for one slot.
We claim that if we collapse all paths into one (with the same
length as before) and we combine the arrival processes, then
the departure process at node f will remain the same [see
Fig. 3(b)]. This is proved in Lemma 3. Note that this result is
basically a consequence of synchronization and pipelining.

In the context of the tree T of paths, we denote by A;(t) the
number of packets that arrive at node s; just before the end
of slot t. Moreover, we denote by F(¢) the number of packets
that depart from node f at slot #; clearly, F(t) equals either 0
or 1. In the context of the single path P, we define A(t) and
ﬁ‘(t) in a similar way. All the above processes are defined for
t = 0,---; both systems start operating at time ¢ = 0. The
result to be presented is established in the Appendix.

Lemma 3: If A(t) = .7, Ai(t) for t = 0,---, then
Ft)=F(t)fort=0,---. 0

Lemma 3 holds even if packets arrive according to some
continuous time process, provided that packet transmissions
start at the beginning of slots. Also, the lemma still applies if
packet transmissions can only start at the beginning of slots
numbered 0, A, ---, and each transmission lasts for A slots.
Even though Lemma 3 does not hold if some of the paths
have different length than the others, we are still able to prove
an interesting result applying to such a case; this result is
presented next.

We now consider a tree T consisting of n paths with
possibly different lengths ly,---,l,; see Fig. 4. Again, new
packets enter the tree at the leaves and exit at the common
end f. At each of the starting nodes s1,- - -, 8,, new packets
are now assumed to arrive according to a Poisson processes
with rate A; arrivals at different starting nodes are mutually
independent. Transmissions may only start at the beginning of
slots numbered 0, A, -- -, and each of them lasts for A slots.
Let D denote the steady-state average delay per packet induced
in the tree T'. Below, we present the stability condition for T
and the expression for D; the proof of Lemma 4 is summarized
in the Appendix.

Lemma 4: The tree T of paths is a stable queueing system
if and only if AnA < 1. Moreover, in the stable case, there

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 733

virtual
arc <

actual
arc —

lllé 1100
f f

Fig. 2. Introducing the virtual arcs and buffers By and B, in T(1) for d = 3.

(@

(b)

Fig. 3. (a) The tree T of paths. (b) The single path P.

5y

T T

Fig. 4. The tree T of paths with different lengths.

holds

. 3 AnA A
b= A[§+ 2(1—AnA)] + }Z;"’ -4

Lemma 4 will be seen to be very useful in the subse-
quent analysis; it is also applicable to other routing problems
involving trees.

D. Performance Evaluation of the Scheme

First, we notice that packets routed along different trees do
not interfere at all, in the following sense: Two such packets
will never attempt to traverse the same arc at the same time.
Indeed, if both packets are under broadcast, then they cannot
collide, because they have to traverse disjoint sets of arcs.
(Recall that the d trees used for routing are disjoint.) If both
packets are heading towards the respective root nodes, again
their paths are disjoint. (Because the d disjoint trees remain
disjoint after reversing their arcs.) Moreover, even if these
packets have been generated at the same node and are still
traversing the corresponding virtual arcs, they cannot collide,
as guaranteed by Rule D. Finally, if one of the packets is under
broadcast and the other is heading towards the corresponding
root, then they may not both take a step at the same time,
because of Rule C.

734 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Since packets that are routed along different trees do not
interfere, we may analyze the performance of the scheme
separately for each tree. In fact, we have to consider only one
of them, because the d trees are isomorphic and are treated
by the routing rules in a symmetric way. Thus, for the rest of
the analysis, we focus on the queues formed by the packets
routed along T, First, we derive the condition for stability
of the scheme:

Proposition 5: The routing scheme introduced in Section
V-B is stable if and only if

p<§(1—2ld). (13)

Proof: Clearly, when a packet starts being broadcast, it
does not suffer any more delay due to other packets, because
successive broadcasts are pipelined. Thus, the traffic load that
can be accommodated by the scheme is determined exclusively
by the processes of packets departing from buffers B; and B;
of e;. Due to Rule E, these two porcesses are independent;
hence the stability region coincides with the intersection of
the regions obtained by considering each of buffers B, and
B;.

First, we consider the set of all paths leading to buffer
B;. All of them have their final arc in common [namely, arc
(e2 @ e1,e1)]; see Fig. 2. Moreover, because of Rule C, all
transmissions in these paths take place every 3 slots; finally,
due to the virtual arcs added in the nonleaf nodes of T'(1)
(see Rule D), all new packets are now generated at “leaves,”
each fed by a Poisson process with rate A/d. (Notice that, due
to Rule D, each nonleaf node of T(1) is converted to a “leaf”
hanging from a virtual arc.) These properties of the set of paths
leading to buffer B; allow us to apply Lemma 4 with A = 3,
n = 29-! and with \/d instead of A. (Recall that B, is in
charge of all packets originating in the largest subtree Tl(l) of
T, which contains 24~ nodes.) Thus, the set of these paths
is stable if and only if 3(\/d)2¢~! < 1; by the definition of
p in (1), this condition is equivalent to (13).

Reasoning as above, it may be seen that the set of all paths
leading to buffer B, of e; is stable if and only if (13) applies,
which completes the proof. The only subtle point in the new
argument is that the paths leading to By do not share their
final arc (see Fig. 2). Nevertheless, Lemma 4 is still applicable,
because packets depart from B, one-by-one and every three
slots (due to Rule E); thus, the process of packets broadcast
through buffer B; is the same as if the paths leading to B,
had their final arc in common. Q.E.D.

Next, we derive the expression for the average delay D per
packet under our indirect routing scheme.

Proposition 6: The average delay D for the routing scheme
introduced in Section V-B is given as follows:

3p
231 -50) - o
Proof: The delay D may be expressed as the sum of
two terms R and V, where R is the average time for a packet
to reach e; and exit from the corresponding buffer, and V is

the average time from the moment a packet exits this buffer
until its broadcast is completed. As already argued in the proof

D=3d+1+ 0

of Proposition 5, the set of paths leading to buffers B; (resp.,
By) of e; satisfies the conditions of Lemma 4 with A = 3,
n = 2971 and with)\/d instead of A; thus, the average delay
R; (resp., Ry) associated with the set of paths leading to B;
(resp., By) is given as follows:

d
3 3%2d—1 3 2°—-1 W
B 3[2 * 2(1 _ 33211_1)] + 9d—1 l§=1: lz , (14

and

d
3 33241 3 A=
R2:3[—+ d =S @ -3)
=1

— I+
2 2(1_332«1—1)] 24

where l§’) is the length of the ith path leading to buffer B;
(for j = 1,2), with paths numbered arbitrarily. Since each of
buffers B; and B, is in charge of broadcasting the packets
originating from 29! hypercube nodes, an arbitrary packet
routed along T is equally likely to be traveling in either of
the two sets of paths. Thus, using (14) and (15), we have

1 NE 35241
R=5(Ri+ Re) —3[5 + 2(1_3%2&1)]

3 241 241
IR
=1 i=

cl 291 (1) 2941 ,(2)
early, ;7 L+ i_1 I;” equals the sum of the Ham-
ming distances H(y,e;) of all nodes y from root e; plus
a contribution of 1 per nonleaf node in T, the latter
contribution accounts for the virtual arcs added by Rule D.
We have Z;:Bl H(y,e1) = Yo_o k(%) = d2?1, because
there are ({) nodes at Hamming distance k from each fixed
node z; also note that 71 has 24~! nonleaf nodes, because it
is a completely unbalanced spanning tree (see Section II-B).

Therefore, it follows from (16) that

(16)

3 332471 3 od-1 | gd-1
] [L A— A 241y 3
R 3[2+2(1_3%2d_1)]+2d(d +2471)
3 3p
=d+3+ - 17
23 - oA a

where we have also used the definition of p in (1).

Once a packet has arrived at e; and has entered the
corresponding buffer, the time required for its broadcast to
be completed depends on the slot when the broadcast starts.
Thus, if the broadcast starts at a slot in Cy, then it is completed
in time [d/2] + d — 1. If the broadcast starts at a slot in Co,
then it is completed in time |d/2] + d. Since both these events
occur with probability 1/2 (because of Rule E), it follows that

1/[d d 3 1
V_E(H +d—1+ M +d) =Sd-Z. (19
Notice now that
D:R+V-g. (19)

The correction term —3/2 is due to the following fact: In
estimating R, each packet is considered as departing from B,

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 735

(or from By) at some time (¢t + 3) € Cp, while the packet
actually starts being broadcast either at time ¢ + 1 or at ¢ + 2;
thus, an average of 3/2 slots per packet is counted in both R
and V. The proof is completed by using (17), (18), and (19).
Q.E.D.
It follows from Proposition 6 that, in the case of light traffic,
we have D =~ 3d + 1 + (9/4)p. Also, by Proposition 5, our
indirect scheme is stable for all p < p* =~ 2/3. Hence, the
scheme meets the performance objectives set in Section 1.

E. Buffer Sizes and Deadlock Prevention

Next, we study the behavior of the steady-state average
queue-size Q per node, defined as 1/2¢ of the average total
number of packets stored within the entire network (per slot) in
steady-state. Note that, under the present scheme, the queue-
size statistics may vary for different nodes; thus, the above
definition of @) provides us with an “overall” estimate of the
various queue-sizes. In evaluating (), a packet is considered as
stored at some node z only if has yet to forward the packet
towards one of its neighbors; packets to start transmission(s)
immediately are also included. Note that a packet to be
forwarded to several neighbors of z is assumed to occupy
one unit of buffer capacity, for obvious reasons.

Next, we present the expression for the average queue-size
Q@ per node; its derivation is similar to that of the delay D,
and can be found in [12].

Proposition 7: There holds

3d 2¢ -2 d
Q= ra 7+
317 3p
S8 - LA — 0
(2 6 2[%0—%)—0])

Proposition 7 implies that, for small p, we have Q =
(3d/4)p(2¢ — 2)/(27 = 1)+3p(d/(2? - 1)((3/2)d+(17/6));
when d is not very small, this simplifies to Q = (3d/4)p.

Even though our analysis was based on the assumption
of infinite buffer capacity, in practical applications all nodes
have finite buffer capacity. Study of the average-queue size Q
per node aims at estimating the buffer capacity required for
applying the indirect scheme in practice. As will be seen in
Section V-G, our indirect routing scheme is very efficient with
this respect. Another important feature of this scheme is that
it is deadlock-free when implemented with finite buffers; this
fact is established below.

Clearly, when some node z has finite buffer capacity, then a
buffer overflow may occur; there are basically two approaches
for dealing with such an overflow:

1) Packets waiting to cross an arc incoming to x are

blocked, until there is empty space available in the buffer
of z.

2) Packets continue to arrive at x, and they are dropped if

there is no empty space in the buffer.

Under the second approach, it is possible that packets are
partly broadcast; that is, it may occur that a packet is not
received by all nodes. On the other hand, the first approach
runs the risk of a deadlock. Such a deadlock never occurs

under the indirect scheme analyzed. Indeed, recall that packets
routed along different trees do not interfere; also, notice that
all simultaneous transmissions along the same tree are pointing
at the same “direction.” (That is, at each time, all packets
are heading either towards or away from the corresponding
root.) Thus, there never arises a group of packets blocking
one another in a “cyclic” pattern. Therefore, even a buffer
capacity of two units per node and per tree T G) is sufficient
to guarantee that no deadlock will ever occur; one unit
of buffer capacity is dedicated to packets heading towards
root e;, while the other unit is dedicated to packets already
undergoing broadcast along 79, It follows from the above
discussion that when implementing the indirect scheme with
buffer capacity of ©(d) per node, all packets admitted in the
network are guaranteed to be broadcast in finite time. In fact,
the same statement applies even in the presence of other packet
transmissions (not necessarily broadcasts), provided that each
of these packets also is routed along one of the d disjoint trees
and conforms to Rules B and C.

F. Discussion on the Scheme

Under our indirect scheme, one third of the time (namely,
all slots in Cp) is dedicated to transmissions towards the
roots e, - - -, eq, due to Rule C. However, these transmissions
constitute a very small portion of those perfomed overall.
Indeed, consider a packet that is generated at some node y,
which is at Hamming distance & from root e;. If this packet
selects to be routed along TV, then it will undertake k+2¢—1
transmissions; k of them are required for the packet to reach
e; and the rest 2¢ — 1 are undertaken during the broadcast
performed by the root node ¢;. In fact, k of the transmissions
are redundant, because they bring the packet to nodes that
have already received it.

The above discussion seems to suggest that Rule B and
especially Rule C result in a considerable decrease of the
maximum load factor that can be accommodated by the routing
scheme. However, this claim is not correct, as proved below:

Proposition 8: Any routing scheme that conforms to Rule
A is stable only if

2 1/3
p< 3(1 zd—2/3>'
Proof: We fix some j € {1,---,d — 1}. We consider
node e; @ e;ji1, which is the neighbor of e; through the
(j + 1)st dimension; similarly, node e; & e;4 is the neighbor
of e;41 through the jth dimension.

In the context of T'W), the largest subtree T\7 is hanging
from node e; @ e;41. (To see this, just recall the order of
crossing hypercube dimensions in the paths of T (4); see also
Sections V-A and II-B.) Clearly, all packets originating at
any node of T\”) and routed along T®) have to traverse arc
(ej®e;j41,€;5), in order to be received by e;. Since subtree Tl(])
contains 2%~ ! nodes, these packets represent an average total
demand for (A/d)2¢~! transmissions over arc (e; @ €j11,¢€;)
per slot.

In the context of TU+Y), node e; is a leaf and its par-
ent is node e; ® e;y1. Thus, all packets generated at any

(20

736 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

node other that e; and routed along TU+D have to traverse
arc (e; ® ejy1,€;), in order to be received by e;. These
packets represent an average total demand for (\/d)(2¢ — 1)
transmissions over arc (e; @ e;j41,€;) per slot.

Clearly, a routing scheme may be stable only if the average
total demand per slot for transmissions over any fixed arc
is less than unity. Considering only some arc of the form
(ejDejt1,e€;), it follows from the previous discussion that any
routing scheme conforming to Rule A may be stable only if

Aod—1, Alod .
d2 + i (2°-1)<1;
using the definition of p in (1), it is seen that the inequality
above is equivalent to (20). Q.E.D.

The right-hand quantity in (13) is very close to that in (20),
even for moderately small values of d; e.g., for d = 8 they
differ only by 0.26%, and for d = 10 only by 0.065%.

The proof of Proposition 8 suggests that the basic limitation
of the routing scheme under analysis lies on the fact that each
of the trees used for routing is unbalanced; this creates bottle-
necks in the arcs from which the largest subtrees are hanging.
The previous argument is further supported by looking at the
proof of Proposition 5, as well; it was proved therein that
the nodes of the largest subtree Tl(’) introduce as much input
traffic to tree TU) as all other nodes together. This is also
demonstrated by Rule E, which makes even more clear that,
under heavv load, the scheme reduces to round-robin. Indeed,
it may be seen that, for p — (2/3)(1 — (1/2%)), root e; is
alternately broadcasting one packet originating at some node
in Tl(]) and one packet originating elsewhere.

The stability properties of the scheme under analysis are
rather satisfactory; unfortunately, they are not the best possi-
ble, since the scheme becomes unstable for p = % Suppose
now that we could imbed d balanced disjoint spanning trees
in the d-cube. (A spanning tree of the d-cube is characterized
as “balanced,” if it has d subtrees of approximately the same
size.) If such an imbedding is possible, then our scheme could
be modified so as to remain stable up to p = d/(d+ 1).
The main idea would be to use one slot for transmissions
towards the roots and d slots for broadcasting away from the
roots. However, we do not know at present whether such an
embedding is possible.

G. A Brief Comparison of the Various Routing Schemes

In the present subsection, we briefly compare the indirect
scheme analyzed in Section V with the direct scheme of Sec-
tion IV-C, namely the one involving d completely unbalanced
trees per node. Both schemes exhibit satisfactory stability
properties. Henceforth, we focus on the delay properties of
the schemes and on the sizes of the queues involved.

As argued in Section IV-C, the direct scheme appears to
satisfy D =~ d + (1/2) + (d/3)p when p is small. On the
other hand, the indirect scheme of Section V satisfies, under
light traffic, D ~ 3d + 1 + (9/4)p; thus, it is outperformed
by the direct scheme with this respect. This is due to the
fact that the maximum propagation time per packet [which
equals lim,_,o(D — (1/2))] is considerably larger under the
indirect scheme. Notice now that the indirect scheme exhibits

20 f f f t
¥ direct scheme
A indirect non-idiing
A
— -~ —
15 A A
-A-AT
kK
I o
¥
A 104 > ¥ * —
¥ - e X *
54+ -
0 I | | |
0.0 0.1 0.2 0.3 04
p
Fig. 5. Comparing the delay induced by two schemes, for d = 8.

idling, because of the periodic alternation of the directions of
the arcs, due to Rule C. If this rule is relaxed and redundant
transmissions are avoided (see Section V-E), then there holds
lim,_o D = (3d/2); see [12]. (Notice that lim,_,o D exceeds
the optimal value d + (1/2), because packets do not travel
through shortest paths.) Despite the improvement attained by
eliminating idling from the indirect scheme, the direct scheme
is still preferable with respect to delay. This is observed in
Fig. 5, where we compare experimental results regarding the
average delay per packet under the two schemes.

Next, we compare the values of the average queue-size Q
for the various schemes; the values for the indirect scheme of
Section V-B were computed by using Proposition 7, while the
ones for the other two schemes were obtained experimentally.
(Notice the peculiar behavior of @ for the indirect scheme
of Section V-B; this is due to the nondominant term in the
expression of Proposition 7, which is nonnegligible for smail
values of d.) As revealed by Fig. 6, the nonidling version of
the indirect scheme is the most efficient one with respect to
queue-sizes. It is particularly important that, for fixed p, the
queue-size (@ grows more slowly with d under the nonidling
indirect scheme. In order to make the comparison even more
clear, we have also plotted the maximum queue-sizes M
observed in the various simulation runs corresponding to Fig.
6; each simulation lasted for 1000 slots. Again, the nonidling
indirect scheme is superior to the direct one; see Fig. 7.

Finally, we discuss the issue of deadlock prevention, when
implementing the routing schemes with finite buffers. As
argued in Section V-E, the indirect scheme (in its original
version) is deadlock-free when implemented with ©(d) buffer
capacity per node. Regarding the nonidling indirect scheme,
again deadlocks can be prevented by dedicating (at each
individual node) constant buffer capacity to packets routed
along each tree T'/); packets heading towards root e; should
have access to different buffers from those used by packets
traveling away from e;. Despite the contention among packets
routed along different trees, there never arises a group of
packets blocking the buffer of one another in a “cyclic”

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 737

3.0 S RN R R f
n
N
~
254+ ™ m —
RLEE
20— W indect scheme -
X direct scheme LK
A indirect non-idiing o
o 151 . * A_”A 1
e
. - A"
1.04 e -
¥
05} -
0.0 |]] l l |
4 5 [7 8 9 10 1

Fig. 6. Comparing the average queue-size @ per node for the various
schemes, for p = 0.3.

13 | S R RN I
¥ direct scheme %
A indirect non-idiing
"+ * * —
= 91 —
* A A

-

| il |
4 5 6 7 8 9 10 1
d

Fig. 7. Comparing the maximum queue-size M per node for two schemes,
for p = 0.3.

pattern. As for the direct scheme, deadlocks can be prevented
by using one of the standard techniques, such as that of
“structured buffer pool” introduced by Raubold and Haenle
[10]. According to this well-known technique, the buffer of
each node of the d-cube should be partitioned in several
segments, with the ith segment being accessible only to
packets already having traversed i — 1 arcs. Therefore, a buffer
capacity of ©(d) per node is required to prevent deadlocks,
both for the direct and the nonidling indirect schemes. Thus,
in principle, all of our schemes can be made deadlock-free,
even in the presence of other packet transmissions. Since
deadlock prevention techniques often result in degradation of
the throughput, it is not clear which technique is the most
appropriate for each routing scheme. However, we conjecture
that, under deadlock prevention, both the original and the
nonidling indirect schemes perform considerably better than
the direct one, because they are “inherently” deadlock-free.
Further investigation of these issues exceeds the scope of the
present paper.

The conclusion drawn from the previous discussion is that
the direct scheme is preferable under light traffic (because it
induces smaller delays) and under very heavy traffic (because
it maintains stability, unlike the indirect schemes). On the
other hand, the nonidling indirect scheme may be preferable
under moderate traffic because it involves smaller queues.
Finally, deadlock prevention is much easier for the two indirect
schemes.

VI. CONCLUDING REMARKS

In this paper, we have formulated a problem where pack-
ets to be broadcast are generated by the nodes of the d-
dimensional hypercube at random instants, according to Pois-
son processes with rate A. All packets were taken to have unit
length; also, it was assumed that no other packet transmissions
are taking place in the network. We showed that any routing
scheme used for performing these broadcasts can be stable

only if p < 1, where p=A(2¢ — 1)/d is the load factor of the
system. Moreover, we derived two lower bounds on the steady-
state average delay D per packet. Given these limitations, our
goal was to devise distributed schemes that can accommodate
considerably high traffic (while maintaining stability), while
satisfying the following delay requirement under light traffic:
D < Kd(1 + p), with constant K.

We considered two classes of schemes, namely direct and
indirect ones. Under direct schemes, packets are broadcast
directly by the respective origins; to the contrary, under
indirect schemes, packets are sent to special nodes, which
perform the broadcasts. In particular, an indirect scheme based
on a construction of d disjoint spanning trees by Johnsson and
Ho [7], was shown to be stable for all p < (2/3)(1—(1/2¢)) ~
2/3; the corresponding average delay per packet was proved
to satisfy D ~ 3d + 1 + (9/4)p for small values of p; both
of these results were established rigorously. Furthermore, a
direct routing scheme, using a nonidling version of the optimal
algorithm for d simultaneous multinode broadcasts by Saad
and Schultz [11], was shown to be stable for p < 1. For this
scheme, it was conjectured that D =~ d + (1/2) + Kdp; this
claim has been verified by means of an approximate model
as well as by simulation. The aforementioned scheme is also
rather easy to implement. For all of the schemes considered,
we also studied the behavior of the average queue-size)
per node, in order to estimate the buffer capacity required
in practice. The schemes proved to be efficient with respect to
queue-sizes, as well. We also discussed the issue of deadlock
prevention when implementing the schemes with finite buffers.

A considerable part of the analysis would also hold under
a more general distribution of the packet-generating random
process; in particular, the various conditions for stability are
rather general. Some of the techniques used may also be
applied in analyzing the same problem in the context of other
network topologies. Of course, in a more general version of
the problem, it may be assumed that each packet is destined
for a different subset of the nodes; it may also be assumed
that the packets received by a node influence the packet-
generating process of this node as well as the length of the
new packets. This situation arises in the distributed execution

738 1IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Fig. 8. The simple case for the proof of Lemma 3.

of iterative algorithms. Analyzing this general problem seems
to be a rather challenging and interesting direction for further
research.

APPENDIX

In this Appendix, we prove Lemmas 3 and 4 of Section V-C.
Proof of Lemma 3: First, we consider the case where all
paths have length 2 (see Fig. 8). We denote by M (¢) a binary
variable that equals 1 if and only if there is some packet
buffered at node m of the tree T just before the end of slot .
The variable M (¢) refers to the single path P, and is defined
in a similar way. Below, we prove that
F(t)y=F(t) and M(t) = M(t), fort =0,
(A1)
(recall the notation introduced in Section V-C). The proof will
be done by induction on ¢.

Clearly, we have M(0) = M(0) = 0 and F(0) = F(0) =
0, which establishes (A.1) for ¢ = 0. Next, we assume that
the induction hypothesis holds for all ¢ € {0,---,¢*}; based
on this, we show that it holds for ¢ = t* + 1, as well. Indeed,
we have F(t* + 1) = M(t*), because a packet may depart
from the tree T at the end of slot t* + 1 only if it were
present at node m at the end of slot ¢*. Similarly, we have
F(t* +1) = M(t*). By the induction hypothesis, we have
M(t*) = M(t*); thus, it follows that F(¢* + 1) = F(t* + 1),
which establishes the first part of (A.1) for ¢ = #* + 1. It
remains to show that M(t* + 1) = M(¢* + 1). We have
M(t* + 1) = 1 if and only if some packets that arrived
at the tree by the end of slot ¢* have not departed by the
end of slot ¢* + 1. That is, we have M(t* 4+ 1) = 1 if and
only if j_o S0, A(t) > Zi:ol F(t). Similarly, we have
M(t*+1) = lifand only if Y1_ A(t) > S'_! F(¢). Recall
now that A(t)=3"_, A;(t) for ¢ = 0,--., by assumption.
Moreover, we have F(t) = F(t) for t = 0,---,¢* (by the
induction hypothesis) and we have established that F/(t* + 1)=
F(t*+1). Thus, it follows that whenever M (¢* +1) = 1 holds,
then M(t* 4+ 1) = 1 also holds, and vice versa. Clearly, this
proves that M(t* + 1) = M(t* + 1).

Now that the lemma has been established for the simple
case in Fig. 8, the result is easily extended for the general
case in Fig. 3. It suffices to progressively collapse the paths
of the tree T, starting from the lowest level. Q.E.D.

Outline of the Proof of Lemma 4: We consider the tree T
obtained from T by adding a tandem of {* — [; incoming arcs

to each leaf s;, where l*défmax{ll, -+, 1n}; thus, all paths of
the new tree T have the same length [*. (For the tree T of Fig.
4, tree T coincides with the one of Fig. 3(a).) In the context
of 7', transmissions also start at beginning of slots 0, A, - -,
and each of them lasts for A slots. We couple the arrivals in
the two trees T and T. A straightforward inductive argument
shows that the departure process from 7 is a delayed version
of that from T; that is, the jth departure time in 7T is greater
than (or equal to) the jth departure time in 7', for j = 1,---.
(Notice that, for a single path such as the one of Fig. 3(b),
the departure process is delayed when the path is augmented.)
Therefore, on a sample-path basis, tree T' contains at least as
many packets as tree T this implies that if T is stable, then
T is stable as well.

Notice now that we may apply Lemma 3 and collapse the
paths of tree T, because all of them have the same length.
(Recall the comments in Section V-C on the validity of Lemma
3 in more general cases.) Thus, regarding its departure process,
T is equivalent to a tandem P of [* deterministic servers (each
with service time A) fed by a Poisson process with rate An.
Since all servers of this tandem P are identical, no queueing
takes place in servers other than the first. Thus, the tandem
P is stable if and only if the first server is stable, namely
if and only if AnA < 1. Of course, this stability condition
also applies to the tree 7. By the conclusion of the previous
paragraph, the original tree T is also stable if AnA < 1. It
is straightforward that this condition is also necessary for T
to be stable.

Furthermore, the steady-state average delay D’ per packet
for both tandem P and tree T is given as follows:

D'=Dy +A(" - 1) (A2)

where D is the average delay induced per packet by the first
server of the tandem P. Recall now that this server is fed by
a Poisson process with rate An; also, service may only start
at times 0, A, - and lasts for A slots. It is easily seen that
the departure process from this server would have been the
same if new packets were arriving in batches only at times

0—,A—, .-, with the batch-size distributed as Poisson with
expected value AnA. In such a case we would have
AnA
Di=aft+ =22,
! N TEYYSIE

see [9]. Now that arrivals at the server occur in continuous
time, each packet waits for an additional A/2 slots on the
average; therefore, we actually have

AnA] A

Di=all+ 21— wma)l T2

this together with (A.2) implies that the average delay D’ per

packet induced by the tree T is given as follows:

3 n AnA

2 201 - AnA)
Next, consider a single path, such as the one presented in

Fig. 3(b); assuming that the arrival process feeding this path

D= A |+a@ -, (A3)

STAMOULIS AND TSITSIKLIS: EFFICIENT ROUTING SCHEMES FOR MULTIPLE BROADCASTS 739

is Poisson, it is obvious that the steady-state statistics of the
corresponding departure process do not depend on the length
of the path (provided that the path has nonzero length). Using
this property, and a straightforward inductive argument, the
following result may be proved: At each nonleaf node where
streams of packets merge, the processes feeding the node have
the same steady-state statistics in both trees T and T. Thus, an
arc shared by packets originating from multiple leaves induces
the same average delay per packet in both trees. Recall now
how T was constructed from the original tree T. Observing
also Figs. 4 and 3(a), it is apparent that 7' can be obtained
from T by eliminating a tandem of {* — [; contention-free arcs
for each leaf s;; the arcs eliminated should be among the ones
traversed by the packets originating at s; prior to meeting with
packets generated elsewhere. We have already proved that each
arc shared by packets originating from multiple leaves induces
the same average delay in both trees. Hence, the average delay
D per packet in the context of T equals that induced in T
(namely, D’) reduced by the average time spent per packet
in the contention-free arcs that must be eliminated from T (to
yield T'). A packet originating at leaf s; would spend A(I* —1;)
time units in these arcs; since a typical packet is equally likely
to originate at any of the leaves s, - - -, s, of 7, it follows that

- A<
D=D - ~ Do =),
i=1

Combining this with (A.3), we obtain the expression for D.
Q.E.D.

REFERENCES

[1] S. Abraham and K. Padmanabhan, “Performance of the direct binary
n-cube network for multiprocessors,” in Proc. 1986 Int. Conf. Parallel
Processing.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-
putation. Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall,
1989.

[3] D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J.
N. Tsitsiklis, “Optimal communication algorithms for hypercubes,” J.
Parallel Distrib. Comput., vol. 11, pp. 263-275, 1991.

[4] S. L. Brumelle, “Some inequalities for parallel-server queues,” Oper.
Res., vol. 19, pp. 402-413, 1971.

(5] Y. Chang and J. Simon, “Continuous routing and batch routing on the
hypercube,” in Proc. 5th ACM Symp. Principles Distrib. Comput., 1988,
pp. 272-281.

[6] A. G. Greenberg and B. Hajek, “Deflection routing in hypercube
networks,” preprint, 1989.

[7] S. L. Johnsson and C.-T. Ho, “Optimum broadcasting and personalized
communication in hypercubes,” IEEE Trans. Comput., vol. 38, pp.
1249-1267, 1989.

[8] L. Klieinrock, Queueing Systems, Vol. I: Theory. New York: Wiley,
197s.
[9] H. Kobayashi and A. G. Konheim, “Queueing models for computer

communications systems analysis,” IEEE Trans. Commun., vol. 25, pp.
2-29, 1977.

{10] E. Raubold and J. Haenle, “A method of deadlock-free resource alloca-
tion and flow control in packet networks,” in Proc. 3rd Internat. Conf.
Comput. Commun., 1976, pp. 483-487.

Y. Saad and M. H. Schultz, “Data communication in hypercubes,” Dep.
Comput. Sci., Res. Rep. YALEU/DCS/RR-428, Yale Univ., 1985.

G. D. Stamoulis, “Routing and performance evaluation in interconnec-
tion networks,” Ph.D. dissertation, Dep. Elec. Eng. and Comput. Sci.,
M.IT, 1991.

G. D. Stamoulis and J. N. Tsitsiklis, “The efficiency of greedy routing in
hypercubes and butterflies,” in Proc. 3rd ACM Symp. Parallel Algorithms
and Architectures, Hilton Head, NC, July 1991.

L. G. Valiant and G. J. Brebner, “Universal schemes for parallel
communication,” in Proc. 13th Annu. ACM Symp. Theory of Comput.,
1981, pp. 263-277.

L. G. Valiant, “A scheme for fast parallel communication,” SIAM J.
Comput., vol. 11, pp. 350-361, 1982.

E. A. Varvarigos, “Optimal communication algorithms for multipro-
cessor computers,” Rep. CICS-TH-192, Center for Intelligent Control
Systems, M.L.T., 1990.

[11]

[12]

[13]

(14]

{15

[16]

George D. Stamoulis was born in Athens, Greece,
in 1964. He received the diploma in electrical en-
gineering in 1987 (with highest honors) from the
National Technical University of Athens, Athens,
Greece, and the M.S. degree in 1988 and the Ph.D.
degree in 1991 in electrical engineering from the
Massachusetts Institute of Technology, Cambridge.

He is currently serving in the Hellenic Navy, as
a lecturer in the Hellenic Naval Academy. He is
also a Research Associate with the communication
networks group of the Department of Electrical and
Computer Engineering, National Technical University of Athens; he is par-
ticipating in RACE projects. His research interests are in the areas of routing
and performance evaluation of multiprocessing systems and communication
networks, and queueing theory.

Dr. Stamoulis was among the winners of the Greek Mathematic Olympiad in
both 1981 and 1982. He also participated in the 23rd International Mathematic
Olympiad, in Budapest, in July 1982. He is a member of the Technical
Chamber of Greece and Sigma Xi.

John N. Tsitsiklis (S’80—-M’83) was born in Thes-
saloniki, Greece, in 1958. He received the B.S.
degree in mathematics in 1980, the B.S. degree
in 1980, the M.S. degree in 1981, and the Ph.D.
degree in 1984 in electrical engineering, all from the
Massachusetts Institute of Technology, Cambridge.

During the academic year 1983—1984 he was an
Acting Assistant Professor of Electrical Engineering
at Stanford University, Stanford, CA. Since 1984,
he has been with the Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, where he is currently Professor. His research interests
are in the areas of parallel and distributed computation, systems and control
theory, and operations research. He is co-author of Parallel and Distributed
Computation: Numerical Methods (1989).

Dr. Tsitsiklis has been a recipient of an IBM Faculty Development Award in
1983, an NSF Presidential Young Investigator Award in 1986, an Outstanding
Paper Award by the IEEE Control Systems Society, and of the Edgerton
Faculty Achievement Award by M.L.T. in 1989. He is an associate editor of
Applied Mathematics Letters and Automatica and has been an associate editor
of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL.

