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A SHORT PROOF OF THE GITTINS INDEX THEOREM!

By JoHN N. TSITSIKLIS

Massachusetts Institute of Technology

We provide a short and elementary proof of the Gittins index theorem
for the multi—armed bandit problem, for the case where each bandit is
modeled as a finite-state semi-Markov process. We also indicate how this
proof can be extended to the branching bandits and Klimov problems.

1. Introduction. There is a long history of alternative proofs of the
Gittins index theorem for the multi—-armed bandit problem. The original
proof of Gittins and Jones [3] and a later proof by Gittins [2] relied on an
interchange argument. A different interchange argument was provided by
Varaiya, Walrand and Buyukkoc [9] and was simplified further in [10]. The
simplest interchange argument available seems to be the one by Weiss [12],
which in fact establishes an index theorem for the more general branching
bandits model. A different proof, based on dynamic programming, was pro-
vided by Whittle [13] and subsequently simplified by Tsitsiklis [7]. Weber [11]
has outlined a new proof that avoids any calculations and rests on more
qualitative reasoning. Finally, a proof based on a polyhedral characterization
of a suitably defined “performance region” has been provided by Tsoucas [8],
for the average-cost Klimov problem, and by Bertsimas and Nino-Mora [1] for
many other classes of multi—armed bandit problems.

This paper presents yet another proof of the same result. This proof has
some common elements with the proof in [12] but appears to be simpler in
that it is based on a simple inductive argument and uses only trivial
calculations. The induction is in terms of the cardinality of the state spaces of
the bandits involved and, for this reason, the proof is valid only for the case of
finite-state bandits.

The rest of the paper is organized as follows. Section 2 presents the model
to be employed and the proof of our main result. Section 3 contains some
discussion on how to handle the more general branching bandits and Klimov
problems.

2. The multi-armed bandit model. There are n bandit processes. The
ith such process is a semi-Markov process with a finite state space 2. We
assume, for simplicity, that the state spaces of the different bandits are
disjoint and we let =27 U --- UZ;. If the ith bandit is at some state x € 2]
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and is selected to be “played,” then a random reward R(x) is received and the
bandit remains active over a time period of random length T'(x). After T'(x)
time units, the play is completed and the bandit moves to a random new state
Y(x). At that point, we are free to choose the same or another bandit to be
played.

We assume that the joint probability distribution of the random vector
(T(x), R(x),Y(x)) is known and is the same for every play of bandit i for
which bandit i is at the same state x € 2. In addition, the random vectors
corresponding to different plays of the same or of different bandits are
assumed to be statistically independent.

A policy for the multi—armed bandit problem is defined as a mapping
w Z, X - XZ, —» {1,...,n} which at time zero and at any play completion
time chooses a bandit to be played next, as a function of the current states of
the n bandits. Given a particular policy, the time ¢, at which the ith play
starts and the reward R, received at that time are well-defined random
variables. Let B > 0 be a discount rate. We are interested in the problem of
finding a policy that maximizes the expected discounted reward

E[ Y Rie'Bti],
i=1

for every initial state.

We now comment on some consequences of the general fact that it is only
E[R(x)] and not the entire probability distribution of R(x) that matters. Let
us fix a particular policy. Let x; be the state of the bandit that is played at
the ith play and let % stand for all random variables realized during the first
i — 1 plays. In particular, ¢, and x; are determined by the outcomes of the
first i — 1 plays and are contained in . Conditioned on &, the expected
discounted reward resulting from the ith play is given by

e PLE[R(x;)lx;].
Let us now consider the following alternative reward structure: Whenever a
bandit at some state x is played, then rewards are received throughout the
duration of that play at a constant rate r(x), where
(2.1) r(x) = — L E()]
T(x) _
E[ e

[

Under this new reward structure, the expected reward resulting from the ith
play, conditioned on &, is given by

E[/t,+T(xi)e—3tr( xi) dt ‘9:]
e PLE[R(x;)lx;],

where the last equality follows from (2.1). It follows that, under either reward
structure, the infinite-horizon expected discounted reward of any policy is the
same. We will be using this fact later in our proof.

e Plir( xi)E[fT(xi)e_Bt dt
0
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We say that a policy is a priority rule if there is an ordering of the
elements of =27 U -~ UZ, such that, at each decision point, the bandit
whose state is ordered highest is chosen. Our basic result is the following.

THEOREM 2.1. Ifeach Z,i =1,...,n, is finite, then there exists a priority
rule which is optimal.

PrROOF. Let N be the cardinality of the set 2. The proof proceeds by
induction on N. If N = 1, we have a single bandit and the only available
policy is trivially a priority rule.

Let us now assume that the result is true for all multi-armed bandit
problems for which N = K, where K is some positive integer. We consider a
multi—~armed bandit problem for which N = K + 1, and we will show that
there exists an optimal policy which is a priority rule. This will complete the
induction and the proof of the theorem.

Let us pick some state s* € 2 such that r(s*) = max, ., r(x). Let i* be
such that s* € 2.. The following lemma states that s* can be chosen as a top
priority state.

LEMMA 2.1. There exists an optimal policy that obeys the following rule:
Whenever bandit i* is at state s*, then bandit i* is played.

ProoF. Consider an optimal policy 7. Suppose that at time 0, bandit i* is
at state s*. If policy w chooses to play bandit i*, then there is nothing to
prove. Suppose now that 7 chooses some other bandit to play. Define the
random variable 7 as the first time at which bandit i* is played under policy
7. (We let 7 = « if bandit i* is never played.)

We now define a new policy, call it 7', which plays bandit {* once and from
then on mimics the actions of policy 7. However, when (and if) policy 7 plays
bandit i* for the first time, policy 7' skips that play of bandit i*. Let 7(¢) be
the reward rate, as a function of time, under policy =. [That is, if x(¢) is the
state of the bandit that is played at time ¢, then 7(¢) = r(x(¢)).] Using the
definition of s*, we have 7(¢) < r(s*) for all ¢.

The expected discounted reward J(m) under policy 7 is given by

J(m) = E[ forr"(t)e_ﬁtdt +e P [()T‘S*’r(s*)e—ﬁtdt

+[ F(t)e"”dt].
T+ T(s*)
Similarly, the expected discounted reward J(’') undér policy =’ is given by
F(t)e Pt dt].
T+ T(s*)
We wish to show that J(7') > J(1). Equivalently, we wish to show that

(2.2) E[(l—e'ﬁf)LT(s*)r(s*)e'ﬁtdt] ZE[(I—-e'BT(s*))fOTF(t)e'ﬁtdt].

oo

J(m') = E[foT(s*)r(s*)e‘ﬁtdt + e‘ﬁT(S“fOTF(t)e-Btdt +
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We note that if 7(#) were equal to r(s*) for all ¢, then the two sides of (2.2)
would be equal. This observation and the fact 7(¢) < r(s*) show that (2.2) is
valid and, therefore, J(7') > J(7). Since w was assumed optimal, 7’ is also
optimal. However, if it is optimal to give top priority to state s* at time O,
then (by the optimality of stationary policies) it is also optimal to give top
priority to state s* at every decision time. O

Lemma 2.1 states that there exists an optimal policy within the set of
policies that give top priority to state s*; call this set of policies II(s*). We
will now consider the problem of finding a policy which is optimal within the
set IT*(s).

If s* is the only possible state of bandit i*, then the policy that always
plays bandit i* is evidently optimal and is a priority rule. We henceforth
assume that 27. is not a singleton. Suppose that bandit :* is in some state
x # s* and that this bandit is played. If this play causes a transition to state
s*, bandit i* will be played again and again until eventually a transition to
some state different from s* results. We can view this succession of plays as a
single (composite) play which cannot be interrupted due to our restriction to
I1(s*). This single play has a random duration 7(x) equal to the total time
elapsed until a transition to a state different than s*. Furthermore, by the
discussion preceding the statement of Theorem 2.1, the reward of every policy
remains the same if the discounted reward [ e P’7(¢) d¢ received during
this composite play is replaced by a constant reward rate equal to

E[[T("’e—ﬁtf(t) dt]
(2:3) Fx) = —7— :
E[/T(x)e"” dt]
0

to be received throughout the duration of this composite play. We may thus
replace bandit i* by a new bandit in which state s* is absent, T'(x) and r(x)
are replaced by T'(x) and 7(x), respectively, and the transition probabilities
are suitably modified. We call this procedure “reducing bandit i* by removing
state s*.”

The preceding argument shows that the problem of finding an optimal
policy within the class II(s*) is a new multi—armed bandit problem for which
the sum of the cardinalities of the state spaces of the different bandits is
equal to K. The induction hypothesis shows that there exists a priority rule 7
which is optimal for the latter problem. It follows that there exists a priority
rule which is optimal for the original problem: Give top priority to state s*
and follow the priority rule # for the remaining states. O

To every state x €%, we associate a number y(x), which we will call an
.index, using the following procedure:

INDEX ALGORITHM. (a) Pick a state s* such that r(s*) = max, ., r(x) and
let y(s*) = r(s*). Let i* be such that s* € Z..
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(b) If 2. is a singleton, remove bandit i*. Else, reduce bandit i* by
removing state s*. Go back to (a).

From the proof of Theorem 2.1, it is apparent that the statistics of the
random variables T'(x) and #(x), as well as the transition probabilities of the
reduced bandit i* are completely determined by the corresponding statistics
and transition probabilities of the original bandit i*. This shows that the
indices of the various states of a particular bandit are completely determined
by the statistics associated with that bandit. In other words, the index
algorithm can be carried out separately for each different bandit, still yield-
ing the same index values.

The Gittins index theorem establishes something more than Theorem 2.1.
In particular, not only does it show that there exists a priority policy which is
optimal, but also that an optimal priority ordering can be found by ordering
the states according to the numerical values of a certain index which can be
computed separately for each bandit. We can also get this stronger result as
follows:

THEOREM 2.2. Let the index of each state be determined according to our
index algorithm. Then any priority policy in which states with o higher index
have higher priority is optimal.

PrOOF. The proof of Theorem 2.1 shows that any priority policy that
orders the states in the same order as they are picked by the index algorithm
is optimal. Therefore, it only remains to show that x can be picked before y
by the index algorithm if and only if y(x) > y(y). Given the recursive nature
of the algorithm, it suffices to show that if state s* is the first one picked by
the index algorithm and g* is the next state to be picked, then y(s*) > y(g*).
Let i* be such that s* € Z.. If ¢* € 2., then, using (2.3), we have

v(q*) = 7(q*) < maxr(x) =r(s*) = y(s*).
xeZ
If on the other hand ¢* & 2., then y(¢g*) = r(qg*) < r(s*) = y(s*). O

For the case of discrete-time Markov bandits, our index algorithm is the
same as the one in [6] and [9]. These references, as well as [10], provide some
more detail on how the needed calculations can be carried out. Our algorithm
is also a special case of the algorithm in [12].

3. Discussion. The proof given here is very simple and it is quite
surprising that it was not known earlier. Perhaps a reason is that for the
proof to go through, we have to consider semi-Markov bandits rather than the
‘usual discrete-time Markov bandits.

We remark that our proof is easily extended to cover the case of arm-
acquiring bandits [14] and the even more general case of branching bandits,
thus recovering the results of [12]. We assume that the reader is familiar
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with the framework of [12] and we only point out a few minor modifications of
the proof of Theorem 2.1 that are needed. Instead of assuming that the
different bandits have disjoint state spaces, we now assume that all bandits
share the same state space. We then use induction on the cardinality of this
common state space. As in the proof of Theorem 2.1, we pick a top priority
state s* whose reward rate is maximal. We then “eliminate” state s* and
form a reduced bandit as follows: If a bandit at some state x # s* is played,
then the play lasts until all type s* descendants of that bandit have been
eliminated; the reward rate during this composite play is also suitably
defined, similarly to (2.3). The resulting index algorithm is identical to the
algorithm in [12].

We finally comment that the same approach goes through for the average-
cost Klimov problem [4, 10] as well. As in Lemma 2.1, an interchange
argument establishes that highest priority can be given to a particular
customer class, and the problem is then reduced to one with a smaller
number of customer classes. The resulting algorithm is the same as the one
established in [5] by means of a more complicated interchange argument.
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