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s.t.
rg =1
Ty — 222 424 — 6 <12
—z1 + 2223 — 24 < —12
bzs — azq — 83 < 14.9
—bxz + azy < —14.9

bzy — aza + z3 — 2.224 < 21.49
—bzy + axs — x3 + 2.224 + 6 < —21.49

620
62 <0
63 >0
n—7 <0
92— <0.

Choosing @ = I, the convergence was achieved, after two iterations,
to the following set of controller parameters:

4. 5:701s + 36.508
YT T 84Tt

and

b2 and

6, =0, —0.4956, 83 = 3.2598.

The objective function of this solution is 10.8719, and the poles of
the closed loop are in the region of Fig. 3 for all possible plants.

VL. CONCLUSIONS

A computational method for designing controllers which attempt to
place the roots of the characteristic polynomial of an uncertain system
inside some prescribed regions has been presented. The approach is
an extension of a previous work on robust characteristic polynomial
assignment (Rotstein ez al. [6]) by extending the original formulation
through the addition of constraints that relate the pole position in the
open left-half plane to the real variation of the coefficients in the
characteristic polynomial.

The general probiem is formulated as a semi-infinite programming
problem which can be solved using standard techniques. Therefore,
we feel that our solution to this problem is an important addition to
the “tool kit” of the process control engineer.
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Some Properties of Optimal
Thresholds in Decentralized Detection

William W. Irving and John N. Tsitsiklis

Abstract— A decentralized Bayesian hypothesis testing problem is
considered. It is analytically demonstrated that for the known signal
in the Gaussian noise binary hypothesis problem, when there are two
sensors with statistically independent identically distributed Gaussian
observations (conditioned on the true hypothesis), there is no loss in
optimality in using the same decision rule at both sensors. Also, a
multiple hypothesis problem is considered; some structure is analytically
established for an optimal set of decision rules.

1. INTRODUCTION

The (static) decentralized detection problem is defined as follows.
There are M hypotheses, Hi,---,Hys, with known prior proba-
bilities P(H;) > 0 (j = 1,---, M), and there are N peripheral
sensors. Let y; (# = 1,---,N) be a random variable, denoting
the observation of the ith sensor. The y;’s are conditionally in-
dependent and identically distributed given any hypothesis, with a
known conditional distribution P(y|H,;) (j = 1,---,M). Let D
be a positive integer. Each peripheral sensor, upon receiving its
observation, evaluates a message u; = vi(y:) € {1,---,D}. The
messages u1,--+,un are all transmitted to a fusion center, where a
decision rule yo: {1,---, D} — {1,---, M} is used to decide in
favor of one of the M hypotheses. The objective is to choose the
decision rules yo, 71, --, v~ (collectively known as a strategy) of
the sensors and fusion center so that the fusion center’s probability
of error is minimized.

Over the past decade, this problem and its variants have received
a fair amount of attention in the literature [2]-[6]. In this paper, we
study the structure of optimal strategies for two specific instances of
the problem. By applying novel analytical techniques, we prove some
modestly interesting properties of the optimal strategies.

First, we consider a binary hypothesis (M = 2), binary messages
(D = 2) instance. It is well known that for the M = 2/D = 2
case, any optimal strategy has the following structure. Each one of
the sensors evaluates its message u; using a likelihood ratio test
with an appropriate threshold. Then, the fusion center combines the
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sensor messages into a final decision by performing its own likelihood
ratio test. The optimal value of the threshold of each sensor is
obtained by first finding all solutions of a set of coupled algebraic
equations, and by then selecting the solution that results in minimum
probability of error. Unfortunately (and contrary to intuition), it is
not necessarily true that all sensors should use the same threshold,
even though the observations of the sensors are identically distributed
and conditionally independent (see [5] and [6] for examples). Despite
this caveat, most of the problems analyzed in the literature have been
found to have globally optimal solutions in which each sensor uses
the same threshold [2], [4]. However, global optimality has virtually
always been established by numerical (as opposed to analytical)
methods. In [6], some general analytical results are developed,
but these are with respect to only local optimality. In this paper,
we analytically demonstrate that under certain assumptions, global
optimality can be achieved even when all of the sensors are restricted
to use the same threshold.

Second, we consider a multiple-hypothesis (M > 2), D-message
(D > 2) instance. Little is known about the structure of optimal
strategies for the M > 2 case, even for specific instances. We use a
bounding argument to establish some structure to an optimal strategy
for our instance.

II. BINARY HYPOTHESIS, GAUSSIAN PROBLEM

A. Problem Formulation
We consider the following binary hypothesis testing problem:

Hl: Yi = wy

He: yi=s+w;, i=1,2.

There are two sensors; the noise corrupting the observations of the

sensors consists of a pair of statistically independent Gaussian random
variables, with density

exp (-w?/2)
o

We only consider the case of D = 2. It is well known [4] that
for this case, there is no loss in optimality in using decision rules
of the form

Pw; (w) = =12 ¢)]

u; =2
Plyi|Ha) >
P(y:|Hy) <

w;=1

i=1,2 )

3

where oy, az are scalar constants; an equivalent (and often more
useful) form is

u; =2
wiT, i=12 )
u;=1
where
52
n:—(lna,-l—?), =1, 2. “4)

For these decision rules, we have used the notation

ui=2
2 AR y: <T;
v 2 Tz¢>’)’1(y1)—uz—{2’ v > T

w;=1
We have the following proposition. Although it might seem to be

an intuitively obvious result, it is actually the first result of this kind
to appear in the literature.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 4, APRIL 1994

Proposition 1: For the hypothesis testing problem described
above, there is no loss in optimality in imposing the constraint

T =T

B. Proof

The proof of the above proposition proceeds as follows.

1) Overview: First, it is straightforward to show that there always
exists a globally optimal strategy under which the fusion center uses
the OR rule,

1, UL = ug = 1
o(u1, uz) = 2 otherwise
b

or the AND rule,
25
‘70(1‘«1, U2) = {1
b

or ignores at least one of the sensors. In the case that at least one
of the sensors is ignored, the threshold of a sensor that is ignored
can be set to the threshold of the other sensor without any loss of
performance; once this is done, the optimal fusion rule is either the
OR rule or the AND rule. Thus, we restrict consideration to these
two fusion rules.

Suppose, now, that the fusion rule is either OR or AND. For a
fixed fusion rule, the optimal values of 7} and T% are coupled by
equations of the form

U = tg = 2
otherwise

Ty = f(Tz), T; = f(Tl) 5)
where f(:) depends on the particular fusion rule (AND or OR).
For the OR and AND fusion rules, one can show that
af (e
> 1, Yt ©6)
Note the strict inequality. This inequality implies that
M) - f)<T-T1 Q)]
with equality iff 73 = T>. But from (5),
f(Tl)—f(T2)=T2—T1- ®

Combining (7) and (8), we see that all threshold pairs (71, T%) that
satisfy (5) must also satisfy 71 = T3. Since a globally optimal
strategy must satisfy (5), we conclude that it too must satisfy 77 = To.
Note that we have characterized the structure of an optimal strategy
without explicitly finding one. Technically, we must still demonstrate
that (6) holds for our instance.

2) Details: In this section, we develop the form of f(-) and verify
(6). We go through these details only for the case of OR fusion; the
details for AND fusion are virtually identical, and so they are omitted.

It has been shown [2], [4] that when decision rules of the form (2)

are used, the optimal values of a, a2 are coupled by
P(Hl)Pr[Us_,‘ = 1|H1] .
i = s =1, 2. 9
%= () Prllos = H] ©
In terms of T; [see (3)], we have
o 1_ Jo(T), j=1
Pr[U'—llH’]_{Q(ﬂ—s), i=2 (10)

where
®(x) = %/_m exp (—t2/2) dt.

Thus, combining (4), (9), and (10), we obtain

C1[s? . P(HY) ()
ﬂ”“[?““P(m) <I>(t—s)]'

8

+In
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To establish the validity of (6), we first note that

de) _

dt an

5=l = ot = )

where

exp (—t*/2)

g(t) = 0

We will now show that
d
M > _,/271-_
du

This is useful because it implies that

(12)

g(t)y — gt — s) > —sV2x
which, in light of (11), implies the validity of (6).
To establish (12), first note that

dgtw) _
du

1 (u)]
Ve )
We bound this derivative by separately considering negative and
nonnegative values of u.

For negative u, we exploit the bound [1]

\/2 exp(=u/2)
Tlul+ Va2 T 4

This bound implies that

—g(u) [u + 13)

< ®(u), u < 0.

g(u) < \/§<|u| +Vul+4),  u<0, (14)
and
u+\/%g(u) < %(u+\/u2+4), u < 0. (15)
Combining (13), (14), and (15), we obtain the simple bound
—V2r < %, u <0, (16)

thereby verifying (12) for negative u.
Now, we bound the derivative of g(-) for nonnegative ©. We have

wexp (—u?/2)

ug(u) = “PHES
max,>o [uexp (—u?/2)]
miny>o [®(u)]
_ lexp(-1)
EIO)
=2exp(-1), v 2> 0.
Also,
2 2
L < L(maxuz_o [exp (—u”/2)]
V2 V2 min,>o [<I>(u)]
1 (exp (0))2
V2r \ ®(0)
4
= —= >0.
\/ﬁ, e
Combining these last two results, we conclude that
dg(u) 4
— > -2 -1)— —
T exp(=1) - =
>—V2m, w20, amn

thereby verifying (12) for nonnegative u.

Together, (16) and (17) verify (12) for all ». Thus, from the
discussion immediately following (12), we conclude that (6) is valid,
which concludes the proof. Q.E.D.
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C. Remarks

A review of the above proof will reveal that its success seems
inextricably tied to the special structure of the hypothesis testing
instance—that is, to the constraints N = 2 and D = 2. This state of
affairs seems to reinforce the notion that analytical results are very
difficult to develop in decentralized detection theory.

A few comments are in order concerning the relation of this result
to the work in [6]. There, the authors considered a generalization
of this problem in which there are N sensors. They analytically
established that for any fixed “k-out-of-N" fusion rule,

17

u; = 2 for fewer than k values of ¢
Yo(w1, uz,+++,uN) = 2

otherwise

there exists some T for which it is locally optimal for the sensors to
use decision rules of the form Q) with Ty =Ty =--- =Ty =T".
In fact, this result was shown to hold for a class of binary hypothesis
testing problems that extends beyond the case of Gaussian probability
densities. However, we emphasize that only local optimality was
established, and so in the context of our rather specialized hypothesis
testing problem, our result is stronger.

III. M-ARY HYPOTHESIS GAUSSIAN PROBLEM

A. Problem Formulation

We now consider the following M -ary hypothesis testing problem:

H;: yi=s;+w, 1<i<N, 1<j<M. (18)
There are N sensors; the noise corrupting the observations of the
sensors is a collection of mutually independent Gaussian random
variables, with density given by (1). For a fixed but arbitrary integer

D > 2, we analyze the structure of an optimal strategy.

B. Structure of Optimal Decision Rules

1t is clear that without loss of optimality, each of the sensors can
use a decision rule of the form

di, ¥ < T
da, Ti<yi < T
yilyi) = (19)
di;41, yi > iy
where
k>1
de{l,--,D}, diFdi, 1<I<K

T < T <+ o+ < Ty

This is just a formal way of saying that with respect to the real-axis
observation space, any decision rule can be expressed as a set of
decision regions. For example, if D = 2, then any decision rule can
be expressed as alternating regions of “send message 1” and “send
message 2. In this formalism, sensor : has k; different thresholds,
each acting as an alternation point from one message region to the
next message region.

In general, there is no known bound on the number of regions
needed for an optimal decision rule for the multiple hypothesis
testing problem. However, for the Gaussian problem just described,
there is an upper bound on k;. In particular, we have the following
proposition.
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Proposition 2: For the hypothesis testing problerh described
above, there always exists an optimal set of decision rules of the
form in (19) for which

D(D-1)

k;S(M—l)—2——, 1<i<N.

C. Proof

We will need the following lemma for the proof of the proposition.
Lemma: Let ai, B1,---,an, By be an arbitrary collection of
finite, real scalar, where a; # O for at least one value of i, 1 < i < N.
The equation
N

Za.- exXp (ﬂ!w) =0
i=1
has no more than N — 1 finite real roots.
Proof: 'We establish the lemma by induction. For N = 1, there
are clearly no finite real roots. Now, assume that the lemma is true

for N = k, k > 1, and consider the case of N = k + 1. Then, it
is easy to see that '

k
= Rx{eXP (Brt17) [ak+1 + Zan exp [(Bn — ﬂk+1)1‘]} }

—

k
< Rz{z(ﬂn ~ Br+1)an exp[(Bn — ﬁk+1)1]} +1
< (k —Tﬁ+ 1.

k+1
RI{ZQ,, exp (Bn)

n=1

k
= Rz{ak+1 + Zan exp{(Bn — Br+1)z]

n=1

Here, we have used the notation

R.{f(x)} = {z | z € R, = finite, f(z) =0}, (20)
that is, it is the number of finite real roots of the enclosed expression.
The equalities on the first and second lines are straightforward. The
third line follows because the number of roots of a function is upper
bounded by one plus the number of roots of its derivative. The final
line follows from the induction hypothesis. QE.D.

Returning now to the proposition, we first prove the result for the
special case of D = 2. The generalization to arbitrary D, D > 2
will then readily follow.

For D = 2, the peripheral sensor person-by-person optimality
condition can be expressed as [3]

.M
n
%) = 2NN bi(d, H,)P(y|H,) @
T =1
where
b:(da HJ) = Pr[’YO(Ula"'vUi—la da Ui+la""UN)
# j | H;]P(H;). (22)

The important point is that b;(d, H;) is a scalar whose value depends
on the decision rules employed by all of the other sensors; the specific
form b;(d, H;) is not important for this discussion.
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A simple rearrangement of (21) yields the rule

u;=2
M

(Zcij exp[-(y - s,»f/?]) 0

j=1

V2

ui=1
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or, equivalently, after multiplying both sides by exp (y>/2),

;=2

M >
(Zaii exp (Sjy)) 20

i=1

(23)
u; =1
where

cij =bi(d=1, H;) —bi(d=2, Hj)

_g?
@i = cij exp (TJ)

The form of the decision rule in (23) makes it clear how to find the
thresholds T;; for the decision (19). In particular, each real root (with
respect to y;) of the function on the left-hand side of (23) marks the
location of a threshold. Thus, any upper bound that we can find for
the number of real roots of that function is also an upper bound on
the number of thresholds in an optimal rule. But from the lemma,
we immediately obtain the upper bound M — 1, thus establishing the
proposition for the special case of D = 2.

Now, we generalize the result to arbitrary D. To motivate the
generalization, consider the case of D = 3. It is straightforward to
see that the number of decision region transitions cannot be more
than the number of intersections [as in (23)] between decisions 1 and
2 plus between 1 and 3, plus between 2 and 3. But, from the D = 2
analysis, the maximum number of intersections for each of these is
M —1; in general, then, we must consider (2) pairs of intersections,
which yields the upper bound in the proposition. QED.
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