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¼e consider classes of nonlinear systems that include simple hybrid systems and prove that questions
related to the stability and controllability of these systems are either undecidable or computationally
intractable.

Abstract

In this paper, we consider simple classes of nonlinear systems and prove that basic questions related to their stability and
controllability are either undecidable or computationally intractable (NP-hard). As a special case, we consider a class of hybrid
systems in which the state space is partitioned into two halfspaces, and the dynamics in each halfspace correspond to a different linear
system. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, much research has focused on hybrid
systems. These are systems that involve a combination of
continuous dynamics (e.g., differential equations or linear
evolution equations) and discrete dynamics. The motiva-
tion lies in the fact that most complex systems involve
a physical layer described by continuous variables, to-
gether with higher level layers involving symbolic manip-
ulations and discrete supervisory decisions. Applications
range from intelligent traffic systems to industrial process
control.

Hybrid systems can be usually described by state space
models, using a suitably defined state space (often the
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Cartesian product of continuous and discrete sets). Clas-
sical systems theory provides us with efficient methods
for analyzing and controlling certain classes of contin-
uous-variable systems (e.g., linear systems) and certain
classes of discrete-variable systems (e.g., finite state
Markov chains). However, equally efficient generaliz-
ations are not available even for the simplest classes
of hybrid systems. This is thought to be a reflection
of the inherent complexity of such systems. The re-
search reported in this paper is aimed at elucidating
this complexity.

We provide two types of complexity results. Some of
the problems presented are shown undecidable, that is,
they are not amenable to an algorithmic solution. Other
problems are shown NP-hard, meaning that although
these problems may be algorithmically solvable, no effi-
cient (polynomial time) algorithm is possible, assuming
the validity of a long-standing conjecture in computer
science (PONP), which is widely believed to be true. In
practice, an NP-hardness result is interpreted to mean
that a search for a polynomial time algorithm should be
abandoned: if such an algorithm were found, it would
immediately imply the falsity of the PONP conjecture,
and would lead to efficient algorithms for many other
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longstanding problems for which no such algorithm has
been found so far. In order to facilitate readers who are
unfamiliar with the notions of undecidability and NP-
hardness, we provide a brief discussion below. (Familar
readers may skip the next four paragraphs.) We also refer
to Garey and Johnson (1979), Hopcroft and Ullman
(1969) and Papadimitriou (1994) for rigorous definitions
and proofs. Surveys of decidability and complexity re-
sults presently available for control problems appear in
Blondel and Tsitsiklis (1998, 1999).

We only look at problems that are formulated as
decision problems (problems with ‘‘yes/no’’ answers),
where we are asked to decide whether a given instance of
the problem under consideration has a certain property.
For example, the problem of deciding whether a given
real matrix is stable is a decision problem but the prob-
lem of finding its spectral radius is not. A solution for
a given problem must be in the form of an algorithm that
takes an instance as an input and is guaranteed to ter-
minate with the correct answer. A problem is called
decidable if such an algorithm exists, and undecidable
otherwise. What constitutes an acceptable algorithm
may depend on an underlying model of computation.
Various models of (digital) computation are available,
but reasonable models have turned out to be equivalent,
in the sense that they all lead to the same set of decidable
problems. Thus, decidability is a well-defined, mathemat-
ically sound, and machine independent concept.

We now turn to the notions of running time and
NP-hardness. We consider the running time (number of
steps) of an algorithm for a given problem, in the worst
case over all instances of a fixed size. (The size of an
instance is defined as the number of bits needed to
describe that instance according to some prespecified
format.) If this running time increases no faster than
some polynomial function of the size, we say that the
algorithm runs in polynomial time. A problem that admits
a polynomial time algorithm is said to belong to the class P,
and is considered to be efficiently solvable. Once more, it
turns out that the definition of the class P is highly
robust, and the class P remains the same for different
reasonable models of computation. In order to show that
a problem cannot be solved efficiently, one would like to
prove that it does not belong to P. Such results are hard
to establish and computer scientists rely on a different
approach for showing that a problem is (likely to be)
difficult. There is a class NP (which stands for Nondeter-
ministic Polynomial time) that includes all of P, but also
contains a large number of problems for which no poly-
nomial time algorithm has yet been found (integer pro-
gramming is one such problem). It is not known whether
P"NP, but it is generally believed that this is not the
case.

Consider two different problems, say problems A and
B, and suppose that there exists a polynomial time reduc-
tion of problem B to problem A. (By this, we mean an

algorithm that takes an instance of B as input, runs for
polynomial time, and produces an equivalent instance of
problem A, i.e., with the same ‘‘yes’’ or ‘‘no’’ answer.) If
problem A admits a polynomial time algorithm, it can be
combined with the reduction of B to A, to obtain a poly-
nomial time algorithm for problem B. In that sense,
problem B is no harder than problem A or, conversely,
problem A is at least as hard as problem B. We say that
a problem in NP is NP-complete if every problem in NP
can be reduced to it. In that sense, an NP-complete
problem is a ‘‘hardest’’ problem in NP. Many problems
(including integer programming, for example) are known
to be NP-complete. More generally, we say that a prob-
lem is NP-hard if every problem in NP can be reduced to
it (this is the same as NP-completeness, without the
requirement that the problem belongs to NP). Note that
a polynomial time algorithm for some NP-hard problem
would again translate to polynomial time algorithms for
all problems in NP. Once a problem is shown to be
NP-hard, this does not prove that no efficient algorithm
exists for that problem. But it shows that obtaining such
an algorithm is as hard as establishing that P"NP,
which is neither easy nor likely to be true.

The proof technique for showing that a problem A is
NP-hard makes use of reductions. However, instead of
showing that every problem in NP can be reduced to A, it
suffices to reduce a single NP-complete problem B to A.
There are thousands of problems that are known to be
NP-complete and can play the role of B in the above
schema; typically, one looks for such a problem that
bears some relation with the problem A of interest.

We now provide some insights on the complexity of
problems involving hybrid systems, and illustrate some
of the above concepts. Consider a system with state
(x

t
, q

t
)3Rn]M1,2, mN where x

t
and q

t
are, respectively,

the continuous and discrete parts of the state. Let
A

i
(i"1,2,m) be square matrices and let the dynamics

of x
t
depend on the discrete state as follows:

x
t`1

"A
i
x
t

when q
t
"i .

In addition, let a finite partition of Rn be given,
Rn"H

1
XH

2
X2XH

m
, and suppose that the discrete

state q
t
depends only on the location of the continuous

state x
t
in the partition, i.e.,

q
t
"i when x

t
3H

i
.

Then, the overall hybrid system takes the form of a non-
linear system

x
t`1

"A
i
x
t

when x
t
3H

i
. (1)

If the partition consists of two regions separated by
a hyperplane, the system becomes

x
t`1

"G
A

1
x
t

when cTx
t
50,

A
2
x
t

when cTx
t
(0.

(2)
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A system is stable if its state vector always converges to
zero. Deciding stability for hybrid systems as simple as
Eq. (2) is already a nontrivial task, as we now explain
using a simple example. We build a state space model for
a system described by a state vector (v

t
, y

t
, z

t
), where

v
t
and y

t
are scalars and z

t
is a vector in Rn. The dynamics

of the system are of the form

A
v
t`1

y
t`1

z
t`1
B"A

1/4 0 0
!1/4 1/2 0

0 0 A
`
B A

v
t

y
t

z
t
B when y

t
50

and

A
v
t`1

y
t`1

z
t`1
B"A

1/4 0 0
1/4 1/2 0
0 0 A

~
B A

v
t

y
t

z
t
B when y

t
(0

This hybrid system consists of two linear systems, each of
which is enabled in one of the two halfspaces, as deter-
mined by the sign of y

t
.

Let us now look at the evolution of an initial state
vector (v

0
, y

0
, z

0
). Suppose that v

0
"1 in which case we

have v
t
"4~t for all t. Suppose in addition, that y

0
can

take any value in [!1, 1]. Then, it is easily seen that
y
1
can take any value in [!1

4
, 1
4
], no matter what was the

sign of y
0
. Continuing inductively, we see that y

t
can take

any value in [!4~t, 4~t], can have either sign, and this
is independent of the signs of y

s
for s(t. This shows that

every possible sign sequence can be generated by suitable
choice of y

0
. Hence, the dynamics of the state subvector

z
t
are of the form z

t`1
"A

t
z
t
, where each A

t
is an arbi-

trary element of MA
~
, A

`
N. We conclude that the state

vector converges to zero, for all possible initial states, if
and only if all sequences of products of the matrices A

~
and A

`
(taken in an arbitrary order) converge to zero.

Unfortunately, a test for the stability of all possible
sequences of products of two matrices is not available.
The decidability of this problem is a major open question
and is intimately related to the so-called “finiteness
conjecture” (see, e.g., Daubechies and Lagarias (1992),
Lagarias and Wang (1995); Gurvits (1995, 1997)). If the
stability of all possible sequences of products of two
matrices turns out to be undecidable, it will immediately
follow that the stability of the class of hybrid systems of
the form (2) is also undecidable. Given the present state of
knowledge, we are unable to prove such an undecidabil-
ity result. On the other hand, NP-hardness of the stabil-
ity problem for systems of the form (2) is obtained
with a straightforward adaptation of the arguments in
Tsitsiklis and Blondel (1997).

In Section 2, we build on this last observation and
prove NP-hardness of the stability problem for many
more classes of systems. Let us note that systems of the
form (2) can also be written in the form

x
t`1

"(B
0
#l (cTx

t
)B

1
)x

t
(3)

with B
0
"A

1
, B

1
"A

2
!A

1
, and with the function l de-

fined by l(a)"0 for a50, and by l(a)"1 for a(0. In
Theorem 1, we consider nonlinear systems of the form (3)
where l is an arbitrary scalar function. We show that for
a large class of nonconstant functions l, the stability of
these systems is NP-hard to decide. As a special case, our
result applies to the particular function l defined above,
and so the stability of systems of the form (2) is NP-hard
to decide.

In Section 3, we consider classes of elementary hybrid
systems similar to Eq. (2), but also involving a control
variable. The nth-dimensional sign system associated
with A

`
, A

0
,A

~
3Rn]n and b, c3Rn is the system

x
t`1

"A
4'/(cTxt)

x
t
#bu

t
, t"0, 1,2,

where sgn( ) ) is the sign function defined by

sgn(x)"G
# when x'0,
0 when x"0,
! when x(0.

In Theorem 2, we establish that null-controllability and
complete reachability are both undecidable for such sys-
tems. A related result is given by Toker (1996) who
considers a class of systems similar to sign systems. He
shows that the question of deciding whether all possible
control actions drive a given initial state to the origin is
undecidable. Our problem is different in that we do not
consider a single given initial state, and in that we ask
whether some, not all, control laws drive the state to the
origin. Theorem 2 is also related to our earlier work on
the complexity of certain questions involving products of
matrices coming from a given finite family (Blondel and
Tsitsiklis (1997); Tsitsiklis and Blondel (1997)). In our
earlier work, matrices could be multiplied in an arbitrary
order. The present work is different in that the choice of
the next matrix in the product is determined by a feed-
back mechanism involving the state of the system.

Systems of the form (1) are the piecewise linear
systems introduced by Sontag (1981), and for which some
complexity results are already available; see Sontag
(1995) for a survey as well as for results for other types
of nonlinear systems. The systems (1) are also similar to
the piecewise constant derivative systems analyzed by
Asarin, Maler, and Pnueli. A piecewise constant deriva-
tive (PCD) system is given by a finite partition of Rn,
Rn"H

1
XH

2
X2XH

m
, and by slope vectors b

i
for every

region H
i
of the partition. We assume that each region

H
i
is a polyhedral set. On any given region of the parti-

tion, the state x(t) has a constant derivative,

dx (t)

dt
"b

i
when x(t)3H

i
.

Then, the trajectories x(t) are continuous broken lines,
with breaking points occurring on the boundaries of the
regions. Asarin et al. (1995) provide some results on
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2Note that our definitions of stability are somewhat different from
the commonly used ones.

point-to-point reachability for such systems. In partic-
ular, for given states x

"
and x

%
, the problem of deciding

whether x
%
is reached by a trajectory starting from x

"
, is

decidable for systems of dimension two, but is unde-
cidable for systems of dimension three or more. This
undecidability result is obtained by showing that PCD
systems can simulate Turing machines. By using a uni-
versal Turing machine, undecidability of point-to-point
reachability can be obtained for a particular PCD system
in dimension three. Considering this particular system, it
is then easy to construct a partition of R4 into finitely
many polyhedral sets H

i
, and 4]4 matrices A

i
for every

region H
i
, such that the problem of determining, for given

x
"
,x

%
3R4, whether x

"
reaches x

%
when

dx(t)

dt
"A

i
x when x3H

i

is undecidable. Thus, point-to-point reachability for con-
tinuous time systems analogous to those in Eq. (1) is
undecidable.

Turing machine simulations are possible by other
types of dynamical systems; see, for example, Bournez
and Cosnard (1995) for simulation by analog automata,
Siegelmann and Sontag (1995) for simulation by linear
systems with saturation nonlinearities, Branicky (1995)
for simulation by differential equations, and Henzinger
et al. (1995) for simulation by timed automata.

In all of these constructions, the regions of the parti-
tion are used to encode the states of a Turing machine
and this usually leads to a high number of regions.
A novel aspect of our results, when compared with those
mentioned above, is that they demonstrate undecid-
ability for hybrid systems with very few regions.

2. Autonomous systems

A discrete-time autonomous system f :RnÂRn is said to
be globally asymptotically stable2 (or, for short, asymp-
totically stable) if the sequences defined by

x
t`1

"f (x
t
), t"0, 1,2,

converge to the origin for all initial states x
0
3Rn.

Let A be an n]n real matrix. It is well known that the
linear system x

t`1
"Ax

t
is asymptotically stable if and

only if all eigenvalues of A have magnitude strictly less
than one. Furthermore, asymptotic stability can be de-
cided efficiently, e.g., by solving a Lyapunov equation.
No such simple and computationally efficient test exists
for general nonlinear systems.

In this section, we define particular classes of systems
involving a single scalar nonlinearity, and we prove that

algorithms for deciding asymptotic stability of systems in
any one of our classes are inherently inefficient. Unless
P"NP, the running time of any such algorithm must
increase faster than any polynomial in the size of the
description of the system. Some of our classes are elemen-
tary and can be viewed as the ‘‘least nonlinear’’ systems.
In particular, one of our classes corresponds to systems
that are linear on each side of a hyperplane.

Systems with a single scalar nonlinearity. Let us fix a scal-
ar function l :R ÂR. The l-system associated with n51,
A

0
,A

1
3RnCn, and c3Rn, is defined by

x
t`1

"(A
0
#l (cTx

t
)A

1
)x

t
, t"0,1,2 .

(Here, the superscript T denotes matrix transposition.)
When l is a constant function, l-systems are linear and
their stability can be decided easily. We show in Theorem
1 below that for a broad variety of nonconstant functions
l, the stability of l-systems is NP-hard to decide.

Let us note that stability can be difficult to check for the
simple reason that l may be difficult to compute. For this
reason, the result that we present below is of interest prim-
arily for the case where l is an easily computable function.

Theorem 1. ¸et us fix a nonconstant scalar function
l :R ÂR such that

lim
x?~=

l(x)4l(x)4 lim
x?`=

l (x)

for all x3R, and where the limits are assumed to exist. ¹hen,
the asymptotic stability of l-systems is NP-hard to decide.

Proof. Our proof relies on a construction developed in
Tsitsiklis and Blondel (1997), which in turn is based on
a reduction technique introduced in Papadimitriou and
Tsitsiklis (1987). Rather than repeating here the construc-
tion in Tsitsiklis and Blondel (1997), we simply state its
conclusions, in the form of the lemma that follows. The
lemma makes reference to 3SAT, which is the Boolean
satisfiability problem with three literals per clause, and
is a well-known NP-complete problem. For a precise
definition of 3SAT, see Garey and Johnson (1979).

Lemma 1. Given an instance of 3SA¹ with n variables and
m clauses, we can construct (in polynomial time) two ma-
trices A

0
and A

1
, of dimensions r]r, where r"(n#1)

(m#1), whose entries belong to M0,1N, and with the follow-
ing properties:

(a) If we have a ‘‘yes’’ instance of 3SA¹, there exist
indices k

1
, k

2
,2,k

n`2
3M0,1N, and a nonnegative nonzero

integer vector x such that A
kn`2

2A
k2
A

k1
x"mx.

(b) If we have a ‘‘no’’ instance of 3SA¹, then DDA
kn`2

2

A
k2

A
k1
xDD4(m!1) DDxDD , for every vector x, and for every

choice of indices k
1
, k

2
,2,k

n`2
3M0,1N. Here, and through-

out the paper, DD ) DD stands for the maximum (l
=
) norm.
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Let us now fix a nonconstant function l( ) ) with

lim
x?~=

l (x)4l(x)4 lim
x?`=

l (x),

for all x3R, and let a
~
"lim

x?~=
l(x) and

a
`
"lim

x?`=
l(x). For simplicity and ease of exposition,

we assume that a
~

and a
`

are rational numbers. This
restriction is not essential and can be easily removed, as
discussed at the end of the proof.

Since we have assumed that l( ) ) is not constant, we
have a

~
(a

`
. Given an instance of 3SAT, we construct

the matrices A
0

and A
1

as in Lemma 1. We then let

B
0
"

a
`
A

0
!a

~
A

1
a
`
!a

~

, B
1
"

A
1
!A

0
a
`
!a

~

.

It is seen that for any a3R, we have

B
0
#aB

1
"

a
`
!a

a
`
!a

~

A
0
#

a!a
~

a
`
!a

~

A
1
, (4)

and that for any a3[a
~

, a
`

], B
0
#aB

1
is a convex

combination of A
0
, A

1
.

We will now define the dynamics of a l-system. The
system we construct has a state vector x

t
"(z

t
, y

t
), con-

sisting of a subvector z
t
3Rr and a subvector y

t
3Rn`2.

Let yi
t
and zi

t
stand for the ith component of y

t
and z

t
,

respectively, and let the vector c in the definition of
a l-system be such that cTx

t
"y1

t
. Next, we describe the

dynamics of the state vector.
Regarding z

t
, we let

z
t`1

"g (B
0
#l(y1

t
)B

1
)z

t
. (5)

Here, g is a rational number such that

(m!1
3
)~14gn`24(m!2

3
)~1. (6)

Such a rational number exists whose size (number of bits
in a binary encoding) is polynomial in m and n, and can
be constructed in polynomial time. Regarding y

t
, we have

the following equations:

yi
t`1

"yi`1
t

, i"1,2,n#1 (7)

and

yn`2
t`1

"Al(y1
t
)!

a
~
#a

`
2 B

r
+
i/1

zi
t
. (8)

We will show that the resulting l-system is asymp-
totically stable if and only if the instance of 3SAT that we
started with is a ‘‘no’’ instance.

Suppose that we have a ‘‘no’’ instance of 3SAT. By the
construction of Lemma 1, we have DDA

kn`2
2A

k2
A

k1
zDD4

(m!1) DDzDD, for any vector z, and any choice of indices
k
1
,2,k

n`2
. Because of Eq. (4), we see that for every value

of y1, B
0
#l(y1)B

1
is a convex combination of the ma-

trices A
0
, A

1
, i.e., B

0
#l(y1)B

1
"cA

0
#(1!c)A

1
, for

some c3[0,1]. Hence, using Eq. (5),

DDz
n`2

DD4gn`2 max
c1,2,cn`2

E(c
n`2

A
0
#(1!c

n`2
)A

1
)2

](c
1
A

0
#(1!c

1
)A

1
)z

0
E

"gn`2 max
k1,2,kn`2

DDA
kn`2

2A
k2
A

k1
z
0
DD

4gn`2(m!1) DDz
0
DD.

The first maximum is subject to the constraints
04c

i
41. It is easily shown that the maximum is at-

tained with each c
i
equal to either zero or one, which

explains the equality. Since gn`24(m!(2/3))~1, we con-
clude that DDz

n`2
DD4aDDz

0
DD , for some constant a(1, from

which it easily follows that z
t
converges to zero. In par-

ticular, +r
i/1

zi
t

converges to zero, and by inspecting
Eqs. (7) and (8), we conclude that y

t
also converges to

zero. Since this argument was carried out for arbitrary
initial conditions, we conclude that the l-system is
asymptotically stable.

We now consider the case where we start with a
‘‘yes’’ instance of 3SAT. By the construction of Lemma 1,
there exists a nonnegative nonzero integer vector z6 ,
and some choice of indices k

1
,2,k

n`2
, such that

A
kn`2

2A
k2
A

k1
z6 "mz6 . Using scaling, we can assume that

the components of z6 are nonnegative integer multiples of
a positive integer constant K, whose value will be deter-
mined shortly. We choose the initial subvector z

0
to be

any vector that satisfies

z
0
5z6 .

Let M be another positive integer constant to be deter-
mined shortly. Let us say that a vector y3Rn`2 encodes
k
1
,2,k

n`2
if the following two conditions hold for

i"1,2,n#2:

yi5M if k
i
"1,

yi4!M if k
i
"0.

We let the initial subvector y
0

be such that it encodes
k
1
,2,k

n`2
. We will show that with a suitably large

choice of K and M, we have z
n`2

5z6 and y
n`2

also
encodes k

1
,2,k

n`2
. It will then follow (by induction)

that z
t
5z6 for all times t that are integer multiples of

n#2, and we will have completed the proof that the
l-system is not asymptotically stable.

We now set the values of the constants K and M. We
first choose some e'0 such that

A1!
e

a
`
!a

~
B
n`2 m

m!1/3
51.

We then choose M so that

l(b)5a`!e if b5M,

l(b)4a~#e if b4!M.
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Finally, we choose K so that

gn`2Aa`!e!
a
~
#a

`
2 B A1!

e
a
`
!a

~
B
n`2

K5M.

For t"1,2,n#2, Eq. (7) yields y1
t~1

"yt
0
, which im-

plies l(y1
t~1

)"l(yt
0
) . Since y

0
encodes k

1
,2,k

n`2
, it fol-

lows that l (y1
t~1

) is within e of a` or a
~
, depending on

whether k
t
is 1 or 0, respectively. Suppose that k

t
"1. In

that case, l(y1
t~1

)5a`!e , and Eq. (4) yields

B
0
#l(y1

t~1
)B

1
5

l (y1
t~1

)!a
~

a
`
!a

~

A
1
5

a
`
!e!a

~
a
`
!a

~

A
1
"A1!

e
a
`
!a

~
BAkt

.

(The inequality between matrices is to be understood
componentwise.) A symmetric argument also shows that
if k

t
"0, we again have

B
0
#l(y1

t~1
)B

1
5A1!

e
a
`
!a

~
BA

kt
.

This shows that we have

z
t
5gA1!

e
a
`
!a

~
BA

kt
z
t~1

, t"1,2,n#2. (9)

In particular,

z
n`2

5gn`2A1!
e

a
`
!a

~
B
n`2

A
kn`2

2A
k1
z
0

5

1

m!1/3 A1!
e

a
`
!a

~
B
n`2

A
kn`2

2A
k1
z6

"

1

m!1/3 A1!
e

a
`
!a

~
B
n`2

mz6

5z6 .

The second inequality made use of the definition of g [cf.
Eq. (6)]. The equality was based on the definition of z6 .
Finally, the last inequality relied on the definition of e.

Recall that the matrices A
0
, A

1
have nonnegative in-

teger entries. Since the entries of z6 are nonnegative
integer multiples of K, we see that the entries of
A

kt
2A

k1
z6 have the same property, for t"1,2, n#2.

Furthermore, for t in that range, the vector A
kt
2A

k1
z6

must be nonzero; otherwise, we would have
mz6 "A

kn`2
2A

k1
z6 "0, contradicting the fact that z6 is

nonzero. Using Eq. (9), and the fact g(1, we conclude
that

r
+
i/1

zi
t
5gn`2A1!

e
a
`
!a

~
B
n`2

K, t"1,2, n#2. (10)

Suppose that y1
t
5M. Then, l(y1

t
)5a`!e. Using this

inequality in Eq. (8), and using also Eq. (10), we obtain

yn`2
t`1

5gn`2Aa`!e!
a
~
#a

`
2 BA1!

e
a
`
!a

~
B
n`2

K5M,

due to the choice of K. By a symmetrical argument, if
y1
t
4!M, we obtain yn`2

t`1
4!M.

We have shown that starting with z
0
5z6 , and for

t"1,2,n#2, the dynamics of y
t
amount to a cyclic

shift of its sign pattern, while the magnitude of each
component of y

t
stays above M. After n#2 time steps,

and since y has dimension n#2, the same sign pattern is
repeated, and y

n`2
is again an encoding of k

1
,2,k

n`2
.

Furthermore, z
n`2

5z6 , and the same argument can be
repeated. As argued earlier, this establishes that the l-
system is not asymptotically stable.

We have therefore completed a reduction of the 3SAT
problem to the problem of interest. The first step in the
reduction, as described by Lemma 1, takes polynomial
time. The remaining steps (the definition of the matrices
A

0
,A

1
and the constant g) also take polynomial time.

Thus, the overall reduction takes polynomial time and
the NP-hardness proof is complete.

Our argument has relied on the the assumption that
a
`

and a
~

are rational. (Without this assumption, the
matrices B

0
and B

1
do not have rational entries and

cannot be represented with a finite number of bits. In
particular, we do not succeed in constructing an equiva-
lent l-system in polynomial time and we do not have
a legitimate reduction.) We now indicate how to gener-
alize the proof when this assumption is relaxed. We
replace a

`
and a

~
in the definition of B

0
and B

1
by some

rational numbers aL
`

and aL
~

that are within some d'0
from a

`
and a

~
. This is essentially the same as pertur-

bing the matrices A
0

and A
1

to some new matrices
AK

0
and AK

1
that are within O(d) from the original matrices.

Our proof has relied on the gap between the factors
m!1 and m in Lemma 1, corresponding to the cases of
‘‘yes’’ and ‘‘no’’ instances, respectively. Under a condition
of the form O((1#nd)m)4m/(m!1), the gap between
the two cases persists, despite the d-perturbations of the
matrices, and the reduction goes through. In addition,
such a d can be encoded with a number of bits which is
polynomial in m and n, and we again have a polynomial
time reduction. h

Remark. (1) Particular choices of nonconstant functions
l lead to particular classes of systems for which asymp-
totic stability is NP-hard to decide. Consider for example
the function

l(a)"G
#1 when a50,

!1 when a(0.
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This function satisfies the hypothesis of the theorem.
After elementary algebraic manipulations we easily ob-
tain:

Corollary. ¹he problem of deciding, for given matrices
A

`
,A

~
3Qn]n and vector c3Qn, whether the system

x
t`1

"G
A

`
x
t

when cTx
t
50,

A
~

x
t

when cTx
t
(0,

is asymptotically stable, is NP-hard.

(2) An interesting corollary of Theorem 1 is obtained
by letting l be a ‘‘sigmoidal nonlinearity’’ of the type used
in artificial neural networks. Theorem 1 implies that the
stability of recurrent neural networks involving just one
sigmoidal nonlinearity is NP-hard to decide.

(3) Another interesting corollary is obtained for linear
systems controlled by switching controllers. A linear sys-
tem x

t`1
"Ax

t
#Bu

t
controlled by a switching control-

ler of the type

u
t
"G

K
0
x
t

when y
t
50,

K
1
x
t

when y
t
(0,

leads to a closed-loop system

x
t`1

"G
(A#BK

0
)x

t
when y

t
50,

(A#BK
1
)x

t
when y

t
(0.

From Theorem 1, we see that the stability of such systems
is NP-hard to decide.

(4) A discrete-time autonomous system f :RnÂRn is
marginally stable if the sequences defined by x

k`1
"f (x

k
),

k"0,1,2, remain bounded for all initial states x
0
3Rn

and it is locally stable (asymptotically or marginally) if it
is stable (asymptotically or marginally) in some neigh-
borhood of the origin. The proof of NP-hardness of
asymptotic global stability can be adapted to cover the
other three cases in the four possible combinations of
local/global asymptotic/marginal stability.

(5) Note that we do not know whether the asymptotic
stability of l-systems is decidable for any or for some
nonconstant function l. As mentioned earlier, this is
related to the decidability of the stability of all possible
sequences of products of two matrices, which is an open
problem.

3. Controlled systems

A discrete-time system is a map f : Rn]Rm Â
Rn: (x

t
, u

t
) Â x

t`1
"f (x

t
, u

t
). Let x

"
, x

%
3Rn (the subscripts

b and e stand for beginning and end). The state x
"
can be

controlled to x
%
, or, equivalently, x

%
is reachable from x

"
, if

there exists some p51 and u
i
3Rm (i"0,2,p!1) such

that the iterates

x
t`1

"f (x
t
, u

t
), t"0,2,p!1,

drive x
0
"x

"
to x

p
"x

%
.

A system is controllable to x
%

if all states can be con-
trolled to x

%
, it is reachable from x

"
if all states can be

reached from x
"
. In particular, the system is null-

controllable if all states can be controlled to the origin
and it is null-reachable if all states can be reached from
the origin.

A system is completely controllable (or, simply, control-
lable) if all states can be controlled to all states. This
notion being symmetric with respect to time, it coincides
with the notion of complete reachability.

Asymptotic versions of these definitions are also pos-
sible by requiring the sequences to converge to the given
state rather than reaching it exactly.

For linear systems the notions of complete control-
lability, null-reachability, and reachability from a
state, are all equivalent and can be proved equivalent to
the condition that the matrices A and B form a control-
lable pair (see, e.g., Sontag, 1990). When the matrix A
is invertible, these notions furthermore coincide with
those of null-controllability and of controllability to
a state. Controllability of a pair of matrices can be
decided in polynomial time using elementary linear alge-
bra algorithms. For general nonlinear systems no such
algorithms exist.

We define below a particular family of nonlinear sys-
tems which we consider to be the simplest possible con-
trolled nonlinear systems, and also the simplest possible
controlled hybrid systems. In Theorem 2, we analyze
controllability and reachability of these systems from
a computational complexity point of view.

The nth-dimensional sign system associated with
A

`
,A

0
, A

~
3Rn]n and b, c3Rn is the system

x
t`1

"A
4'/(cTxt)

x
t
#bu

t
, t"0, 1,2,

where sgn( ) ) is the sign function defined in the introduc-
tion. When the control variables u

i
are all zero or when

b"0, sign systems degenerate into autonomous systems
of the form described in the previous section and for
which we have shown that it is NP-hard to check asymp-
totic stability. It is therefore clear that asymptotic null-
controllability is NP-hard to decide for sign systems. We
show in Theorem 2 below that null-controllability and
reachability are undecidable for sign systems. For proving
this, we need preliminary results on Post’s correspon-
dence problem and on mortality of sets of matrices.

POST’S CORRESPONDENCE PROBLEM.

Instance: A set of pairs of words M(º
i
,»

i
): i"1,2,nN

over a finite alphabet.
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Question: Does there exist a non-empty sequence
of indices i

1
, i
2
,2, i

k
where 14i

j
4n, such that

º
i1
º

i2
2º

ik
"»

i1
»
i2
2»

ik
?

As an illustration, consider the alphabet &"M1,2N and
the pairs of words

º
1
"12, »

1
"1221,

º
2
"211, »

2
"11,

º
3
"12, »

3
"22.

This particular instance of the correspondence prob-
lem has a solution since the words º"º

1
º

2
º
3
º
2

and
»"»

1
»
2
»
3
»
2

are identical, i.e.,

12
hij

U1

211
hij

U2

12
hij

U3

211
hij

U2

"

1221
hij

V1

11
hij

V2

22
hij

V3

11
hij

V2

.

On the other hand, no such correspondence is possible
for the pairs

º
1
"12, »

1
"1221,

º
2
"21, »

2
"121,

since, whatever word º is on the left, the corresponding
word » on the right will have a length that is strictly
greater than that of º.

Post’s correspondence problem is trivially decidable
for one letter alphabets. Furthermore, it is easy to see
that the solvability of the problem does not depend on
the size of the alphabet, as long as the alphabet contains
more than one letter. Post proved that the correspon-
dence problem for an alphabet with more than one letter
is undecidable (for a proof of this classical result see, e.g.,
Hopcroft and Ullman (1969)). In a recent contribution
Matiyasevich and Sénizergues (1996) have improved
this result by showing that the problem remains undecid-
able in the case where there are only seven pairs of words.
On the other hand, the problem is known to be decidable
for two pairs of words. The limit between decidabil-
ity/undecidability is somewhere between three and seven
pairs.

Post’s correspondence problem can be used to prove
a result on mortality of matrices. Let k51. A set A of
square real matrices of the same dimension is k-mortal if
there exist A

i
3A (i"1,2,k) such that A

k
2A

2
A

1
"0.

The set is mortal if it is k-mortal for some finite k.
Paterson (1970) uses Post’s correspondence problem to
show that mortality of integer matrices, of size 3]3 or
larger, is undecidable. This result is improved slightly in
Blondel and Tsitsiklis (1997) where the following can be
found:

Proposition 1. Mortality of two integer matrices of size
n]n is undecidable for n"6(n

p
#1) where n

p
is any

number of pairs of words for which Post’s correspondence
problem is undecidable.

As mentioned earlier we can take n
p
"7, and thus

mortality of pairs of 48]48 integer matrices is undecid-
able. We are now able to prove our theorem.

Theorem 2. ¸et n
p

be any number of pairs of words for
which Post’s correspondence problem is undecidable (we
can take n

p
"7).

(a) ¹he problem of deciding, for a given nth-dimensional
sign system, whether the system is null-controllable is unde-
cidable when n56n

p
#7.

(b) ¹he problem of deciding, for a given nth-dimensional
system and for given states x

%
,x

"
3Qn, whether x

%
can be

reached from x
"
, is undecidable when n53n

p
#1.

Proof. (a) Let B
0
, B

1
3Zn]n be two arbitrary matrices of

size n]n. The sign system we construct has a state vector
x
t
"(z

t
, y

t
) where z

t
is a scalar and y

t
is a vector in Rn. Let

the vector c in the definition of a sign system be such that
cTx

t
"z

t
and let A

~
"A

0
"B

0
and A

`
"B

1
. We define

the dynamics of the sign system by z
t`1

"u
t

and
y
t`1

"A
4'/(cTxt)

y
t
"A

4'/(zt)
y
t
.

For a given initial state x
0
3Rn`1 and p51, the state

x
t
is obtained by x

t
"(z

t
, y

t
) with z

t
"u

t~1
and

y
t
"A

4'/(ut~1)
2A

4'/(u1)
A

4'/(u0)
A

4'/(cTx0)
y
0
.

We claim that the sign system is null-controllable if and
only if the matrices B

0
,B

1
are mortal.

If the matrices B
0
, B

1
are mortal, then the sign system

is clearly null-controllable, and so this part is trivial. For
the other direction, assume that the sign system is null-
controllable and let e

r
be the rth unit vector of Rn. Since

the system is null controllable, there exists a k
1
50 and

a sequence j
i
3M!,0,#N, for i"1,2,k

1
such that

A
jk1
2A

j2
A

j1
e
1
"0. Let x

2
"A

jk1
2A

j2
A

j1
e
2
. By using

the null-controllability assumption again, we find some
k
2
50 and a sequence j @

i
3M!,0,#N for i"1,2,k

2
such

that A
j@k2
2A

j@2
A

j@1
x
2
"0. The product A"A

j@k2
2

A
j@2
A

j@1
A

jk1
2A

j2
A

j1
is such that Ae

1
"0 and Ae

2
"0.

Continuing in the same way for all unit vectors, we
eventually obtain a product A of matrices in
MA

~
, A

0
,A

`
N such that Ae

r
"0 for r"1,2,n. This im-

plies that the set MA
~

, A
0
, A

`
N is mortal and thus so is the

set MB
0
, B

1
N.

We have shown that null-controllability of the
(n#1)th-dimensional sign system is equivalent to mor-
tality of the set MB

0
, B

1
N. According to Proposition 1, the

latter problem is undecidable when n56 (n
p
#1), hence

the result.
(b) Let an instance of Post’s correspondence problem

be given by the pairs of words M(º
i
,»

i
): i"1,2,nN over

the alphabet M1,2N. We construct a sign system of dimen-
sion (3n#1) and states x

"
and x

%
such that x

%
can be

reached from x
"

if and only if the correspondence prob-
lem has a solution. Our construction is similar to the one
given by Paterson (1970).
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Let Da D denote the length of the word a. Note that every
word º

i
or »

i
over the alphabet M1, 2N can also be viewed

as a nonnegative integer u
i
or v

i
, respectively. For each

pair (º
i
, »

i
) we construct a matrix

¼
i
"A

q
i

0 0
0 s

i
0

u
i

v
i

1B ,

where u
i
and v

i
are as described above, q

i
"10DUi

D, and
s
i
"10DVi

D. The product of the matrices ¼
i
and ¼

j
is given

by

¼
i
¼

j
"A

q
i
q
j

0 0
0 s

i
s
j

0
u
i
= u

j
v
i
= v

j
1B ,

where a= b denotes the positive integer resulting from
the concatenation of the positive integers a and b. It is
therefore clear that the correspondence problem admits
a solution if and only if there is a product B

k
2B

1
with

B
j
3W:"M¼

i
: i"1,2,nN such that

10~pB
k
2B

1A
1

!1
0 B"A

1
!1
0 B

for some p51 (the integer p is equal to the length
of the word resulting from the correspondence). We
transform this problem into a reachability problem for
sign systems.

Let I
m

denote the identity matrix of size m and
define

»
1
"diag (¼

1
,¼

2
,2,¼

n
),

(The reason for the notation »
1

will appear shortly.)

S"10~1I
3n

,

and

¹"A
0 I

3(n~1)
I
3

0 B .

All these matrices have size 3n]3n. We define a sign
system of dimension (3n#1) by A

`
"diag (0,»

1
),

A
0
"diag(0,S),A

~
"diag(0,¹) and b"c"(1 0 2 0)T.

Finally, we define the beginning and end states by

x
"
"A

1
0
F
0
1

!1
0
B and x

%
"A

0
0
F
0
1

!1
0
B

and claim that the sign system

x
t`1

"A
4'/(cTxt)

x
t
#bu

t

can be driven from x
"

to x
%
if and only if the correspon-

dence problem has a solution.
For notational convenience, let us partition the state

vector x
t

by x
t
"(z

t
, y

t
) where z

t
is a scalar and y

t
is

a subvector of dimension 3n. We use the corresponding
decompositions of the beginning and end states
x
"
"(z

"
, y

"
) and x

%
"(z

%
, y

%
). The dynamics of z

t
is given

by z
0
"1 and z

t`1
"u

t
. The dynamics of y

t
is given by

y
1
"»

1
y
0

and

y
t`1

"G
»

1
y
t

when u
t~1

'0,
Sy

t
when u

t~1
"0,

¹y
t

when u
t~1

(0.

The matrix S commutes with ¹ and »
1

and so we
obtain

y
t
"Ss»wq

1
¹tq2»w1

1
¹ t1»

1
y
0

for some s, t
i
, w

i
50. Notice that ¹n"I

3n
and

define

»
k
"¹k~1»

1
¹n~(k~1).

We have then

»
k
"diag (¼

k
,¼

k`1
,2,¼

n
,¼

1
,2,¼

k~1
)

for k"12,n. Using the property ¹n"I
3n

we arrive,
after elementary manipulations, at

y
t
"Ss¹t *»y

0
,

where » is a nonempty product of matrices »
i

and
s, t

*
50. The matrices »

i
are block-diagonal and so the

blocks of » are obtained by forming non-empty products
of matrices from the set W. We can now conclude. If the
Post correspondence problem has a solution, then x

%
can

be reached from x
"

by choosing the control u
i
such that

y
t
"Ss»y

0
where the last block in » is constructed from

the solution of the correspondence problem and s is equal
to the length of the word resulting from the correspon-
dence. Conversely, if y

%
"Ss¹t*»y

"
for some nonempty

product » and s,t
*
50 then, since all 3(n!1) first com-

ponents of y
"
are equal to zero, and » is block-diagonal,

we must have t
*
"kn for some k3Z. But then

y
%
"Ss»y

"
and the correspondence problem has a

solution. K

Remark. (1) In the proof of the first part of the theorem
we use matrices and vectors that have integer entries.
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Therefore null-controllability remains undecidable
when matrices and vectors are constrained to have
integer entries. For an integer valued sequence, conver-
gence to zero is equivalent to equality with zero after
finitely many steps. From this it follows that the asymp-
totic version of null-controllability is undecidable for
sign systems.

(2) The class of piecewise linear systems is arguably
the smallest possible class of systems that contains the
classical linear systems, the finite automata, and that is
closed under interconnection of such systems (see Sontag,
1996). A sign systems is a piecewise linear system with
elementary partitions cTx'0, cTx"0 and cTx(0, and
the results stated in Theorem 2 therefore apply to the
class of piecewise linear systems.

4. Conclusion

We have shown that the stability of autonomous dis-
crete-time systems whose dynamics are linear on each
side of a hyperplane that divides the state space, is NP-
hard to verify. Thus, unless P"NP, the running time of
stability checking algorithms for such systems must in-
crease faster than any polynomial in the ‘‘size’’ of the
system.

We have also shown that null-controllability of piece-
wise linear systems is undecidable, even if the state space
is only partitioned into three regions. This remains so
even if the system has dimension 49.

The above results imply that the development of effi-
cient algorithms for analyzing some relatively simple
classes of hybrid systems appears impossible. There seem
to be precious few cases of hybrid systems that are
amenable to algorithmic solution, and it is certainly
interesting to delineate those cases. On the other hand,
with a pragmatic viewpoint, one should not hope for
computational tools that always provide the correct an-
swer and within reasonable computation time. As an
alternative, we may wish to consider algorithms that can
certify the stability of some hybrid systems, certify the
instability of others, but can be inconclusive in some
cases. Even though such algorithms do not solve the
mathematical problem of deciding stability, they can
certainly be a useful tool. Instead of abandoning prob-
lems for which negative complexity results are available,
one may simply have to contend with partial solutions of
the form just described.
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