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Abstract

We propose a variant of temporal-di!erence learning that approximates average and di!erential costs of an irreducible aperiodic
Markov chain. Approximations are comprised of linear combinations of "xed basis functions whose weights are incrementally
updated during a single endless trajectory of the Markov chain. We present a proof of convergence (with probability 1) and
a characterization of the limit of convergence. We also provide a bound on the resulting approximation error that exhibits an
interesting dependence on the `mixing timea of the Markov chain. The results parallel previous work by the authors, involving
approximations of discounted cost-to-go. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Temporal-di!erence (TD) learning, as proposed by
Sutton (1988), is an algorithm for approximating the
cost-to-go function of a Markov chain (the expected
future cost, as a function of the initial state) by a linear
combination of a given collection of basis functions, on
the basis of simulation or observation of the process.
Such approximations are used primarily in approximate
policy iteration methods for large-scale Markov decision
problems, when the size of the state space is too large to
allow exact computation of the cost-to-go function
(Bertsekas & Tsitsiklis, 1996).

A comprehensive convergence analysis for the case of
discounted Markov chains has been provided by the
authors (Tsitsiklis & Van Roy, 1997). A simpli"ed version
of that work, together with extensions to the case of

undiscounted absorbing Markov chains, is presented in
(Bertsekas & Tsitsiklis, 1996). Related analyses are
given by (Sutton, 1988; Dayan, 1992; Gurvits, Lin
& Hansen, 1994), and (Pineda, 1996). The purpose of
the present paper is to propose and analyze a variant
of TD learning that is suitable for approximating di!er-
ential cost functions of undiscounted Markov chains
(i.e., solutions to Poisson's equation). The results
parallel those available for the discounted case: we have
convergence (with probability 1), a characterization
of the limit, and graceful bounds on the resulting approx-
imation error. Furthermore, a relationship between error
bounds and mixing properties of the Markov chain are
identi"ed.

We note that the simulation-based (or reinforcement
learning) methods pertinent to the average cost formula-
tion that have been studied in the literature generally
involve look-up table representations, which store and
update one value per state in the state space; see
(Mahadevan, 1996) for a survey of relevant experimental
work and (Abounadi, 1998) for a theoretical treatment. In
the context of approximations, the common practice is to
use a discounted formulation as a proxy for an average
cost problem. (The discount factor is usually set very
close to unity, which can lead to numerical di$culties.)
Our results show that this practice is unnecessary, as has
already been illustrated in a successful application to
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a large-scale problem (Marbach, Mihatsch & Tsitsiklis,
1998).

2. Average cost temporal-di4erence learning

We consider a Markov chain Mi
t
D t"0, 1,2N on

a "nite state space S"M1,2, nN, with transition prob-
ability matrix P.

Assumption 1. The Markov chain corresponding to P is
irreducible and aperiodic.

It follows that the Markov chain has a unique invari-
ant probability distribution n, that satis"es n@P"n@, with
n(i)'0 for all i. Let E

0
[ ) ] denote expectation with

respect to this distribution.
Let g(i) be a cost per stage associated with state i. We

de"ne the average cost by kH"E
0
[g(i

t
)], and a di!eren-

tial-cost function as any function J :SCR satisfying
Poisson's equation, which takes the form

J"g!kHe#PJ,

where e3Rn is the vector with each component equal
to 1, and J and g are viewed as vectors in Rn. Under
Assumption 1, it is known that di!erential cost functions
exist and the set of all di!erential cost functions takes the
form MJH#ce D c3RN, for some function JH satisfying
n@JH"0 (see, e.g., Gallager, 1996). We will refer to JH as
the basic di!erential cost function, and it is known that,
under Assumption 1, this function is given by

JH"
=
+
t/0

Pt(g!kHe). (1)

We consider approximations to di!erential cost func-
tions using a function of the form

JI (i, r)"
K
+
k/1

r(k)/
k
(i).

Here, r"(r(1),2, r(K))@ is a tunable parameter vector
and each /

k
is a basis function de"ned on the state space

S to be viewed as a vector of dimension n.
It is convenient to de"ne a vector-valued function

/:SCRK, by letting /(i)"(/
1
(i),2,/

K
(i))@. With this

notation, the approximation can also be written in the
form JI (i,r)"r@/(i) or JI (r)"'r, where ' is an n]K
matrix whose kth column is equal to /

k
.

Assumption 2. (a) The basis functions M/
k
D k"1,2, KN

are linearly independent. In particular, K4n and ' has
full rank.

(b) For every r3RK, 'rOe.

Suppose that we observe a sequence of states i
t
gener-

ated according to the transition probability matrix P.

Given that at a time t, the parameter vector r has been set
to some value r

t
, and we have an approximation k

t
to the

average cost kH, we de"ne the temporal di!erence
d
t
corresponding to the transition from i

t
to i

t`1
by

d
t
"g(i

t
)!k

t
#JI (i

t`1
, r

t
)!JI (i

t
, r

t
). (2)

The TD(j) algorithm that we will be studying updates
r
t
and k

t
according to

k
t`1

"(1!g
t
)k

t
#g

t
g(i

t
),

and

r
t`1

"r
t
#c

t
d
t

t
+
k/0

jt~k/(i
k
), (3)

where c
t
and g

t
are scalar step sizes and j is a parameter

in [0,1). It is convenient to de"ne a sequence of eligibility
vectors z

t
(of dimension K) by

z
t
"

t
+
k/0

jt~k/(i
k
). (4)

With this new notation, the parameter updates are given
by

r
t`1

"r
t
#c

t
d
t
z
t
,

and the eligibility vectors can be updated according to

z
t`1

"jz
t
#/(i

t`1
),

initialized with z
~1

"0.

Assumption 3. (a) The sequence c
t
is positive, deterministic,

and satisxes +=
t/0

c
t
"R and +=

t/0
c2
t
(R.

(b) There exists a positive scalar c such that the sequence
g
t

satisxes g
t
"cc

t
, for all t.

3. Convergence result

We begin with some notation that helps to streamline
the formal statement of results, as well as the analysis.

Recall that n(1),2, n(n) denote the steady-state prob-
abilities for the process i

t
. We de"ne an n]n diagonal

matrix D with diagonal entries n(1),2,n(n). It is easy to
see that Sx,yT

D
"x@Dy de"nes an inner product space

with norm DD ) DD
D
"JS ) , ) T

D
. To interpret this norm, note

that for every J:SCR, we have

DDJDD2
D
"E

0
[J(i

t
)2].

We say that two vectors J, JM are D-orthogonal if
J@DJM "0. We will also use DD ) DD, without a subscript, to
denote the Euclidean norm on vectors or the Euclidean-
induced norm on matrices. (That is, for any matrix A, we
have DDADD"max

@@x@@/1
DDAxDD.)

We de"ne a projection matrix % that projects onto the
subspace spanned by the basis functions. In particular,
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we let %"'('@D')~1'@D. For any J3Rn, we then
have

%J" argmin
JM |M'r @ r|RKN

DDJ!JM DD
D
.

For any j3[0,1), we de"ne an operator ¹(j): RnCRn

by

¹(j)J"(1!j)
=
+

m/0

jmA
m
+
t/0

Pt(g!kHe)#Pm`1JB.
To interpret ¹(j) in a meaningful manner, note that, for
each m, the term

m
+
t/0

Pt(g!kHe)#Pm`1J

is an approximation to the basic di!erential cost function
where the summation in Eq. (1) is truncated after m terms,
and the remainder of the summation is approximated by
Pm`1J. In fact, the remainder of the summation is exactly
equal to Pm`1JH, so Pm`1J is a reasonable approxima-
tion when JH is unknown and J is its estimate. The
function ¹(j)J is therefore a geometrically weighted aver-
age of approximations to the di!erential cost function.

Our convergence result follows.

Theorem 1. Under Assumptions 1}3, the following hold:

(a) For any j3[0,1), the average cost TD(j) algorithm, as
dexned in Section 2, converges with probability 1.

(b) The limit of the sequence k
t

is the average cost kH.
(c) The limit rH of the sequence r

t
is the unique solution of

the equation

%¹(j)('rH)"'rH.

3.1. Preliminaries

In order to represent the algorithm in a compact form,
we construct a process X

t
"(i

t
, i
t`1

, z
t
), where z

t
is the

eligibility vector de"ned by Eq. (4). It is easy to see that
X

t
is a Markov process. In particular, z

t`1
and i

t`1
are

deterministic functions of X
t
, and the distribution of

i
t`2

only depends on i
t`1

. Note that at each time t, the
random vector X

t
, together with the current values of

k
t
and r

t
, provides all necessary information for comput-

ing k
t`1

and r
t`1

.
So that we can think of the TD(j) algorithm as adapt-

ing only a single vector, we introduce a sequence
h
t
3RK`1 with components h

t
(1)"k

t
and h

t
(i)"r

t
(i!1)

for i3M2,2, n#1N, or using more compact notation,

h
t
"C

k
t

r
t
D.

The TD(j) updates can be rewritten as

h
t`1

"h
t
#c

t
(A(X

t
)h

t
#b(X

t
)), (5)

where for any X"(i, j, z), we have

A(X)"C
!c 020

!z z(/@( j)!/@(i))D,

b(X)"C
cg(i)

zg(i)D,
and c is the constant in Assumption 3(b).

As we will show later, A(X
t
) and b(X

t
) have well-

de"ned `steady-statea expectations, which we denote
by A and b. General results concerning stochastic
approximation algorithms can be used to show that
the asymptotic behavior of the sequence generated by
Eq. (5) mimics that of an ordinary di!erential equa-
tion:

hQ
t
"Ah

t
#b.

Our analysis can be broken down into two parts. The
"rst establishes that the relevant ordinary di!erential
equation converges (we will show that the matrix A is
stable). The second involves the application of a result
from stochastic approximation theory to show that the
algorithm delivers similar behavior.

3.2. Lemmas

We start with an easy consequence of Jensen's inequal-
ity, which is central to our analysis; see Lemma 1 in
(Tsitsiklis & Van Roy, 1997) for a proof.

Lemma 1. Under Assumption 1, for all J3Rn,

DDPJDD
D
4DDJDD

D
.

Furthermore, unless J is proportional to e, we have PJOJ.

Under Assumption 1, the matrix P(j) de"ned below is
an irreducible and aperiodic stochastic matrix, and
Lemma 2 follows from Lemma 1.

Lemma 2. Let P(j)"(1!j)
=
+

m/0

jmPm`1. Then, under As-

sumption 1, for any j3[0,1) and J3Rn,

DDP(j)JDD
D
4DDJDD

D
.

Furthermore, unless J is proportional to e, we have
P(j)JOJ.

We now establish that the set of "xed points of ¹(j) is
the set of di!erential cost functions.

Lemma 3. Under Assumption 1, for any j3[0,1), we have

¹(j)J"J if and only if J3MJH#ceDc3RN.
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Proof. Suppose that J"JH#ce, for some scalar c.
Then,

¹(j)J"(1!j)
=
+

m/0

jmA
m
+
t/0

Pt(g!kHe)#Pm`1(JH#ce)B
"(1!j)

=
+

m/0

jmA
m
+
t/0

Pt(g!kHe)#Pm`1JHB#ce

"(1!j)
=
+

m/0

jmA
m
+
t/0

Pt(g!kHe)

#Pm`1
=
+
t/0

Pt(g!kHe)B#ce

"(1!j)
=
+

m/0

jm
=
+
t/0

Pt(g!kHe)#ce

"JH#ce

"J.

On the other hand, suppose that J is not of the form
JH#ce. Then,

¹(j)J"¹(j)JH#P(j)(J!JH)

"JH#P(j)(J!JH)

OJH#(J!JH)

"J,

where the inequality follows from Lemma 2. h

We next set out to characterize the `steady-statea
expectations of A(X

t
) and b(X

t
). While this can be done

by taking limits of expectations as t goes to in"nity, it is
simpler to characterize expectations of a process that is
already in steady state. We therefore make a short di-
gression to construct a stationary version of X

t
.

We proceed as follows. Let Mi
t
D!R(t(RN be

a Markov chain that evolves according to the transition
probability matrix P and is in steady state, in the sense
that Pr(i

t
"i)"n(i) for all i and all t. Given any sample

path of this Markov chain, we de"ne

z
t
"

t
+

q/~=

jt~q/(iq). (6)

Note that z
t

is constructed by taking the stationary
process /(i

t
), whose magnitude is bounded by a constant,

and passing it through an exponentially stable linear time
invariant "lter. The output z

t
of this "lter is stationary

and its magnitude is bounded by a constant (the same
constant applies to all sample paths). With z

t
so construc-

ted, we let X
t
"(i

t
, i
t`1

, z
t
) and note that this is a Markov

process with the same transition probabilities as the
process constructed in Section 3.2. Furthermore, the state
space of this process, which we will denote by S, is
bounded. We can now identify E

0
[ ) ] with the expecta-

tion with respect to the invariant distribution of this
process.

We now characterize the steady-state expectation of
several expressions of interest. We omit the proof, be-
cause it follows the same steps as the proof of Lemma 7 in
(Tsitsiklis & Van Roy, 1997).

Lemma 4. Under Assumption 1, the following relations
hold:

(a) E
0
[z

t
/@(i

t
)]"

=
+

m/0

jm'@DPm',

(b) E
0
[z

t
/@(i

t`1
)]"

=
+

m/0

jm'@DPm`1',

(c) E
0
[z

t
]"

1

1!j
'@De.

(d) E
0
[z

t
g(i

t
)]"

=
+

m/0

jm'@DPmg.

The following lemma characterizes the steady-state
expectations E

0
[A(X

t
)] and E

0
[b(X

t
)] of the terms in

Eq. (5), which we will denote by A and b.

Lemma 5. Under Assumption 1, the steady-state expecta-
tions A"E

0
[A(X

t
)] and b"E

0
[b(X

t
)] are given by

A"C
!c 020

! 1
1~j'@De '@D(P(j)!I)'D,

and

b"C
ckH

'@D(1!j)+=
m/0

jm+m
t/0

PtgD.
Proof. Using Lemma 4, and the relation

=
+

m/0

(jP)m"(1!j)
=
+

m/0

jm
m
+
t/0

Pt,

we have

E
0
[z

t
(/@(i

t`1
)!/(i

t
))]"'@D

=
+

m/0

(jP)m(P!I)'

"'@D((1!j)
=
+

m/0

jmPm`1!I)'

"'@D(P(j)!I)'.

Since A is given by

A"C
!c 020

!E
0
[z

t
] E

0
[z

t
(/@(i

t`1
)!/@(i

t
))]D,

this establishes the desired characterization of A. As for
the case of b, using Lemma 4, we have

E
0
[z

t
g(i

t
)]"

=
+

m/0

jm'@DPmg

"'@D(1!j)
=
+

m/0

jm
m
+
t/0

Ptg.
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Combining this with the fact that

b"C
cE

0
[g(i

t
)]

E
0
[z

t
g(i

t
)]D,

completes the proof. h

The following lemma establishes that the expectations
of A(X

t
) and b(X

t
) converge to their steady-state values at

a geometric rate. The proof makes use of the geometric
convergence of "nite state Markov chains to steady state.
It is similar to the proof of a corresponding lemma in
Tsitsiklis and Van Roy (1997), and is omitted.

Lemma 6. Under Assumption 1, there exist scalars C and
o3(0,1) such that for any X

0
3S and t50, we have

DDE[A(X
t
)DX

0
]!ADD4Cot,

and

DDE[b(X
t
)DX

0
]!bDD4Cot.

We say that a square matrix M is negative de"nite if
x@Mx(0 for every xO0, even if M is not symmetric.
The matrix A is not necessarily negative de"nite, but
becomes negative de"nite under an appropriate coordi-
nate scaling.

Lemma 7. Under Assumptions 1 and 2, there exists a diag-
onal matrix ¸ with positive diagonal entries, such that the
matrix ¸A is negative dexnite.

Proof. Let J be a nonconstant function on the state
space. Since the Markov chain Mi

t
N is irreducible, J(i

t
) is

not a constant function of time, which implies that

0(1
2
E

0
[(J(i

t`1
)!J(i

t
))2]

"E
0
[J(i

t
)2]!E

0
[J(i

t`1
)J(i

t
)]"J@DJ!J@DPJ

"J@D(I!P)J.

For any rO0, J"'r is a nonconstant vector, because of
Assumption 2. Thus, r@'@D(P!I)J'r'0 for every
rO0, which shows that the matrix '@D(P!I)' is nega-
tive de"nite. The same argument works for the matrix
'@D(P(j)!I)', because P(j) is also an irreducible and
aperiodic stochastic matrix with the same invariant dis-
tribution.

Let ¸ be a diagonal matrix with the "rst diagonal
entry equal to some scalar l'0 and every other
diagonal entry equal to one. Using the special form of
the matrix A (see Lemma 5) and the just established
negative de"niteness of the lower diagonal block of A,
it is a matter of simple algebra to verify that ¸A
becomes negative de"nite, when l is chosen su$ciently
large. h

3.3. A result on stochastic approximation

To establish convergence of TD(j) based on the
steady-state dynamics, we rely on results from stochastic
approximation theory. The following Theorem
(Proposition 4.8 from p. 174 of Bertsekas & Tsitsiklis
(1996)) is a special case of a very general result (Theorem
17 on p. 239 of Benveniste, Metivier & Priouret (1990)),
and it provides the basis for a corollary that will suit our
needs.

Theorem 2. Consider an iterative algorithm of the form

h
t`1

"h
t
#c

t
(A(X

t
)h

t
#b(X

t
)),

where:

(a) The step sizes c
t

are positive, deterministic, and satisfy
+=

t/0
c
t
"R and +=

t/0
c2
t
(R.

(b) The Markov process X
t
, which evolves in a state space

S, has an invariant (steady state) distribution. Let
E
0
[ ) ] stand for the expectation with respect to this

invariant distribution.
(c) The matrix A dexned by A"E

0
[A(X

t
)] is negative

dexnite.
(d) There exists a constant C such that DDA(X)DD4C and

DDb(X)DD4C, for all X3S.
(e) There exist scalars C and o3(0,1) such that

DDE[A(X
t
)DX

0
"X]!ADD4Cot, ∀t50, X3S,

and

DDE[b(X
t
)DX

0
"X]!bDD4Cot, ∀t50, X3S,

where b"E
0
[b(X

t
)].

Then, h
t

converges to hH, with probability 1, where hH is
the unique vector that satisxes AhH#b"0.

Consider the change of coordinates hI
t
"¸1@2h

t
. If we

rewrite the algorithm in terms of hI , the matrix A gets
replaced by ¸1@2A¸~1@2. If ¸A is negative de"nite, so is
¸1@2A¸~1@2, and Theorem 2 implies the following.

Corollary 1. The conclusions of Theorem 2 remain valid if
Condition (c) is replaced by the following condition:

(c@) Let the matrix A be dexned by A"E
0
[A(X

t
)]. There

exists a diagonal matrix ¸ with positive diagonal entries
such that ¸A is negative dexnite.

3.4. Proof of Theorem 1

The various lemmas given in Section 3.2 establish that
the conditions of Corollary 1 are satis"ed by the TD(j)
algorithm. Hence the algorithm converges (with prob-
ability 1) to a limit hH that satis"es

AhH#b"0.
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Invoking Lemma 5, we recall that b(1)"ckH, and
observe that (AhH)(1)"!chH(1). We therefore have
hH(1)"kH, i.e., the sequence k

t
converges to kH. Let the

vector rH3Rn be given by rH"(hH(2),2, hH(n#1))@.
Then, using Lemmas 3 and 5, the relation 1/(1!j)"
(1!j)+=

m/0
jm(m#1), and the equation AhH#b"0,

we obtain

!'@D(1!j)
=
+

m/0

jm
m
+
t/0

Ptg"'@D(P(j)!I)'rH

!

kH
1!j

'@De,

!'@D(1!j)
=
+

m/0

jm
m
+
t/0

Ptg"'@D(P(j)!I)'rH

!'@D(1!j)
=
+

m/0

jm
m
+
t/0

kHe,

'@D'rH"'@DAP(j)'rH#(1!j)
=
+

m/0

jm

m
+
t/0

Pt(g!kHe)B,
'@D'rH"'@D¹(j)('rH),

'('@D')~1'@D'rH"'('@D')~1'@D¹(j)('rH),

'rH"%¹(j)('rH).

This completes the proof. h

4. Approximation error

In this section, we propose a de"nition of approxima-
tion error, study a few of its properties, and derive error
bounds.

4.1. A dexnition of error

In our analysis of discounted cost TD(j) (Tsitsiklis
& Van Roy, 1997), we employed the error metric
DD'rH!JHDD

D
, where JH was the cost-to-go function for

a discounted Markov chain. This formulation enabled
the development of a graceful error bound. In the context
of average cost problems, one is usually content with an
approximation of any di!erential cost function J, not
necessarily the basic one JH. And it is possible that there
exists a parameter vector r6 such that DD'r6!JDD

D
is very

small for some di!erential cost function J, while
DD'r!JHDD

D
is large for all r. For this reason, we will

de"ne the approximation error as the in"mum of the
weighted Euclidean distance from the set of all di!eren-
tial cost functions:

inf
J|MJH`ce @ c|RN

DD'rH!JDD
D
"inf

c|R
DD'rH!(JH#ce)DD

D
.

In addition to catering intuitive appeal, this de"nition
will lead to a graceful error bound.

We now derive an alternative characterization of the
error metric above. Any vector J3Rn can be decomposed
into a component PJ that is D-orthogonal to e, and
a component (I!P)J that is a multiple of e, where P is
the projection matrix de"ned by

P"I!ee@D.

It is easily checked that

P"I!en@"I!lim
t?=

Pt.

This implies that P and P commute (i.e., PP"PP). By
de"nition of JH, we have

e@DJH"n@JH"0.

It follows that PJH"JH. Since the minimum distance of
the vector 'rH!JH from the subspace MceDc3RN is equal
to the magnitude of the projection onto the orthogonal
complement of the subspace, we have

inf
c|R

DD'rH!(JH#ce)DD
D
"DDP'rH!JHDD

D
.

4.2. A decomposition of basis functions

The projection introduced in the previous subsection
can be applied to each basis function /

k
to obtain the

function P/
k
, which is D-orthogonal to e. In this subsec-

tion, we show that replacing each /
k

by P/
k

does not
change the limit to which TD(j) converges or the result-
ing approximation error.

Recall that TD(j) converges to the unique solution
rH of the equation %¹(j)('rH)"'rH. Let

'1 "P',

and note that '1 replaces ', if each basis functions /
k
is

replaced by P/
k
. If rO0 and P'r"0, then 'r must be

a multiple of e, which is impossible by Assumption 2.
Thus, '1 also satis"es Assumption 2. When the basis
functions P/

1
,2,P/

K
are employed, TD(j) converges

to a vector r6 that satis"es

%M ¹(j)('1 r6 )"'1 r6 ,

where the matrix %M is de"ned by

%M "'1 ('1 @D'1 )~1'1 @D.

We will now show that rH"r6 .
Using the de"nition of ¹(j) and the property

e@DP"n@P"n@, it is easily veri"ed that for any r,

e@D(¹(j)('r)!'r)"0.
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By the "xed point equation %¹(j)('rH)"'rH, we also
have

/@
k
D(¹(j)('rH)!'rH)"0,

for each basis function /
k
. It follows that for any projec-

ted basis function /1
k
"P/

k
, there is a scalar c such that

/1 @
k
D(¹(j)('rH)!'rH)"(/

k
#ce)@D(¹(j)('rH)!'rH)

"0.

The fact that

¹(j)('1 rH)"¹(j)('rH#c( e)"¹(j)('rH)#c( e,

for some constant c( , then leads to the conclusion that

/1 @
k
D(¹(j)('1 rH)!'M rH)"/1 @

k
D(¹(j)('rH)!'rH)"0.

Hence, %M ¹(j)('1 rH)"'1 rH and rH"r6 .

4.3. Mixing factor

In the next subsection, we will provide a bound on the
error associated with the limiting weight vector rH. Cen-
tral to the development of this bound will be a `mixing
factora, that re#ects the speed with which steady state is
reached.

Let J be some function de"ned on the state space.
Mixing can be viewed as an assumption that E[J(i

t
) D i

0
]

converges to E
0
[J(i

t
)] at the rate of at, where a is a `mix-

ing factora. Since our de"nition of the approximation
error factors out constant o!sets, and since (I!P)J is
aligned with e, we can focus on E[(PJ)(i

t
) D i

0
]. Thus, one

possible assumption could be that E[(PJ)(i
t
) D i

0
] de-

creases like at, for all functions J. In terms of the
transition probability matrix P, this would be captured
by an assumption that DDPPDD

D
4a.

For the purposes of our error bounds, we do not need
every possible function J to converge rapidly to
steady state. Rather, it su$ces to consider only those
functions that are representable by our approximation
architecture, i.e., linear combinations of the basis
functions /

k
. We can capture this e!ect by projecting,

using the projection matrix %1 , and placing an assump-
tion on the induced norm DD%1 PPDD

D
, which is actually the

same as DD%1 PDD
D

since %1 P"%1 (this follows from the fact
that %1 projects onto a subspace of the range onto which
P projects).

Finally, it turns out that an even weaker assumption
will do, using the following idea. Given any d3(0,1), we
de"ne an auxiliary Markov chain with a transition
matrix Pd"I#d(P!I) and a cost function gd"dg.
The basic di!erential cost function for this Markov chain
remains unchanged. This is because

dg!dkHe#(I#d(P!I))JH

" d(g!kHe#PJH)#(1!d)JH"JH.

Similarly, it is easy to show that TD(0) generates
the same limit of convergence for this auxiliary
Markov chain as it did for the original one. In this spirit,
we can consider DD%1 PdDDD as the relevant mixing
factor. Furthermore, since there is freedom in choosing
d, we can obtain the tightest possible bound by
minimizing over all possible choices of d.

For the more general case of j3[0,1), the pertinent
mixing time is that of the stochastic matrix
P(j)"(1!j)+=

m/0
jmPm`1. (Note that P(0)"P, which

brings us back to our previous discussion concerning the
case of j"0.) Similar to the context of TD(0), we de"ne
P(j)d "I#d(P(j)!I), and we de"ne a scalar aj for each
j3[0,1) by

aj" inf
d;0

DD%1 P(j)d DD
D
.

(Note that here we also allow d51, even though the
motivation in the preceding paragraph does not apply.)
This mixing factor will be used to establish our error
bound.

4.4. The error bound

We now state a theorem that provides a bound on
approximation error. A proof is provided in the next
subsection.

Theorem 3. Let Assumptions 1 and 2 hold. For each
j3[0,1), let rHj3RK be the vector satisfying

'rHj"%¹(j)('rHj ).

Then:

(a) For each j3[0,1), the mixing factor aj is in [0,1) and
limjt1 aj"0.

(b) The following bound holds:

DDP'rHj!JHDD
D
4

1

J1!a2j
inf
r|RK

DDP'r!JHDD
D
.

Note that the bound is a multiple of

inf
r|RK

DDP'r!JHDD
D
,

which is the minimal error possible given the "xed set of
basis functions. This term becomes zero if there exists
a parameter vector r and a scalar c for which
'r"JH#ce, that is, if our `approximation architec-
turea is capable of representing exactly some di!erential
cost function.

The term 1/J1!a2j decreases as aj decreases.
Hence, the term is guaranteed to approach its optimal
value of 1 as j approaches 1. This suggests that
larger values of j may lead to lower approximation
error.
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4.5. Proof of Theorem 3

We begin by establishing part (a) of the theorem. Since
aj is the in"mum of a set of nonnegative reals, aj50.
From Lemma 2, we have DDP(j)DD

D
41 and P(j)JOJ if J is

not proportional to e. It follows that for any d3(0,1) and
any J that is not proportional to e, we have

DDPP(j)d JDD
D
4DDP(j)d JDD

D
"DDdP(j)J#(1!d)JDD

D
(DDJDD

D
.

(The "rst inequality uses the nonexpansive property of
projections. The last one holds because J and P(j)J are
distinct elements of the ball MJM D DDJM DD

D
4DDJDD

D
N, so their

strictly convex combination must lie in the interior.) Note
that DDPP(j)d JDD

D
is a continuous function of J and that the

set MJ D DDJDD
D
41N is compact. It follows from Weierstrass'

theorem that for any d3(0,1), DDPP(j)d DD
D
(1. Since

%1 "%1 P, we then have

aj" inf
d;0

DD%1 P(j)d DD
D

4 inf
d;0

DDPP(j)d DD
D
4 inf

d|(0,1)
DDPP(j)d DD

D
(1.

As for the limit as j approaches 1, we have

lim
jt1

aj"lim
jt1

inf
d;0

DD%1 P(j)d DD
D

4lim
jt1

DD%1 P(j)DD
D
4lim

jt1
DDPP(j)DD

D
.

Assumption 1 implies that

lim
t?=

DDPPtDD
D
"0.

It follows that

lim
jt1

DDPP(j)DD
D
"lim

jt1 KK(1!j)
=
+
t/0

jtPPt`1KK
D

"0.

This completes the proof for part (a). h

Let ¹(j)d "(1!d)I#d¹(j). It is easy to see that
¹(j)d JH"JH and %1 ¹(j)d ('1 rHj )"'1 rHj . For any nonnegative
scalar d, we have

DDP'rHj!JHDD2
D
"DD'1 rHj!JHDD2

D

"DD%1 ¹(j)d ('1 rHj )!¹(j)d JHDD2
D

4DD%1 ¹(j)d ('1 rHj )!%1 ¹(j)d JHDD2
D

#DD¹(j)d JH!%1 ¹(j)d JHDD2
D

"DD%1 P(j)d ('1 rHj )!%1 P(j)d JHDD2
D

#DDJH!%1 JHDD2
D

4DD%1 P(j)d DD2
D
DD'1 rHj!JHDD2

D
#DDJH!%1 JHDD2

D
.

Since d is an arbitrary nonnegative scalar, we have

DDP'rHj!JHDD2
D
4a2jDD'1 rHj!JHDD2

D
#DDJH!%1 JHDD2

D
,

and it follows that

DDP'rHj!JHDD
D
4

1

J1!a2j
DDJH!%1 JHDD

D
.

Since

DDJH!%1 JHDD
D
"inf

r

DDP'r!JHDD
D
,

this completes the proof for part (b). h

5. Using a 5xed average cost estimate

In this section, we introduce and study a variant that
employs a "xed estimate k of the average cost, in place
of k

t
. In particular, the parameter vector r

t
is updated

according to the same rule (Eq. (3)), but the de"nition
of the temporal di!erence (2) is changed to

d
t
"(g(i

t
)!k)#/@(i

t`1
)r
t
!/@(i

t
)r
t
.

Our analysis involves an additional mixing factor de"ned
by

bj" inf
d|*0,1+

DD%P(j)d DD
D
,

which is similar to aj but involves a projection onto the
range of ' instead of '1 .

Theorem 4. Under Assumptions 1}3, for any j3[0,1), the
following hold:

(a) The TD(j) algorithm with a xxed average cost estimate,
as dexned above, converges with probability 1.

(b) The limit of convergence r6 j is the unique solution of the
equation

%¹(j)('r6 j)#
kH!k
1!j

%e"'r6 j.

(c) For any j3[0,1), the mixing factor bj is in [0,1), and
limjt1bj"0.

(d) The limit of convergence r6 j satisxes

DDP'r6 j!JHDD
D
4

1

J1!a2j
inf
r|RK

DDP'r!JHDD
D

#

DkH!kD
(1!bj)(1!j)

DD%eDD
D
,

where aj and P are dexned as in Section 5.

There are two somewhat unrelated terms involved in
the bound of Theorem 4. The "rst term is equal to the
error bound of Theorem 3, and can be viewed as error
brought about by the choice of basis functions. The second
term is proportional to the error in the average cost
estimate. The term is also proportional to DD%eDD

D
, which is

zero if the space spanned by the basis functions is D-
orthogonal to e. The dependence on j and bj is a little
more complicated. If either j or bj approaches one, the
coe$cient approaches in"nity. In contrast to the dis-
cussion in the preceding section, we now have a situation
where values of j close to 1 cease to be preferable.
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Proof of Theorem 4. We omit the proof of parts (a)}(c)
because it is very similar to the proof of Theorems 1 and
3(a). As in the previous sections, we let rHj denote the
unique vector satisfying 'rHj"%¹(j)('rHj ). For any
d3[0,1], we have

DD'r6 j!'rHj DD
D

" DD(1!d)'r6 j#d'r6 j!(1!d)'rHj!d'rHj DDD

"KK(1!d)%'r6 j#dA%¹(j)('r6 j)#
kH!k
1!j

%eB
]DD!(1!d)%'rHj!d%¹(j)('rHj )DDD

"KK%¹(j)d ('r6 j)#
d(kH!k)

1!j
%e!%¹(j)d ('rHj )KK

D

4DD%¹(j)d ('r6 j)!%¹(j)d ('rHj )DDD#
DkH!kD
1!j

DD%eDD
D

"DD%P(j)d ('r6 j)!%P(j)d ('rHj )DDD#
DkH!kD
1!j

DD%eDD
D

4DD%P(j)d DD
D
DD'r6 j!'rHj DDD#

DkH!kD
1!j

DD%eDD
D
.

Since d is an arbitrary scalar in [0,1], we have

DD'r6 j!'rHj DD
D
4bjDD'r6 j!'rHj DDD#

DkH!kD
1!j

DD%eDD
D
,

and it follows that

DD'r6 j!'rHj DD
D
4

DkH!kD
(1!bj)(1!j)

DD%eDD
D
.

The desired bound then follows from Theorem 3 and the
triangle inequality. h

6. Conclusion

We have proposed a variant of temporal-di!erence
learning that is suitable for approximating di!erential
cost functions, and we have established the convergence
of this algorithm when applied to "nite state irreducible
aperiodic Markov chains. In addition, we have provided
bounds on the distance of the limiting function 'rHj from
the space of di!erential cost functions. These bounds
involve the expression inf

r
DDP'r!JHDD

D
, which is natural

because no approximation could have error smaller than
this expression (when the error is measured in terms of
DDP( ) )DD

D
).

It is interesting to note that even if a given Markov
chain takes a long time to reach steady state, the mixing
factor aj may be small due to the choice of basis
functions. In particular, the expected future value
E[/

k
(i
t
) D i

0
] of a basis function may converge

rapidly even though E[J(i
t
) D i

0
] converges slowly

for some other function J. This may partially explain why

small values of j seem to lead to good approximations
even with Markov chains that converge to steady state
rather slowly.

On the technical side, we mention a few straightfor-
ward extensions to our results.

1. With some additional technical assumptions, the
proof of Theorem 1 can be extended to the case of
in"nite state Markov chains where approximations
are generated using unbounded basis functions. This
extension has been omitted for the sake of brevity, but
largely involves arguments of the same type as in
(Tsitsiklis & Van Roy, 1997).

2. The linear independence of the basis functions /
k

is
not essential. In the linearly dependent case, some
components of z

t
and r

t
become linear combinations

of the other components and can be simply elimi-
nated, which takes us back to the linearly independent
case.

3. Finally, if Assumption 2(b) is removed, then our
line of analysis can be used to show that P'r

t
still

converges, but (I!P'r
t
) is aligned to e and need not

converge.
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