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In this paper we consider a stochastic server (modeling a multiclass communication
switch) fed by a set of parallel buffers. The dynamics of the system evolve in discrete-time
and the generalized processor sharing (GPS) scheduling policy of [25] is implemented. The
arrival process in each buffer is an arbitrary, and possibly autocorrelated, stochastic process.
We obtain a large deviations asymptotic for the buffer overflow probability at each buffer.
In the standard large deviations methodology, we provide a lower and a matching (up to
first degree in the exponent) upper bound on the buffer overflow probabilities. We view the
problem of finding a most likely sample path that leads to an overflow as an optimal control
problem. Using ideas from convex optimization we analytically solve the control problem
to obtain both the asymptotic exponent of the overflow probability and a characterization
of most likely modes of overflow. These results have important implications for traffic
management of high-speed networks. They extend the deterministic, worst-case analysis of
[25] to the case where a detailed statistical model of the input traffic is available and can
be used as a basis for an admission control mechanism.
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1. Introduction

In the near future, high speed, packet-switched communication networks will
offer an even greater than today variety of multimedia, real-time, services accom-
modating various types of traffic, namely, digitized voice, encoded video, and data.
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Real-time services are very sensitive to congestion phenomena, such as packet losses,
due to buffer overflows. As a consequence, it is widely accepted that the packet loss
probability is a critical measure of Quality of Service (QoS). It is desirable to operate
the network in a regime where this probability is very small, e.g., on the order of 10−9.
An essential step for preventing congestion through a variety of control mechanisms
(buffer dimensioning, admission control, resource allocation) is to determine how it
occurs and to estimate its probability.

In this paper we model and analyze a communication switch which can support
multiple service classes. A service class is characterized by the statistical properties of
the incoming traffic and by its QoS requirements. The switch has a dedicated buffer
for each service class, and employs the generalized processor sharing (GPS) policy
which was introduced in [12] and analyzed in a deterministic setting in [25]. This
policy, also known as fair queueing, allocates a fraction φi of the available capacity
(bandwidth) to class i, such that

∑N
i=1 φi = 1, where N is the number of classes. We

seek to obtain the buffer overflow probabilities for each class, since these determine
the QoS faced by each class. Typical traffic in communication networks is bursty,
thus, stochastic processes with autocorrelations are needed to model it. As a result,
the problem is particularly difficult since it essentially requires finding the distributions
of waiting times and queue lengths in a multiclass G/G/1 setting with autocorrelated
arrival processes and arbitrary (possibly autocorrelated) service times. In this light, we
will focus on the large deviations regime and obtain asymptotic expressions for the
tails of the overflow probabilities.

To this end, we will provide a lower and a matching (up to first degree in the
exponent) upper bound on the buffer overflow probabilities. We will address the case of
two classes; the general case of N classes appears to be more complicated since there is
an exponential explosion of the number of overflow modes (see [27] for approximations
in the general multiclass case). We view the exponent of the overflow probabilities as
the optimal value of an associated optimal control problem, which we explicitly solve.
Optimal state trajectories of the control problem correspond to the most likely modes of
overflow; from the solution of the control problem we obtain a detailed characterization
of these modes. These results have important implications in the traffic management
of high-speed networks (see [27]). They extend the deterministic, worst-case analysis
of [25] to the case where statistical measures of QoS are used to achieve more efficient
utilization of the available resources. They can be used as a basis for an admission
control mechanism which provides class-dependent statistical QoS guarantees.

The optimal control formulation is introduced in a somewhat more general set-
ting in [3]. The emphasis there is on the analysis of another scheduling policy for
sharing bandwidth among classes, the generalized longest queue first. In [3] also, the
performance of the latter policy is compared with the performance of the GPS policy,
as it is established in the present paper. We wish to note at this point that although
our principal motivation for studying this problem is computer networking, our results
have applications in other queueing situations, e.g., service industry and manufacturing
systems.
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There is a growing literature on applications of large deviations techniques in
communications (see [31] for a survey). The single class queue case has received
extensive attention [16,18–20,22,23,28]. The extension of these ideas to single class
networks, although much harder, has been treated in various versions and degrees of
rigor in [4,6,13,17]. In [14,32] the authors obtain the asymptotic tails of the overflow
probabilities for the GPS policy with deterministic service capacity. The analysis
there is based on a large deviations result for the departure process from a G/D/1
queue [13]. Tail overflow probabilities for the GPS policy and deterministic service
capacity were also reported in [8,24]. The authors in [8] view the problem as a
control problem, different than ours, where control variables are the capacity that the
server allocates to each buffer, as a function of the current state. This approach has
some technical problems with boundaries because it requires Lipschitz continuity of
the controls. More recently, [15] developed a Skorokhod problem formulation for the
large deviations analysis of the GPS policy in a different limiting regime.

In this paper, we extend the GPS results of [8,14,24,32] to the case of a stochastic
service capacity. This extension makes it possible to treat more complicated service
disciplines. Consider, for example, the case where we have a deterministic server and
three classes with dedicated buffers. We give priority to the first stream and use the
GPS policy for the remaining two. These two remaining streams face a server with
stochastic capacity, a model of which can be obtained using the model for the arrival
process of the first stream. Note that stochastic capacity significantly alters the way
overflows occur. The reason is that the large deviations behaviour of the departure
process from a single class queue is different with deterministic and stochastic service
capacity [4,7], and this affects the overflow probabilities in our model (note that in
deriving their results [14] and [32] use the departure process from a G/D/1 queue).

Among the main contributions of this work we consider (a) the use of the optimal
control formulation of the problem because it provides a more intuitive understanding
of the operation of the system when it overflows, and (b) the treatment of stochastic
service capacities.

Regarding the structure of this paper, we begin in section 2 with a brief review of
the large deviations results that we use in this paper. In section 3 we introduce a model
of the switch we will analyze, formally define the GPS policy, and state the main result
of the paper. In section 4 we prove a lower bound on the overflow probability and in
section 5 we introduce the optimal control formulation and solve the control problem.
In section 6 we prove the matching upper bound. Section 7 treats the special case
of priority policies and provides an alternative way of calculating the large deviations
exponent. Conclusions are given in section 8.

2. Preliminaries

In this section we review some basic results on the theory of Large Deviations
[5,11,30] that will be used in the sequel.
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Consider a sequence {S1,S2, . . .} of random variables, with values in R and
define

Λn(θ) , 1
n

log E
[
eθSn

]
. (1)

For the applications that we have in mind, Sn is a partial sum process. Namely,
Sn =

∑n
i=1 Xi, where Xi, i > 1, are identically distributed, possibly dependent

random variables. We will be making the following assumption.

Assumption A.

(1) The limit

Λ(θ) , lim
n→∞

Λn(θ) = lim
n→∞

1
n

log E
[
eθSn

]
(2)

exists for all θ, where ±∞ are allowed both as elements of the sequence Λn(θ)
and as limit points.

(2) The origin is in the interior of the domain DΛ , {θ | Λ(θ) <∞} of Λ(θ).

(3) Λ(θ) is differentiable in the interior of DΛ and the derivative tends to infinity as θ
approaches the boundary of DΛ.

(4) Λ(θ) is lower semicontinuous, i.e., lim infθn→θ Λ(θn) > Λ(θ), for all θ.

Let us next define

Λ∗(a) , sup
θ

(
θa− Λ(θ)

)
, (3)

which is the Legendre transform of Λ(·). It is important to note that Λ(·) and Λ∗(·)
are convex duals, namely, along with (3), it also holds that

Λ(θ) = sup
a

(
θa− Λ∗(a)

)
. (4)

The function Λ∗(·) is convex and lower semicontinuous (see [11]).
Under assumption A, the Gärtner–Ellis theorem (see [5,11]) establishes that {Sn}

satisfies a Large Deviations Principle (LDP) with rate function Λ∗(·). In particular,
this theorem intuitively asserts that for large enough n and for small ε > 0,

P
[
Sn ∈ (na− nε,na+ nε)

]
∼ e−nΛ∗(a).

The Gärtner–Ellis theorem generalizes Cramér’s theorem [9] which applies to inde-
pendent and identically distributed (iid) random variables.

A stronger concept than the LDP for the partial sum random variable Sn ∈ R is
the LDP for the partial sum process (sample path LDP)

Sn(t) =
1
n

bntc∑
i=1

Xi, t ∈ [0, 1].
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Note that the random variable Sn =
∑n

i=1Xi corresponds to the terminal value (at
t = 1) of the process Sn(t), t ∈ [0, 1]. In a key paper [10], under certain mild mixing
conditions on the stationary sequence {Xi; i > 1}, the authors establish an LDP for
the process Sn(·) in D[0, 1] (the space of right continuous functions with left limits)
equipped with the supremum norm topology. In the spirit of the sample path LDP
in [10] we will be assuming the following.

Assumption B. For all m ∈ N, for every ε1, ε2 > 0, and for every scalars a0, . . . ,
am−1, there exists M > 0 such that for all n >M and all k0, . . . , km with 1 = k0 6
k1 6 · · · 6 km = n,

e−(nε2+
∑m−1
i=0 (ki+1−ki)Λ∗(ai))

6 P
[∣∣Ski+1 − Ski − (ki+1 − ki)ai

∣∣ 6 ε1n, i = 0, . . . ,m− 1
]
.

In the simpler case when dependencies are not present (i.e., Si =
∑i

j=1Xj ,
where Xi’s are iid), assumption B is a consequence of Mogulskii’s theorem (see [11]).
Intuitively, assumption B deals with the probability of sample paths that are constrained
to be within a tube around a “polygonal” path made up with linear segments of slopes
a0, . . . , am−1. We will also be making the following assumption, which can be viewed
as the “convex dual analog” of assumption B.

Assumption C. For all m ∈ N there exists M > 0 and a function Γ(·) with 0 6
Γ(y) < ∞, for all y > 0, such that for all n > M and all k0, . . . , km with 1 = k0 6
k1 6 · · · 6 km = n,

E
[
eθ·Z

]
6 exp

{
m∑
j=1

[
(kj − kj−1)Λ(θj) + Γ(θj)

]}
, (5)

where θ = (θ1, . . . , θm) and Z = (Sk0,Sk2 − Sk1 , . . . ,Skm − Skm−1).

In [6] a uniform bounding condition is given under which assumptions B and C
are satisfied. It is verified that the set of processes satisfying these assumptions is
large enough to include renewal, Markov-modulated, and stationary processes with
mild mixing conditions. Such processes can model “burstiness” and are commonly
used in modeling the input traffic to communication networks.

On a notational remark, in the rest of the paper we will be denoting by

SXi,j ,
j∑
k=i

Xk, i 6 j,
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the partial sums of the random sequence {Xi; i ∈ Z}. We will be also denoting by
ΛX(·) and Λ∗X (·) the limiting log-moment generating function and the large deviations
rate function (see equations (2) and (3) for definitions), respectively, of the process X.

3. A multiclass model

In this section we introduce a model for the multiclass switch operated under the
GPS policy that we plan to analyze, state the main result, and provide a brief outline
of the approach we plan to follow.

Consider the system depicted in figure 1. We assume a slotted time model (i.e.,
discrete time) and we let Aji , i ∈ Z, denote the number of class j customers that enter
queue Qj at time i, for j = 1, 2. Both queues have infinite buffers and share the same
server which can process Bi customers during the time interval [i, i+ 1]. We assume
that the processes {A1

i ; i ∈ Z}, {A2
i ; i ∈ Z} and {Bi; i ∈ Z} are stationary and

mutually independent. However, we allow dependencies between Aji ’s for fixed j and
different values of i.

We denote by Lji the queue length at time i (without counting arrivals at time i)
in queue Qj , for j = 1, 2. We assume that the server allocates its capacity between
queues Q1 and Q2 according to a work-conserving policy (i.e., the server never stays
idle when there is work in the system). We also assume that the queue length processes
{Lji , j = 1, 2, i ∈ Z} are stationary.

To simplify the analysis we consider a discrete-time “fluid” model, meaning that
we will be treating Aji , L

j
i , for j = 1, 2, and Bi as non-negative real numbers (the

amount of fluid entering, in queue, or served).
We assume the following stability condition:

E[Bi] > E
[
A1
i

]
+ E

[
A2
i

]
, ∀i. (6)

We further assume that the arrival and service processes satisfy assumptions A, B and C.
As we have noted in section 2, these assumptions are satisfied by processes that are
commonly used to model bursty traffic in communication networks, e.g., renewal
processes, Markov-modulated processes and more generally stationary processes with
mild mixing conditions. Note that since Aji , for j = 1, 2, and Bi represent number of
arrivals and services, respectively, they are assumed to be non-negative, which implies
that their rate function Λ∗X (x), for X ∈ {A1,A2,B}, is infinity for all x < 0.

Figure 1. A multiclass model.
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The switch implements the generalized processor sharing (GPS) policy. Accord-
ing to this policy the server allocates a fraction φ1 ∈ [0, 1] of its capacity to queue
Q1, and the remaining fraction φ2 = 1 − φ1 to queue Q2. The policy is defined to
be work-conserving, which implies that one of the queues, say queue Q1, may get
more than a fraction φ1 of the server’s capacity during times that the other queue,
Q2, is empty. More formally, we can define the GPS to be the policy that satisfies
(work-conservation)

L1
i+1 + L2

i+1 =
[
L1
i + L2

i +A1
i +A2

i −Bi
]+

,

and

0 6 Lji+1 6
[
Lji +Aji − φjBi

]+
, j = 1, 2,

where [x]+ , max{x, 0}. Note that Lji ’s will generally take non-integer values even
if Aji and Bi are integers. This corresponds to the GPS policy in [25] as opposed to
its “packetized” version PGPS.

We are interested in estimating the overflow probability P[L1
i > U ] for large

values of U , at an arbitrary time slot i, in steady-state. Having determined this, the
overflow probability of the second queue can be obtained by a symmetrical argument.

We will prove that the overflow probability satisfies

P
[
L1
i > U

]
∼ e−Uθ

∗
GPS , (7)

asymptotically, as U →∞ (theorem 3.1). To this end, we will develop a lower bound
on the overflow probability (proposition 4.1), along with a matching upper bound
(proposition 6.7).

Theorem 3.1. Under the GPS policy, assuming that the arrival and service processes
satisfy assumptions A, B and C the steady-state queue length L1 of queue Q1 satisfies

lim
U→∞

1
U

log P
[
L1 > U

]
= −θ∗GPS, (8)

where θ∗GPS is given by

θ∗GPS = min

[
inf
a>0

1
a

ΛI∗
GPS(a), inf

a>0

1
a

ΛII∗
GPS(a)

]
, (9)

and the functions ΛI∗
GPS(·) and ΛII∗

GPS(·) are defined as follows:

ΛI∗
GPS(a) , inf

x1+x2−x3=a
x26φ2x3

[
Λ∗A1(x1) + Λ∗A2 (x2) + Λ∗B(x3)

]
, (10)

and

ΛII∗
GPS(a) , inf

x1−φ1x3=a
x2>φ2x3

[
Λ∗A1 (x1) + Λ∗A2(x2) + Λ∗B(x3)

]
. (11)
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4. A lower bound

In this section we establish a lower bound on the overflow probability P[L1
i > U ].

Proposition 4.1 (GPS lower bound). Assuming that the arrival and service processes
satisfy assumptions A and B, and under the GPS policy, the steady-state queue length
L1 of queue Q1 satisfies

lim inf
U→∞

1
U

log P
[
L1 > U

]
> −θ∗GPS, (12)

where θ∗GPS is defined by equations (9)–(11).

Proof. Let −n 6 0 and a > 0. Fix x1,x2,x3 > 0 and ε1, ε2, ε3 > 0 and consider the
event {∣∣SA1

−n,−i−1 − (n− i)x1
∣∣ 6 ε1n, |SA2

−n,−i−1 − (n− i)x2
∣∣ 6 ε2n,∣∣SB−n,−i−1 − (n− i)x3

∣∣ 6 ε3n, i = 0, 1, . . . ,n− 1
}
.

Notice that x1,x2 (respectively x3) have the interpretation of empirical arrival (re-
spectively service) rates during the interval [−n,−1]. We focus on two particular
scenarios

Scenario 1: x1 + x2 − x3 = a, Scenario 2: x1 − φ1x3 = a,
x2 6 φ2x3, x2 > φ2x3.

(13)

Under Scenario 1, the first queue receives the maximum capacity (at a rate of x3−x2)
while the second queue stays always empty during the interval [−n, 0]. Thus, L1

0 >
na − nε′1, where ε′1 → 0 as ε1, ε2, ε3 → 0. Similarly, under Scenario 2, the second
queue is almost always backlogged during the interval [−n, 0], and the first queue gets
capacity roughly φ1x3, implying also L1

0 > na−nε′2, where ε′2 → 0 as ε1, ε2, ε3 → 0.
Now, the probability of Scenario 1 is a lower bound on P[L1

0 > n(a − ε′1)].
Calculating the probability of Scenario 1, maximizing over x1, x2 and x3, to obtain
the tightest bound, and using assumption B we have

P
[
L1

0 > n
(
a− ε′1

)]
> sup

x1+x2−x3=a
x26φ2x3

P
[∣∣SA1

−n,−i−1 − (n− i)x1
∣∣ 6 ε1n, i = 0, 1, . . . ,n− 1

]
×P
[∣∣SA2

−n,−i−1 − (n− i)x2
∣∣ 6 ε2n, i = 0, 1, . . . ,n− 1

]
×P
[∣∣SB−n,−i−1 − (n− i)x3

∣∣ 6 ε3n, i = 0, 1, . . . ,n− 1
]

> exp
{
−n
(

inf
x1+x2−x3=a
x26φ2x3

[
Λ∗A1(x1) + Λ∗A2 (x2) + Λ∗B(x3)

]
+ ε
)}

= exp
{
−n
(
ΛI∗

GPS(a) + ε
)}

, (14)

where n is large enough, and ε, ε′1 → 0 as ε1, ε2, ε3 → 0.
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Similarly, calculating the probability of Scenario 2, we obtain

P
[
L1

0 > n
(
a− ε′2

)]
> exp

{
−n
(
ΛII∗

GPS(a) + ε′
)}

, (15)

for n large enough, and with ε′, ε′2 → 0 as ε1, ε2, ε3 → 0.
Combining equations (14) and (15), we obtain that for all ε, ε′ > 0 there exists

N such that for all n > N

1
n

log P
[
L1

0 > n(a− ε)
]
> −

(
min

(
ΛI∗

GPS(a), ΛII∗
GPS(a)

)
+ ε′

)
. (16)

As a final step to this proof, by letting U = n(a − ε) and U0 = N (a − ε), we
obtain that for all ε, ε′ > 0 and for all U > U0

1
U

log P
[
L1 > U

]
=

1
n(a− ε) log P

[
L1

0 > n(a− ε)
]

>− 1
a− ε

(
min

(
ΛI∗

GPS(a), ΛII∗
GPS(a)

)
+ ε′

)
,

which implies

lim inf
U→∞

1
U

log P
[
L1 > U

]
> −1

a
min

(
ΛI∗

GPS(a), ΛII∗
GPS(a)

)
.

Since a, in the above, is arbitrary we can select it properly to make the bound tighter.
Namely,

lim inf
U→∞

1
U

log P
[
L1 > U

]
> −min

[
inf
a>0

1
a

ΛI∗
GPS(a), inf

a>0

1
a

ΛII∗
GPS(a)

]
. �

5. The optimal control problem

In this section we introduce an optimal control problem and show that θ∗GPS is
its optimal value. This interpretation of θ∗GPS will be used later to establish an upper
bound on the overflow probability.

To motivate the control problem, we relate it, heuristically, to the problem of
obtaining an asymptotically tight estimate of the overflow probability.1 For every
overflow sample path, leading to L1

0 > U , there exists some time −n 6 0 that both
queues are empty. Since we are interested in the asymptotics as U → ∞, we scale
time and the levels of the processes A1, A2 and B by U . We then let T = n/U and
define the following continuous-time functions in D[−T , 0] (these are right-continuous
functions with left-limits):

L̂j(t) =
1
U
LjbUtc, j = 1, 2, SX(t) =

1
U
SX−UT ,bUtc, X ∈

{
A1,A2,B

}
,

1 Such a relation can be rigorously established using the sample path LDP for the arrival and service
processes, as it is defined in [6,10].
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for t ∈ [−T , 0]. Notice that the empirical rate of a process X is roughly equal to the
rate of growth of SX(t). More formally, we will say that a sample path of process X
has empirical rate x(t) in the interval [−T , 0] if for large U and small ε > 0 it is true
that ∣∣∣∣SX(t)−

∫ t

−T
x(τ ) dτ

∣∣∣∣ < ε, ∀t ∈ [−T , 0],

where x(t) are arbitrary non-negative functions. We let x1(t), x2(t) and x3(t) denote
the empirical rates of the processes A1,A2 and B, respectively. The probability of
sustaining rates x1(t), x2(t) and x3(t) in the interval [−UT , 0] for large values of U
is given (up to first degree in the exponent) by

exp

{
−U

∫ 0

−T

[
Λ∗A1 (x1(t)

)
+ Λ∗A2

(
x2(t)

)
+ Λ∗B

(
x3(t)

)]
dt

}
.

This cost functional is a consequence of assumption B. With the scaling introduced
here as U → ∞ the sequence of slopes a0, a1, . . . , am−1 appearing there converges
to the empirical rate x(·) and the sum of rate functions appearing in the exponent
converges to an integral. Similarly, a “polygonal approximation” to L̂j(t) (see [10];
[11, section 5.1]) converges to some continuous functions Lj(t), for j = 1, 2.

We seek a path with maximum probability, i.e., a minimum cost path where the
cost functional is given by the integral in the above expression. This optimization is
subject to the constraints L1(−T ) = L2(−T ) = 0 and L1(0) = 1. The fluid levels in the
two queues L1(t) and L2(t) are the state variables and the empirical rates x1(t), x2(t)
and x3(t) are the control variables. The dynamics of the system depend on the state.
We distinguish three regions:

• Region A: L1(t), L2(t) > 0, where according to the GPS policy

L̇1 = x1(t)− φ1x3(t) and L̇2 = x2(t)− φ2x3(t).

• Region B: L1(t) = 0, L2(t) > 0, where according to the GPS policy

L̇2 = x1(t) + x2(t)− x3(t).

• Region C: L1(t) > 0, L2(t) = 0, where according to the GPS policy

L̇1 = x1(t) + x2(t)− x3(t).

Dotted variables in the above expressions denote derivatives.2 Let (GPS-DYNAMICS)
denote the set of state trajectories Lj(t), j = 1, 2, t ∈ [−T , 0], that obey the dynamics
given above.

2 Here we use the notion of derivative for simplicity of the exposition. Note that these derivatives
may not exist everywhere. Thus, in region B, for example, the rigorous version of the statement
L̇2 = x1(t) + x2(t)− x3(t) is L2(t2) = L2(t1) +

∫ t2

t1
(x1(t) + x2(t)− x3(t)) dt, for all intervals (t1, t2)

that the system remains in region B.
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Figure 2. Trajectories for the restricted (GPS-OVERFLOW).

Motivated by this discussion we now formally define the following optimal con-
trol problem (GPS-OVERFLOW). The control variables are xj(t), j = 1, 2, 3, and the
state variables are Lj(t), j = 1, 2, for t ∈ [−T , 0], which obey the dynamics given in
the previous paragraph.

(GPS-OVERFLOW) minimize
∫ 0

−T

[
Λ∗A1

(
x1(t)

)
+ Λ∗A2

(
x2(t)

)
+ Λ∗B

(
x3(t)

)]
dt

subject to:L1(−T ) = L2(−T ) = 0,

L1(0) = 1,

L2(0): free, (17)

T : free,{
Lj(t): t ∈ [−T , 0], j = 1, 2

}
∈ (GPS-DYNAMICS).

To establish that θ∗GPS is the optimal value of an associated control problem, it
suffices to consider a restricted version of (GPS-OVERFLOW). In particular, we will
only be considering trajectories of (GPS-OVERFLOW) that have the form depicted
in figure 2. We will be referring to this as the restricted (GPS-OVERFLOW). The
choice of these trajectories is motivated by the two scenarios in the proof of the lower
bound in proposition 4.1. It turns out that the trajectories in figure 2 are optimal over
all feasible trajectories of (GPS-OVERFLOW). This is proved in the appendix. In this
sense, these trajectories correspond to most likely ways that overflows occur.

Optimal value of restricted (GPS-OVERFLOW)

We next calculate the optimal value of restricted (GPS-OVERFLOW). The best
trajectory of the form shown in figure 2(a) has value

inf
T

inf
x1+x2−x3=1/T

x26φ2x3

T
[
Λ∗A1(x1) + Λ∗A2 (x2) + Λ∗B(x3)

]
, (18)

which is equal to infT [TΛI∗
GPS(1/T )] by the definition in (10). The best trajectory of

the form shown in figure 2(b) has value

inf
T

inf
x1−φ1x3=1/T
x2>φ2x3

T
[
Λ∗A1(x1) + Λ∗A2 (x2) + Λ∗B(x3)

]
, (19)
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which is equal to infT [TΛII∗
GPS(1/T )] by the definition in (11). Thus, the optimal value

of restricted (GPS-OVERFLOW) is equal to the minimum of the two expressions
above which is identical to θ∗GPS as it is defined in (9).

It is of interest (and of use in establishing the upper bound) to investigate under
what conditions on the parameters of the arrival and service processes the trajectory
in figure 2(a) dominates the one in figure 2(b) and vice versa. We will distinguish two
cases: E[A2] > φ2E[B] and E[A2] < φ2E[B], where for j = 1, 2, E[Aj] (respectively
E[B]) denote the expected number of customers arriving from stream j (respectively
expected potential number of departures). In the first case we will establish that the
trajectory in figure 2(b) dominates the one in (a). In the second case, however, the
relationship between expectations is not sufficient to discard one of the two trajecto-
ries and which one dominates depends on the distribution of the arrival and service
processes. The following theorem describes the result.

Theorem 5.1. If E[A2] > φ2E[B] then optimal state trajectories of restricted (GPS-
OVERFLOW) have the form in figure 2(b) and the optimal value θ∗GPS is given by

inf
T

inf
x1−φ1x3=1/T

T
[
Λ∗A1(x1) + Λ∗B(x3)

]
.

Proof. Assume E[A2] > φ2E[B] and consider the state trajectory in figure 2(a) which
has optimal value given by the expression in (18). Since x2 6 φ2x3, either x2 6 E[A2]
or x3 > E[B]. Then, since rate functions are nondecreasing above the mean and non-
increasing below the mean, we can increase x2 and decrease x3 until x2 = φ2x3,
making x1 + x2 − x3 > 1/T . The segment of this trajectory with terminal point at
L1 = 1/T is feasible (since we have a free time problem), and has the form of the state
trajectory in figure 2(b). Thus, we have reduced optimal state trajectories to the one in
figure 2(b). To determine the optimal value, notice that if x3 > E[B] we can decrease
x3 to E[B], without violating the constraint x2 > φ2x3, making x1 − φ1x3 > 1/T ,
and keeping the segment of the resulting trajectory with terminal point at L1 = 1/T .
Thus, it has to be the case x3 6 E[B]. Then we can actually fix x2 to E[A2], without
violating the constraint x2 > φ2x3 (since x2 = E[A2] > φ2E[B] > φ2x3). This proves
that the optimal value is given by the expression appearing in the statement of this
theorem. �

6. A GPS upper bound

In this section we develop an upper bound on the probability P[L1
0 > U ],

for the case of the GPS policy. In particular, we will prove that as U → ∞ we
have P[L1

0 > U ] 6 e−θ
∗
GPSU+o(U ), where o(U ) denotes functions with the property

limU→∞(o(U )/U ) = 0.
In proving the upper bound we will distinguish two cases:

• Case 1. E[A2] < φ2E[B].
• Case 2. E[A2] > φ2E[B].
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We will first establish the proof for Case 2, which is easier.

6.1. Upper bound: Case 2

We consider a busy period of the first queue Q1 that starts at some time −n∗ 6 0
(L1
−n∗ = 0) and has not ended until time 0. Notice that due to the stability condition (6)

and the fact E[A2] > φ2E[B], it is true that E[A1] < φ1E[B], which implies that such
a time −n∗ always exists. We will focus on sample paths of the system in [−n∗, 0]
that lead to L1

0 > U . Note that

L1
0 6 SA

1

−n∗,−1 − φ1S
B
−n∗,−1. (20)

Thus,

P
[
L1

0 > U
]
6P
[
∃n > 0 s.t. SA

1

−n,−1 − φ1S
B
−n,−1 > U

]
6P
[

max
n>0

(
SA

1

−n,−1 − φ1S
B
−n,−1

)
> U

]
. (21)

We next upper bound the moment generating function of maxn>0(SA
1

−n,−1−φ1S
B
−n,−1).

Applying assumption A for the arrival and service processes for θ > 0 we can obtain

E
[
eθmaxn>0(SA

1
−n,−1−φ1S

B
−n,−1)]

6
∑
n>0

E
[
eθ(SA

1
−n,−1−φ1S

B
−n,−1)]

6
∑
n>0

en(ΛA1 (θ)+ΛB(−φ1θ)+ε)

= K(θ, ε) if ΛA1(θ) + ΛB(−φ1θ) < 0, (22)

since when the exponent is negative (for sufficiently small ε), the infinite geometric
series converges to some K(θ, ε). We can now apply the Markov inequality in (21) to
obtain

P
[
L1

0 > U
]
6E

[
eθmaxn>0(SA

1
−n,−1−φ1S

B
−n,−1)]e−θU

6K(θ, ε)e−θU if ΛA1(θ) + ΛB(−φ1θ) < 0. (23)

Taking the limit as U → ∞ and minimizing over θ to obtain the tightest bound we
establish the following proposition.

Proposition 6.1. If E[A2] > φ2E[B] and under assumption A, for the arrival and
service processes,

lim sup
U→∞

1
U

log P
[
L1

0 > U
]
6 − sup

{θ>0: ΛA1(θ)+ΛB(−φ1θ)<0}
θ.

We are now left with proving that this upper bound matches the lower bound
θ∗GPS which in Case 2 is given by the expression in theorem 5.1.
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In preparation for this result, consider a convex function f (u) with the property
f (0) = 0. We define the largest root of f (u) to be the solution of the optimization
problem sup{u: f (u)<0} u. If f (·) has negative derivative at u = 0, there are two cases:
either f (·) has a single positive root or it stays below the horizontal axis u = 0, for
all u > 0. In the latter case, we will say that f (·) has a root at u =∞.

Lemma 6.2. For Λ∗(·) and Λ(·) being convex duals and assuming that Λ(θ) < 0 for
sufficiently small θ > 0, it holds that

inf
a>0

1
a

Λ∗(a) = θ∗,

where θ∗ is the largest root of the equation Λ(θ) = 0.

Proof.

inf
a>0

1
a

Λ∗(a) = inf
a>0

sup
θ

1
a

[
θa− Λ(θ)

]
= inf

a′>0
sup
θ

[
θ − a′Λ(θ)

]
= sup
θ: Λ(θ)60

θ = sup
θ: Λ(θ)<0

θ.

In the second equality above, we have made the substitution a′ := 1/a, and in the
third one we have used duality to interchange the inf with the sup. Finally, in the
last equality above we have used the convexity of Λ(θ) and the fact that Λ(θ) < 0 for
sufficiently small θ > 0. �

We will also need the following result.

Lemma 6.3. Let F :Rn → R ∪ {±∞}, g1, . . . , gm :Rn → R, and consider the fol-
lowing parametric optimization problem:

Z(a) = inf F (x)

s.t. g1(x) = a, (24)

gj(x) 6 0, j = 2, . . . ,m,

where x ∈ Rn, F (x) is a lower semicontinuous function that satisfies lim‖xk‖→∞ F (xk)
= ∞, and gj(·) are continuous functions for all j = 1, . . . ,m. Assume that it has at
least one feasible solution. Then its optimal value Z(a) is a lower semicontinuous
function of the scalar parameter a.

Proof. Let x∗ be an optimal solution of (24), which exists by Weierstrass’ theorem.
Consider an arbitrary sequence {an} converging to a, and let xn be an optimal solution
of (24) when the parameter a equals an. Let finally x̄ be a finite limit point of {xn},
if it exists. Note that

lim inf
n→∞

Z(an) = lim inf
n→∞

F (xn) > F
(
x̄
)
> F

(
x∗
)

= Z(a).
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The first inequality above is due to the lower semicontinuity of F (·). The second
inequality above is due to the continuity of gj(·) which implies that x̄ is a feasible
solution for (24). If {xn} does not have a finite limit point, then ‖xn‖ → ∞, F (xn)→
∞, and the above inequalities trivially hold. �

Based on these two lemmata and proposition 6.1 we establish the following
proposition.

Proposition 6.4 (GPS upper bound, Case 2). If E[A2] > φ2E[B] and assuming that
the arrival and service processes satisfy assumption A, the steady-state queue length L1

of queue Q1 satisfies

lim sup
U→∞

1
U

log P
[
L1 > U

]
6 −θ∗GPS.

Proof. It suffices to prove that θ∗GPS = sup{θ>0: ΛA1(θ)+ΛB(−φ1θ)<0} θ. Since we are in
Case 2, θ∗GPS is given by the expression in theorem 5.1. Due to lemma 6.2 it suffices
to prove that ΛA1 (θ) + ΛB(−φ1θ) is the convex dual of

Λ∗(a) , inf
x1−φ1x3=a

[
Λ∗A1(x1) + Λ∗B(x3)

]
.

Notice that the latter is a convex function of a as the value function of a convex
optimization problem with a appearing only in the right-hand side of the constraints
(see [1, exercise 6.7]). Moreover, it is lower semicontinuous by lemma 6.3, and thus,
we can apply convex duality results. Finally, the stability condition (6) and the fact
E[A2] > φ2E[B] ensure that E[A1] < φ1E[B], which implies that ΛA1 (θ)+ΛB(−φ1θ)
has negative right derivative at θ = 0. Thus, it takes negative values for sufficiently
small θ > 0 and satisfies the required condition of lemma 6.2.

Indeed the convex dual of Λ∗(a) is

sup
a

sup
x1−φ1x3=a

[
θa− Λ∗A1(x1)− Λ∗B(x3)

]
= sup

x1,x3

[
θ(x1 − φ1x3)− Λ∗A1(x1)− Λ∗B(x3)

]
= ΛA1(θ) + ΛB(−φ1θ). �

6.2. Upper bound: Case 1

We now proceed to establish the upper bound in Case 1.

Proposition 6.5. If E[A1] < φ2E[B] and assuming that the arrival and service
processes satisfy assumptions A and C,

lim sup
U→∞

1
U

log P
[
L1

0 > U
]
6 − sup

{θ>0: max(ΛI
GPS,1(θ),ΛII

GPS,1(θ))<0}
θ.
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Proof. Consider all sample paths that lead to L1
0 > U . Looking backwards in time

from time 0, let −k∗ 6 0 be the first time that L1 = 0. Since the system is busy
during the interval [−k∗, 0], the server operates at capacity and

L1
0 6 L1

0 + L2
0 = L2

−k∗ + SA
1

−k∗,−1 + SA
2

−k∗,−1 − SB−k∗,−1. (25)

Since according to the GPS policy Q2 gets at least a fraction φ2 of the capacity, we can
upper bound L2

−k∗ by the queue length at a virtual system which gives to Q2 exactly
a φ2 fraction of the capacity (wasting some capacity at times that Q1 is empty). This
trick of using the virtual system to upper bound the queue length in the second queue
has been introduced in [14] and used in [32], although the upper bound proofs there
do not extend to the general services case. To establish the upper bound we will
use the fact that θ∗GPS is the optimal value of the restricted (GPS-OVERFLOW). Let
−n∗ 6 −k∗ be the first time (looking backwards in time from −k∗) that the queue
length of Q2 becomes zero in the virtual system. That is, the virtual system starts
working at −n∗ and seizes working at −k∗. Notice that such a time −n∗ always
exists since we are in Case 1, and Q2 is stable when it gets exactly a fraction φ2 of
the capacity. Then

L̃2
−k∗ = SA

2

−n∗,−k∗−1 − φ2S
B
−n∗,−k∗−1, (26)

where L̃2
−k∗ denotes the queue length of Q2 in the virtual system at time −k∗. Since

we argued that L̃2
−k∗ > L2

−k∗ , combining (26) with (25) yields

L1
0 6 SA

1

−k∗,−1 + SA
2

−n∗,−1 − SB−k∗,−1 − φ2S
B
−n∗,−k∗−1. (27)

Now, since Q1 is non-empty during the interval [−k∗ + 1, 0]

L1
0 6 SA

1

−k∗,−1 − φ1S
B
−k∗,−1. (28)

We will use the bound in (27) when SA
2

−n∗,−1 6 φ2S
B
−n∗,−1 and the bound in (28),

otherwise. Namely, we will use

L1
0 6

{
SA

1

−k∗,−1 + SA
2

−n∗,−1 − SB−k∗,−1 − φ2S
B
−n∗,−k∗−1 if SA

2

−n∗,−1 6 φ2S
B
−n∗,−1,

SA
1

−k∗,−1 − φ1S
B
−k∗,−1 if SA

2

−n∗,−1 > φ2S
B
−n∗,−1.

(29)
Let Ω1 denote the set of sample paths that satisfy SA

2

−n∗,−1 6 φ2S
B
−n∗,−1 and Ω2 its

complement. We have

P
[
L1

0 > U and Ω1
]

6 P
[
∃n > k > 0 s.t. SA

2

−n,−1 6 φ2S
B
−n,−1 and

SA
1

−k,−1 + SA
2

−n,−1 − SB−k,−1 − φ2S
B
−n,−k−1 > U

]
6 P

[
max

{n>k>0: SA2
−n,−16φ2S

B
−n,−1}

(
SA

1

−k,−1 + SA
2

−n,−1 − SB−k,−1 − φ2S
B
−n,−k−1

)
> U

]
.

(30)
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For sample paths in Ω2 we have

P
[
L1

0 > U and Ω2
]

6 P
[
∃n > k > 0 s.t. SA

2

−n,−1 > φ2S
B
−n,−1 and SA

1

−k,−1 − φ1S
B
−k,−1 > U

]
6 P

[
max

{n>k>0: SA2
−n,−1>φ2S

B
−n,−1}

(
SA

1

−k,−1 − φ1S
B
−k,−1

)
> U

]
. (31)

Let us now define

LI
GPS,1 , max

{n>k>0: SA2
−n,−16φ2S

B
−n,−1}

(
SA

1

−k,−1 + SA
2

−n,−1 − SB−k,−1 − φ2S
B
−n,−k−1

)
and

LII
GPS,1 , max

{n>k>0: SA2
−n,−1>φ2S

B
−n,−1}

(
SA

1

−k,−1 − φ1S
B
−k,−1

)
,

which after bringing the constraints in the objective function become

LI
GPS,1 = max

n>k>0
inf
u>0

[
SA

1

−k,−1 + (1− u)SA
2

−n,−1

− (1− uφ2)SB−k,−1 − φ2(1− u)SB−n,−k−1

]
(32)

and

LII
GPS,1 = max

n>k>0
inf
u>0

[
SA

1

−k,−1 + uSA
2

−n,−1 + (−uφ2−φ1)SB−k,−1−uφ2S
B
−n,−k−1

]
. (33)

Next we will upper bound the moment generating functions of LI
GPS,1 and LII

GPS,1
by using assumption C for the arrival and service processes. For the moment generating
function of LI

GPS,1 and θ > 0 we have

E
[
eθL

I
GPS,1
]

6
∑
n>0

∑
06k6n

inf
u>0

E
[

exp
{
θ
[
SA

1

−k,−1 + (1− u)SA
2

−n,−1

− (1− uφ2)SB−k,−1 − φ2(1− u)SB−n,−k−1

]}]
6
∑
n>0

∑
06k6n

inf
u>0

exp
{

(n− k)
[
ΛA2 (θ − θu) + ΛB

(
−θφ2(1− u)

)]
+ k
[
ΛA1 (θ) + ΛA2 (θ − θu) + ΛB

(
−θ(1− uφ2)

)]
+ Γ(θ,u)

}
6
∑
n>0

n sup
ζ∈[0,1]

inf
u>0

exp

{
n

[
ζ
(
ΛA2(θ − θu) + ΛB

(
−θφ2(1− u)

))
+ (1− ζ)

(
ΛA1 (θ) + ΛA2(θ − θu) + ΛB

(
−θ(1− uφ2)

))
+

Γ(θ,u)
n

]}
, (34)
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where we let ζ = (n−k)/n. In the second inequality above we have used assumption C
with m = 2, which implies the existence of some non-negative and bounded function
Γ(θ,u). Let us now define

ΛI
GPS,1(θ) , sup

ζ∈[0,1]
inf
u>0

[
ζ
(
ΛA2(θ − θu) + ΛB

(
−θφ2(1− u)

))
+ (1− ζ)

(
ΛA1 (θ) + ΛA2 (θ − θu) + ΛB

(
−θ(1− uφ2)

))]
. (35)

Let u∗(θ, ζ) be the optimal u in the above optimization problem for fixed ζ (it exists
due to the convexity and lower-semicontinuity of the limiting log-moment generating
functions). From (34) we have

E[eθL
I
GPS,1 ]

6
∑
n>0

n sup
ζ∈[0,1]

exp

{
n

[
ζ
(
ΛA2

(
θ − θu∗

)
+ ΛB

(
−θφ2

(
1− u∗

)))
+ (1− ζ)

(
ΛA1 (θ) + ΛA2

(
θ − θu∗

)
+ ΛB

(
−θ
(
1− u∗φ2

)))
+

Γ(θ,u∗)
n

]}
. (36)

Now, for every ε > 0 and θ > 0 we can take n large enough such that Γ(θ,u∗)/n < ε.
For sufficiently small ε and if ΛI

GPS,1(θ) < 0 then the infinite geometric series in the
right-hand side of (36) converges to some K1(θ, ε). That is,

E
[
eθL

I
GPS,1
]
6 K1(θ, ε), if ΛI

GPS,1(θ) < 0. (37)

Similarly, for the moment generating function of LII
GPS,1 and θ > 0 we have

E
[
eθL

II
GPS,1
]

6
∑
n>0

∑
06k6n

inf
u>0

E
[

exp
{
θ
[
SA

1

−k,−1 + uSA
2

−n,−1

+ (−uφ2 − φ1)SB−k,−1 − uφ2S
B
−n,−k−1

]}]
6
∑
n>0

∑
06k6n

inf
u>0

exp
{

(n− k)
[
ΛA2(θu) + ΛB(−θφ2u)

]
+ k
[
ΛA1 (θ) + ΛA2 (θu) + ΛB

(
−θ(φ1 + uφ2)

)]
+ Γ′(θ,u)

}
6
∑
n>0

n sup
ζ∈[0,1]

inf
u>0

exp

{
n

[
ζ
(
ΛA2(θu) + ΛB(−θφ2u)

)
+ (1− ζ)

(
ΛA1 (θ) + ΛA2(θu) + ΛB

(
−θ(φ1 + uφ2)

))
+

Γ′(θ,u)
n

]}
. (38)

In the second inequality above we have used assumption C. Let us now define

ΛII
GPS,1(θ) , sup

ζ∈[0,1]
inf
u>0

[
ζ
(
ΛA2(θu) + ΛB(−θφ2u)

)
+ (1− ζ)

(
ΛA1(θ) + ΛA2(θu) + ΛB

(
−θ(φ1 + uφ2)

))]
. (39)
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Let û∗(θ, ζ) be the optimal u in the above optimization problem for fixed ζ . From
(38) we have

E
[
eθL

II
GPS,1
]
6
∑
n>0

n sup
ζ∈[0,1]

exp

{
n

[
ζ
(
ΛA2

(
θû∗
)

+ ΛB
(
−θφ2û

∗))
+ (1− ζ)

(
ΛA1(θ) + ΛA2

(
θû∗
)

+ ΛB
(
−θ
(
φ1 + û∗φ2

)))
+

Γ′(θ, û∗)
n

]}
. (40)

Now for every ε′ > 0 and θ > 0 we can take n large enough such that Γ′(θ, û∗)/n < ε′.
For sufficiently small ε′ and if ΛII

GPS,1(θ) < 0 then the infinite geometric series in the
right-hand side of (40) converges to some K2(θ, ε′). That is,

E
[
eθL

II
GPS,1
]
6 K2

(
θ, ε′

)
if ΛII

GPS,1(θ) < 0. (41)

We can now invoke the Markov inequality and by using the bounds (34) and (38)
on (30) and (31) obtain

P
[
L1

0 > U
]
6 P
[
L1

0 > U and Ω1
]

+ P
[
L1

0 > U and Ω2
]

6
(
E
[
eθL

I
GPS,1
]

+ E
[
eθL

II
GPS,1
])

e−θU

6
(
K1(θ, ε) +K2

(
θ, ε′

))
e−θU if max

(
ΛI

GPS,1(θ), ΛII
GPS,1(θ)

)
< 0. (42)

Optimizing over θ to get the tightest bound completes the proof of the proposition. �

We are now left with proving that this upper bound matches the lower bound
θ∗GPS. The result which is based on lemma 6.2 and convex duality is established in the
next proposition.

Proposition 6.6 (GPS upper bound, Case 1). If E[A2] < φ2E[B] and assuming that
the arrival and service processes satisfy assumptions A and C, the steady-state queue
length L1 of queue Q1 satisfies

lim sup
U→∞

1
U

log P
[
L1 > U

]
6 −θ∗GPS.

Proof. It suffices to prove that θ∗GPS = sup{θ>0: max(ΛI
GPS,1(θ),ΛII

GPS,1(θ))<0} θ. Consider
the following expressions:

ΛI∗
GPS,1(a) , inf

ζ(x2−φ2x3)+(1−ζ)(y1+y2−y3)=a
ζ(x2−φ2x3)+(1−ζ)(y2−φ2y3)60

06ζ61

[
ζ
(
Λ∗A2(x2) + Λ∗B(x3)

)
+ (1− ζ)

(
Λ∗A1 (y1) + Λ∗A2 (y2) + Λ∗B(y3)

)]
(43)
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and

ΛII∗
GPS,1(a) , inf

(1−ζ)(y1−φ1y3)=a
ζ(x2−φ2x3)+(1−ζ)(y2−φ2y3)>0

06ζ61

[
ζ
(
Λ∗A2(x2) + Λ∗B(x3)

)
+ (1− ζ)

(
Λ∗A1(y1) + Λ∗A2(y2) + Λ∗B(y3)

)]
, (44)

which by a change of variables can be written as

ΛI∗
GPS,1(a) = inf

(x2−φ2x3)+(y1+y2−y3)=a
(x2−φ2x3)+(y2−φ2y3)60

inf
ζ∈[0,1]

[
ζ

(
Λ∗A2

(
x2

ζ

)
+ Λ∗B

(
x3

ζ

))

+ (1− ζ)

(
Λ∗A1

(
y1

1− ζ

)
+ Λ∗A2

(
y2

1− ζ

)
+ Λ∗B

(
y3

1− ζ

))]
(45)

and

ΛII∗
GPS,1(a) = inf

(y1−φ1y3)=a
(x2−φ2x3)+(y2−φ2y3)>0

inf
ζ∈[0,1]

[
ζ

(
Λ∗A2

(
x2

ζ

)
+ Λ∗B

(
x3

ζ

))

+ (1− ζ)

(
Λ∗A1

(
y1

1− ζ

)
+ Λ∗A2

(
y2

1− ζ

)
+ Λ∗B

(
y3

1− ζ

))]
. (46)

(It is here understood that at ζ = 0 or ζ = 1 the expressions in (45) and (46) take the
corresponding values of expressions (43) and (44), respectively.) By [29, theorem 5.8]
the function

inf
ζ∈[0,1]

[
ζ

(
Λ∗A2

(
x2

ζ

)
+ Λ∗B

(
x3

ζ

))
+ (1− ζ)

(
Λ∗A1

(
y1

1− ζ

)
+ Λ∗A2

(
y2

1− ζ

)
+ Λ∗B

(
y3

1− ζ

))]
is convex in (x2,x3, y1, y2, y3) and therefore the functions ΛI∗

GPS,1(a) and ΛII∗
GPS,1(a)

are convex in a as optimal value functions of a convex optimization problem with
a appearing only in the right-hand side of the constraints. Moreover, they are lower
semicontinuous by lemma 6.3. We will next show that the convex duals of these
functions are ΛI

GPS,1(θ) and ΛII
GPS,1(θ), respectively. Indeed, by using convex duality,

we have

sup
a

[
θa− ΛI∗

GPS,1(a)]

= sup
ζ∈[0,1]

sup
a

sup
ζ(x2−φ2x3)+(1−ζ)(y1+y2−y3)=a
ζ(x2−φ2x3)+(1−ζ)(y2−φ2y3)60

06ζ61

[
θa− ζ

(
Λ∗A2(x2) + Λ∗B(x3)

)

− (1− ζ)
(
Λ∗A1(y1) + Λ∗A2(y2) + Λ∗B(y3)

)]
= sup

ζ∈[0,1]
inf
u>0

sup
x2,x3
y1,y2,y3

[
θζ(x2 − φ2x3) + θ(1− ζ)(y1 + y2 − y3)− uζ(x2 − φ2x3)
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Figure 3. θ∗GPS,1 as the largest positive root of the equation ΛGPS,1(θ) = 0.

− u(1− ζ)(y2 − φ2y3)− ζ
(
Λ∗A2(x2) + Λ∗B(x3)

)
− (1− ζ)

(
Λ∗A1 (y1) + Λ∗A2 (y2) + Λ∗B(y3)

)]
= sup

ζ∈[0,1]
inf
u>0

[
ζ
(
ΛA2 (θ − u) + ΛB(−θφ2 + uφ2)

)
+ (1− ζ)

(
ΛA1 (θ) + ΛA2(θ − u) + ΛB(−θ + uφ2)

)]
= ΛI

GPS,1(θ).

Similarly, it can be shown that ΛII
GPS,1(θ) is the convex dual of ΛI∗

GPS,1(a). Let
now

θI , inf
a>0

1
a

ΛI∗
GPS,1(a) (47)

and

θII , inf
a>0

1
a

ΛII∗
GPS,1(a). (48)

Using the result of lemma 6.2, θI (respectively θII) is the largest positive root of
ΛI

GPS,1(θ) = 0 (respectively ΛII
GPS,1(θ) = 0). It can be seen that ΛI

GPS,1(θ) satisfies
the condition of lemma 6.2 (being negative for sufficiently small θ) because it takes
the value zero at θ = 0 and has negative right derivative at θ = 0. The same is
true for ΛII

GPS,1(θ). As figure 3 indicates, due to convexity, θ∗GPS,1 , min(θI, θII) is the

largest positive root of the equation ΛGPS,1(θ) , max[ΛI
GPS,1(θ), ΛII

GPS,1(θ)] = 0, that
is, −θ∗GPS,1 is equal to the upper bound established in proposition 6.5.

The last thing we have to show is that θ∗GPS,1 = θ∗GPS. This is based on θ∗GPS,1
being equal to min(θI, θII). Note, from (47), that θI corresponds to the optimal solution
of a control problem very similar to (GPS-OVERFLOW) with a trajectory of the form
appearing in figure 4(a). Also, from (48), θII corresponds to the optimal solution of a
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Figure 4. Trajectories for the control problems corresponding to θI and θII.

control problem with a trajectory of the form appearing in figure 4(b).3 This optimal
control problem, whose trajectories appear in figures 4(a) and (b) is different from
(GPS-OVERFLOW) in two aspects:

(i) on the L2-axis the cost functional is Λ∗
A2(x2) + Λ∗B(x3) instead of Λ∗

A1(x1) +
Λ∗
A2 (x2) + Λ∗B(x3), and

(ii) its dynamics in region B are given by the equation L̇2 = x2−φ2x3. We will refer
to this as the modified (GPS-OVERFLOW).

We will next argue that the trajectories in figures 4(a) and (b) are dominated by the
ones in figures 2(a) and (b), respectively (equivalently, the optimal ζ in (43) and
(44) is zero). Note that along the trajectories in figures 2(a) and (b) the modified
(GPS-OVERFLOW) has identical cost structure and dynamics to the restricted (GPS-
OVERFLOW). Thus, the above argument will establish θ∗GPS,1 = θ∗GPS.

To this end, consider the trajectory in figure 4(a) with optimal value given by the
expression (43). It can be seen that taking the time average over class two arrivals,
i.e., setting the class two arrival rate to x̄2 = ζx2 + (1− ζ)y2, we maintain feasibility
and reduce the cost (by convexity). The resulting trajectory has either x̄2 6 φ2x3

or x̄2 > φ2x3. In the former case, Q2 stays empty during the first ζ fraction of its
duration and it has the form appearing in figure 2(a). In the latter case, it has the form
depicted in figure 4(a) but with x2 = y2 = x̄2 and x̄2 > φ2x3. We can now invoke
the argument following equations (59) and (60) in the appendix to conclude that the
trajectory of interest is dominated by the one in figure 2(a).

A similar argument applies to the trajectory in figure 4(b) with the optimal value
given by the expression (44). We first shorten the time that it spends on the L2 axis
to obtain trajectories of the form appearing in figure 2(b) or figure 4(a). In the latter
case, the argument outlined in the paragraph above applies. �

We summarize propositions 6.6 and 6.4 in the following proposition.

3 For both trajectories we let ζ be the fraction of time that they spend on the L2 axis and x2,x2

(respectively y1, y2, y3) the controls for the initial ζ (respectively last 1− ζ) fraction of the time.
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Proposition 6.7 (GPS upper bound). Assuming that the arrival and service processes
satisfy assumptions A and C, and under the GPS policy, the steady-state queue
length L1 of queue Q1 satisfies

lim sup
U→∞

1
U

log P
[
L1 > U

]
6 −θ∗GPS. (49)

7. Reformulations and special cases

In this section we show an alternative expression for θ∗GPS and specialize our
results to the case of priority policies.

An interesting observation is that strict priority policies are a special case of the
GPS policy. Class 1 customers have higher priority when φ1 = 1 and lower priority
when φ1 = 0. We can therefore obtain the performance of these two priority policies
as a by-product of our analysis. Note that the result for the policy that assigns higher
priority to class 1 customers, matches the FCFS single class result (see [4,19,21]) since
under this policy, class 1 customers are oblivious of class 2 customers. We summarize
the performance of priority policies in the next corollary, the proof of which can be
found in [3].

Corollary 7.1 (Priority policies). Under strict priority policy for class 1 customers
(P1), assuming that the arrival and service processes satisfy assumptions A, B and C
the steady-state queue length L1 of queue Q1 satisfies

lim
U→∞

1
U

log P
[
L1 > U

]
= −θ∗P1

, (50)

where θ∗P1
is given by

θ∗P1
= inf

a>0

1
a

Λ∗P1
(a), (51)

and where

Λ∗P1
(a) , inf

x1−x3=a

[
Λ∗A1(x1) + Λ∗B(x3)

]
. (52)

Under strict priority policy for class 2 customers (P2), the steady-state queue length L1

of queue Q1 satisfies

lim
U→∞

1
U

log P
[
L1 > U

]
= −θ∗P2

, (53)

where θ∗P2
is given by

θ∗P2
= inf

a>0

1
a

Λ∗P2
(a), (54)
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and where

Λ∗P2
(a) , inf

x1+x2−x3=a
x26x3

[
Λ∗A1 (x1) + Λ∗A2 (x2) + Λ∗B(x3)

]
. (55)

As the results of theorem 3.1 and corollary 7.1 indicate, the calculation of the
overflow probabilities involves the solution of an optimization problem. We will next
show that because of the special structure that these problems exhibit, this is equivalent
to finding the maximum root of a convex function. Such a task might be easier to
perform in some cases, analytically or computationally. This equivalence relies mainly
on lemma 6.2. Hence, using duality, we express θ∗GPS as the largest root of a convex
function. On a notational remark, we will be denoting by ΛI

GPS(·) and ΛII
GPS(·), the

convex duals of ΛI∗
GPS(·) and ΛII∗

GPS(·), respectively. Notice, that ΛI∗
GPS(a) and ΛII∗

GPS(a)
are convex functions of a as the value functions of a convex optimization problem
with a appearing only in the right-hand side of the constraints.

Theorem 7.2. θ∗GPS is the largest positive root of the equation

ΛGPS(θ) , ΛA1(θ) + inf
06u6θ

[
ΛA2(θ − u) + ΛB(−θ + φ2u)

]
= 0. (56)

Proof. The first thing to note is that ΛGPS(θ) is a convex function of θ. This can be
seen when we write it as the value function of a convex optimization problem with θ
appearing only in the right-hand side of the constraints, i.e.,

ΛGPS(θ) = ΛA1(θ) + inf
z=θ

06u6θ

[
ΛA2(z − u) + ΛB(−z + φ2u)

]
.

Next we show that equation (56) has a positive, possibly infinite, root. To this
end, observe that

ΛGPS(θ) 6 ΛA1(θ) + ΛA2 (θ) + ΛB(−θ),

and that both sides of the above inequality are 0 at θ = 0. This implies that their
derivatives at θ = 0 satisfy

Λ′GPS(0) 6 Λ′A1(0) + Λ′A2 (0)− Λ′B(0) < 0,

where the last inequality follows from the stability condition (6). The convexity of
ΛGPS(·) is sufficient to guarantee the existence of a positive, possibly infinite, root.
Note that this also implies that ΛGPS(·) is negative for sufficiently small θ > 0 as the
condition in lemma 6.2 requires.

We now calculate the functions ΛI
GPS(θ) and ΛII

GPS(θ), using convex duality. Note
that ΛI∗

GPS(a) and ΛII∗
GPS(a) are both lower semicontinuous by lemma 6.3. We have
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ΛI
GPS(θ) = sup

a

[
θa− ΛI∗

GPS(a)
]

= sup
a

sup
x1+x2−x3=a
x26φ2x3

[
θa− Λ∗A1(x1)− Λ∗A2 (x2)− Λ∗B(x3)

]
= sup

a
sup

x1+x2−x3=a
x26φ2x3

[
θ(x1 + x2 − x3)− Λ∗A1 (x1)− Λ∗A2(x2)− Λ∗B(x3)

]
= sup
x26φ2x3

[
θ(x1 + x2 − x3)− Λ∗A1(x1)− Λ∗A2 (x2)− Λ∗B(x3)

]
= ΛA1(θ) + inf

u>0
sup
x2,x3

[
θ(x2 − x3)− Λ∗A2(x2)− Λ∗B(x3) + u(φ2x3 − x2)

]
= ΛA1(θ) + inf

u>0

[
ΛA2(θ − u) + ΛB(−θ + uφ2)

]
.

In the fifth equality above we have dualized the constraint x2 6 φ2x3 and used the
definition of ΛA1 (θ). Similarly, the convex dual of ΛII∗

GPS(·) is

ΛII
GPS(θ) = sup

a

[
θa− ΛII∗

GPS(a)
]

= sup
a

sup
x1−φ1x3=a
x2>φ2x3

[
θa− Λ∗A1(x1)− Λ∗A2 (x2)− Λ∗B(x3)

]
= ΛA1 (θ) + inf

u>0
sup
x2,x3

[
θ(−φ1x3)− Λ∗A2 (x2)− Λ∗B(x3) + u(−φ2x3 + x2)

]
= ΛA1 (θ) + inf

u>0

[
ΛA2(u) + ΛB(−θφ1 − uφ2)

]
= ΛA1 (θ) + inf

u6θ

[
ΛA2 (θ − u) + ΛB(−θ + uφ2)

]
.

In the fifth equality above we have made the substitution u := θ − u.
Using the result of lemma 6.2, θ1 , infa>0(1/a)ΛI∗

GPS(a) is the largest positive
root of ΛI

GPS(θ) = 0 (this equation has a positive, possibly, infinite root by the argument
used to establish that ΛGPS(θ) = 0 does). Similarly, θ2 , infa>0(1/a)ΛII∗

GPS(a) is the
largest positive root of ΛII

GPS(θ) = 0. By equation (9), θ∗GPS = min(θ1, θ2). The situation
is exactly the same as in figure 3, that is, θ∗GPS is the largest positive root of the equation
max[ΛI

GPS(θ), ΛII
GPS(θ)] = 0.

The last thing we have to show to conclude the proof is that ΛGPS(θ) =
max[ΛI

GPS(θ), ΛII
GPS(θ)]. Indeed, we have

max
(
ΛI

GPS(θ), ΛII
GPS(θ)

)
= max

(
ΛA1(θ) + inf

u>0

[
ΛA2(θ − u) + ΛB(−θ + uφ2)

]
,

ΛA1(θ) + inf
u6θ

[
ΛA2(θ − u) + ΛB(−θ + uφ2)

])
= ΛA1(θ) + inf

06u6θ

[
ΛA2(θ − u) + ΛB(−θ + uφ2)

]
(56)
= ΛGPS(θ). �
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Again, as it was the case with theorem 3.1, the result of theorem 7.2 can be
specialized to the case of priority policies.

Corollary 7.3. θ∗P 1 is the largest positive root of the equation

ΛP 1(θ) , ΛA1(θ) + ΛB(−θ) = 0. (57)

Also, θ∗P 2 is the largest positive root of the equation

ΛP 2(θ) , ΛA1 (θ) + inf
06u6θ

[
ΛA2 (θ − u) + ΛB(−θ + u)

]
= 0. (58)

We conclude this section noting that, by symmetry, all the results obtained here
can be easily adapted (it suffices to substitute everywhere 1 := 2 and 2 := 1) to estimate
the overflow probability of the second queue and characterize the most likely ways
that it builds up.

8. Conclusions

In this paper we considered a multiclass switch, with dedicated buffers for each
service class. Under the GPS policy, we have obtained the asymptotic tail of the
overflow probability for each buffer. In the standard large deviations methodology we
provided a lower and matching (up to first degree of the exponent) upper bound on the
buffer overflow probabilities. We formulated the problem of calculating the maximum
overflow probability (over all scenarios that lead to overflow) as an optimal control
problem. This formulation provides particular insight into the problem, as it yields an
explicit characterization of the most likely modes of overflow. We have addressed the
case of multiplexing two streams. The general case of N streams remains an open
problem.
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Appendix

We will show that the trajectories in figure 2 are optimal over all feasible trajec-
tories of (GPS-OVERFLOW).

The first property of (GPS-OVERFLOW) that we establish is that optimal control
trajectories can be taken to be constant within each of the three regions of state
dynamics. The result is stated in the next lemma, the proof of which is given in
a somewhat more general context in [3]. It is based on the convexity of the large
deviations rate functions of the arrival and service processes.
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Lemma A.1. Fix a time interval [−T1,−T2]. Consider a segment of a control tra-
jectory {x1(t),x2(t),x3(t); t ∈ [−T1,−T2]}, achieving cost V , such that the corre-
sponding state trajectory {L1(t),L2(t); t ∈ (−T1,−T2)} stays in one of the regions A,
B, or C. Then there exist scalars x̄1, x̄2 and x̄3 such that the segment of the control
trajectory {x1(t) = x̄1, x2(t) = x̄2, x3(t) = x̄3; t ∈ [−T1,−T2]} achieves cost at
most V , with the same corresponding states at t = −T1 and t = −T2.

Given this property, to solve (GPS-OVERFLOW) it suffices to restrict ourselves
to state trajectories with constant control variables in each of the regions A, B and C.
A trajectory is called optimal if it achieves the lowest cost among all trajectories with
the same initial and final state. Since we have a free time problem, any segment of an
optimal trajectory is also optimal.

Consider now a control trajectory {xLi (t); t ∈ [−T , 0]} with corresponding state
trajectory {L1(t),L2(t); t ∈ [−T , 0]}, which leads to a final state (L1(0),L2(0)).
Define a scaled trajectory as

xQi (t) = xLi (t/α), i = 1, 2, 3, t ∈ [−αT , 0],

Qj(t) =αLj(t/α), j = 1, 2, t ∈ [−αT , 0],

and note that it leads to the final state (αL1(0),αL2(0)). Then, the cost of the Q
trajectory is given by∫ 0

−αT

[
Λ∗A1

(
xQ1 (t)

)
+ Λ∗A2

(
xQ2 (t)

)
+ Λ∗B

(
xQ3 (t)

)]
dt

= α

∫ 0

−T

[
Λ∗A1

(
xL1 (t)

)
+ Λ∗A2

(
xL2 (t)

)
+ Λ∗B

(
xL3 (t)

)]
dt.

Using this observation, it follows easily that every scaled version of an optimal trajec-
tory is optimal for the corresponding terminal state.

Given this homogeneity property we can compare the state trajectories in fig-
ures 5(a), (b) and (c). If the trajectory in figure 5(a) is optimal then so is the scaled
version (by α = a2/a1) in figure 5(b) and as consequence its segment which appears
in figure 5(c) is also optimal (since we have a free time problem).

We next proceed with the solution of (GPS-OVERFLOW) using an elaborate
interchange argument, which is mainly based on convexity considerations. Starting
from any arbitrary trajectory with piecewise constant controls as the one appearing
in figure 6(a), we use the homogeneity property (by appropriately scaling the dashed
segment) to reduce it to the one in figure 6(b). Therefore, we conclude that optimal
state trajectories which have L1(t) = 0 for some initial segment can be restricted
to have one of the forms depicted in figures 7(a) and (b). Similarly, optimal state
trajectories which have L1(t) > 0 for some initial segment can be restricted to have
one of the forms depicted in figures 2(a) and (b).

Consider now the trajectories in figures 7(a) and (a′). The segment of (a) and (a′)
that is in region A has the same slope, thus the same controls, which implies that the
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Figure 5. By the homogeneity property, optimality of the trajectory in (a) implies optimality of the
trajectory in (b) which by its turn implies optimality of the trajectory in (c).

Figure 6. Using the homogeneity property the trajectory in (a) reduces to the one in (b). The same
property is used to exclude trajectories with an infinite number of linear pieces such as the one in (c),

and reduce them to the one in (d) which is “ε-close” to the trajectory in figure 2(a).

trajectory in (a′) is at least as cheap since it spends less time on the L2 axis. Hence,
we have reduced the candidates for optimal trajectories to the ones in figures 2(a), (b),
and 7(b).
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Figure 7. Candidates for optimal state trajectories are depicted in (a), (b). The trajectory in (a) is reduced
to the one in (a′) which has the same form as the one in (b). The trajectory in (b) is reduced to the one
in (b′) which is contradicted by the time-homogeneity property. Hence, optimal state trajectories have

only the form in figures 2(a) and (b).

Finally, consider the state trajectory in figure 7(b). Assume, without loss of
generality that it spends a ζ fraction of its total time T on the L2 axis (region B) and
the remaining (1− ζ) fraction in region A. Let, also, {xj; j = 1, 2, 3} be the controls
in region B and {yj; j = 1, 2, 3} the controls in region A. The feasibility constraints
are

x1 6 φ1x3,

ζT (x1 + x2 − x3) + (1− ζ)T (y2 − φ2y3) = 0,

(1− ζ)T (y1 − φ1y3) = 1.

Note that the time average control over x2, y2, i.e., x̄2 = ζx2 + (1 − ζ)y2, satisfies
the same feasibility constraints and therefore by convexity it is at least as profitable
to have x2 = y2 = x̄2. The corresponding trajectory can either have the form in
figure 2(a) or figure 7(b). If the latter is the case then

x̄2 >φ2x3, (59)

x̄2 <φ2y3. (60)

Consider the trajectory with x′3 = x3 + ε/ζ and y′3 = y3 − ε/(1 − ζ) for some small
ε > 0. This latter trajectory serves the same total number of customers as the former
one in the interval [−T , 0] (equal to ζTx3 + (1 − ζ)Ty3) and it is at least as cheap
by convexity of the rate functions. It is depicted in figure 7(b′). We can now apply
the same argument to its dashed segment. If we keep doing that we conclude that the
trajectory in figure 2(a) is at least as cheap.

Therefore, for every state trajectory of (GPS-OVERFLOW), there exists one of
the forms depicted in figures 2(a) and (b) with no larger cost. Note that to arrive at this
conclusion we have not considered trajectories with an infinite number of linear pieces
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accumulating near the origin, such as the one appearing in figure 6(c). We next argue
that such a trajectory is dominated by the one in figure 2(a). To see that let us consider
an optimal trajectory such as the one in figure 6(c) with minimal final segment on the
horizontal axis, i.e., an optimal trajectory with minimum ‖(ρ, 0) − (1, 0)‖. We apply
the homogeneity property to obtain the dashed (optimal) trajectory in the same figure
with terminal state (ρ′, 0). Since we have a free time problem an optimal trajectory
with terminal state (1, 0) can be constructed by following the dashed one until state
(ρ′, 0), and then switching to the solid one until state (1, 0). Applying inductively the
same construction we end up with a trajectory that stays on the horizontal axis except
possibly when ‖(L1,L2)‖ 6 ε (in the vicinity of the origin); see figure 6(d). This is a
trajectory that follows the trajectory in figure 2(a) from (ε, 0) to (1, 0). Let Jε denote
its optimal value, and J∗ denote the optimal value of (GPS-OVERFLOW). The above
argument establishes

J∗ 6 Jε + O(ε),

for all ε > 0. This suffices to exclude trajectories with infinite number of pieces. Note
that if an optimal trajectory with infinite number of linear pieces does not have a final
segment on the horizontal axis, it will have a segment with infinite number of linear
pieces terminating on the vertical axis, thus, a similar argument holds in this case.

In summary, in this appendix we established the following:

Theorem A.2. The optimal value of the problem (GPS-OVERFLOW) is given by
θ∗GPS, as it is defined in (9).
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