
694 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

Regression Methods for Pricing Complex
American-Style Options

John N. Tsitsiklis, Fellow, IEEE,and Benjamin Van Roy

Abstract—We introduce and analyze a simulation-based
approximate dynamic programming method for pricing complex
American-style options, with a possibly high-dimensional under-
lying state space. We work within a finitely parameterized family
of approximate value functions, and introduce a variant of value
iteration, adapted to this parametric setting. We also introduce
a related method which uses a single (parameterized) value
function, which is a function of the time-state pair, as opposed to
using a separate (independently parameterized) value function for
each time. Our methods involve the evaluation of value functions
at a finite set, consisting of “representative” elements of the state
space. We show that with an arbitrary choice of this set, the
approximation error can grow exponentially with the time horizon
(time to expiration). On the other hand, if representative states
are chosen by simulating the state process using the underlying
risk-neutral probability distribution, then the approximation
error remains bounded.

I. INTRODUCTION

A N important problem in financial intermediation is that
of pricing and hedging American-style options—i.e., op-

tions with flexible exercise features. Such contracts—ranging
from American equity and fixed income options to convertible
bonds—arise in virtually all major financial markets. Their anal-
ysis typically entails solving problems of optimal stopping. For
simple contracts, including “vanilla options” such as American
puts and calls, the relevant optimal stopping problems can be
solved efficiently by traditional numerical methods. However,
the computational requirements associated with such methods
become prohibitive as the number of uncertainties influencing
the value of a contract grows.

A simple approach to solving optimal stopping prob-
lems—and therefore pricing and hedging contracts with
flexible exercise features—involves “backward induction,”
i.e., the dynamic programming value iteration algorithm. The
process starts by computing a value function at the expiration
date, and then recursively works backward, computing value
functions for preceding time periods. Each value function maps
states to expected future payoffs, where the expectation is taken
with respect to “risk-neutral probabilities.” Optimal stopping
decisions (i.e., exercising decisions) can be made by comparing
the payoff for stopping (i.e., the intrinsic value of a contract)
against the expected future payoff.

Manuscript received August 15, 2000; revised February 20, 2001. This work
was supported by the Merrill Lynch-MIT partnership, NSF CAREER Grant
ECS-9985229, and ONR Grant MURI N00014-00-1-0637.

J. N. Tsitsiklis is with the Massachusetts Institute of Technology (MIT), Cam-
bridge, MA 02139 USA.

B. Van Roy is with Stanford University, Stanford, CA 94305 USA.
Publisher Item Identifier S 1045-9227(01)05023-8.

Many complex contracts involve contingencies on multiple
sources of uncertainty, each represented as a state variable. The
size of the state space grows exponentially in the number of
variables involved, and consequently, storage and manipulation
of functions over the state space—as entailed in value itera-
tion—becomes intractable. This phenomenon—known as the
curse of dimensionality—creates a need for parsimonious ap-
proximation schemes.

One simple approximation method—dating all the way back
to 1959 [3]—is approximate value iteration. Similar to value it-
eration, this approximation algorithm proceeds recursively, be-
ginning with a value function at expiration and recursively com-
puting value functions for preceding time periods. However, in-
stead of computing and storing each value function at every
state, values are computed only at a representative sample of
states and a linear combination of basis functions is fit to the
data via least-squares regression, in order to approximate the
value function over the entire state space.

In earlier work [20], we studied versions of approximate value
iteration for infinite horizon optimal stopping problems, where
the recursive procedure is iterated with the hope of converging to
an approximate value function for the infinite horizon problem
(e.g., a perpetual option). As established earlier for related al-
gorithms [19], approximate value iteration can diverge. How-
ever, we were able to develop special variants of approximate
value iteration that make use of simulated trajectories from the
underlying Markov chain and are guaranteed to converge to an
approximation of the desired value function.

In this paper, we bring the line of analysis developed in [20]
to bear on finite horizon problems, which are more relevant to
real-world financial contracts (such contracts almost exclusively
prescribe finite expiration times). A key observation in this con-
text is that errors in approximate value iteration can grow expo-
nentially in the problem horizon (i.e., time to expiration). This
phenomenon closely relates to the fact that value iteration can
diverge when applied to infinite-horizon problems, as observed
in [20]. However, using simulated trajectories in a spirit similar
to algorithms from [20], one can design versions of approximate
value iteration for which the error is uniformly bounded over all
horizons.

Let us note that other researchers have independently devel-
oped a similar algorithm that benefits from the same property.
In particular, Longstaff and Schwartz [14] have also proposed
the use of simulated trajectories in approximate value iteration.
Empirical results reported in [14] are promising, but the authors
do not offer an analysis relating performance to the use of sim-
ulated trajectories. The main result presented in [14] is asymp-
totic, establishing only that approximations converge to the cor-

1045–9227/01$10.00 © 2001 IEEE

TSITSIKLIS AND VAN ROY: REGRESSION METHODS FOR PRICING 695

rect value function as the number of basis functions and trajec-
tories used by the algorithm grow. In addition to assymptotic
results of this kind, the theory we provide in this paper offers
theoretical support for the apparent effectiveness of such algo-
rithms when using a limited number of basis functions.

An additional contribution of this paper is a version of ap-
proximate value iteration that uses basis functions that gener-
alize over both the state space and time. In particular, as an alter-
native to generating a new approximation to the value function
at each time period, we consider a single approximation made
up of basis functions each taking as arguments both state and
time. Such approximations tend to be far more parsimonious,
since the number of parameters computed and stored need not
grow linearly with the number of time periods.

Other versions of approximate value iteration have also been
proposed in the options pricing literature. Some involve parti-
tioning the state space and computing one value per partition
[18], [2]. This can be viewed as a version of approximate value
iteration involving piece-wise constant approximations, which
tend to be somewhat restrictive. Another notable approach
involves “stochastic mesh” methods [1], [7]–[9], [16]. These
methods can be thought of as variants of Rust’s algorithm
[17], specialized to the context of optimal stopping. Values are
approximated at points in a finite mesh over the state space in
a spirit similar to traditional grid techniques. The difference,
however, is that the mesh includes a tractable collection of
randomly sampled states, rather than the intractable grid that
would arise in standard state space discretization. Though using
a stochastic mesh can curtail computational requirements in
significant ways, such algorithms generally require a number
of samples that grows exponentially in the dimension of the
state space, except for some cases that satisfy unrealistically
restrictive assumptions such as those presented in [17].

This paper is organized as follows. In Section II, we introduce
the optimal stopping problem associated with the option pricing
problem, and the corresponding value iteration (dynamic pro-
gramming) algorithm. In Section III, we introduce a few vari-
ants of value iteration that work within a parameterized family
of value functions, and carry out computations at a finite set
of “representative” elements of the state space. In Section IV,
we show by means of examples, that such methods can have
a large approximation error (exponential in the time horizon
of the problem). In Section V, we show that if representative
states are chosen by simulating the state process using the un-
derlying risk-neutral probability distribution, then the approx-
imation error remains bounded. In Section VI, we introduce a
related method which uses a single (parameterized) value func-
tion, which is a function of the time-state pair, as opposed to
using a separate (independently parameterized) value function
for each time. Finally, Section VII contains some brief conclu-
sions.

II. PRICING VIA VALUE ITERATION

The problem of pricing an American-style option amounts to
one of optimal stopping. A reward equal to the intrinsic value of
the option, discounted at the risk-free rate, is received at termi-
nation. The price of the option is the expected reward under an

optimal exercising strategy, where the expectation is taken with
respect to a risk-neutral distribution. Hence, the price is given
by

where
risk-neutral state process, assumed
to be Markov;
risk-free interest rate, assumed to be
a known constant;
intrinsic value of the option when
the state is ;
expiration time, and the supremum
is taken over stopping times that as-
sume values in .

Naturally, we consider stopping times with respect to the fil-
tration , where is the -field generated
by . We will assume for simplicity that the
risk-neutral process is time-homogeneous, as is true for most
problems solved in practice.

It is sometimes convenient to consider discrete-time versions
of the aforementioned optimal stopping problem. This modifi-
cation can be thought of as a requirement that the option be ex-
ercised at certain prespecified intervals—in other words, the op-
tion is treated as a Bermudan. The restriction on exercise times
diminishes the value of the option, but under mild technical con-
ditions, the difference in value is small and vanishes as the dif-
ference between allowable exercise times goes to zero.

Without loss of generality, let us assume that the expiration
time is equal to an integer , and that the allowable exercise
times are separated by a time interval of unit length. The price
of the resulting Bermudan option is then

where , and where ranges over the set of stopping
times (with respect to) that take values in

. In this discrete-time and Markovian formulation,
the dynamics of the risk-neutral process can be described by a
transition operator , defined by

Note that the above expression does not depend on, since the
process is assumed time-homogeneous.

A primary motivation for this discretization is that it facil-
itates exposition of computational procedures, which typically
entail discretization. The value iteration algorithm, for example,
provides a means for options pricing when time is discrete.
This algorithm generates a sequence of value
functions, where is the price of the option at time, if
is equal to . The value functions are generated iteratively ac-
cording to

and

696 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

where the maximum is taken pointwise. The initial price of the
option is then .

In principle, value iteration can be used to price any
Bermudan option. However, the algorithm suffers from the
“curse of dimensionality”—that is, the computation time grows
exponentially in the numberof state variables. This difficulty
arises because computations involve discretization of the state
space, and such discretization leads to a grid whose size grows
exponentially in dimension. Since one value is computed and
stored for each point in the grid, the computation time exhibits
exponential growth. For complex American options such as
those involving path dependencies (e.g., Asian options) or
multi-factor interest rate models, the number of state variables
can be substantial and the computational requirements of value
iteration become prohibitive.

III. A PPROXIMATIONS

Unless the dimension of the state space is small, the pricing
problem becomes intractable and calls for approximation of the
value functions. The first step is to introduce a parameterized
value function , which assigns values
to states , where is a vector of free parameters. The
objective then becomes to choose, for each, a parameter vector

so that

For this to be possible, a suitably rich parameterization has to
be chosen, so that the “approximation architecture” has the ca-
pability of closely approximating the functions of interest. This
choice typically requires some practical experience or theoret-
ical analysis that provides rough information about the shape
of the function to be approximated. Furthermore, we need al-
gorithms for computing appropriate parameter values. We will
present variants of value iteration designed to accommodate the
latter need.

A. Features and Approximation Architectures

In choosing a parameterization to approximate the value func-
tion for a particular problem, it is useful to consider the notion
of a feature. Let us define afeatureas a function mapping the
state space to . Given a problem, one may wish to define
several features . Then, to each state , we as-
sociate the feature vector . Such a
feature vector is meant to represent the most salient properties
of a given state.

In a feature-based parameterization, depends on
only through . Hence, for some function

, we have . In problems of interest, the
value functions can be complicated, and a feature-based param-
eterization attempts to break their complexity into less compli-
cated mappings and . There is usually a trade-off between
the complexity of and , and different choices lead to dras-
tically different structures. As a general principle, the feature
extraction function is usually hand crafted and relies on what-
ever human experience or intelligence is available. The function

represents the choice of anarchitectureused for approxima-
tion.

In this paper, we will restrict attention to linearly parameter-
ized architectures, of the form

i.e., the value function is approximated by a linear combina-
tion of features. The simplicity of this architecture makes it
amenable to analysis, and we will discuss theoretical results per-
taining to approximate value iteration in this context. To em-
phasize the linear dependence on parameters and as shorthand
notation, we define an operator(that maps vectors in to
real-valued functions of the state) by

Many standard function approximators can be thought of as
linear feature-based parameterizations. Among these are radial
basis function networks, wavelet networks, polynomials, and
more generally all approximators that involve a fixed set of basis
functions.

The architecture, as described by, could also be a nonlinear
mapping such as a feedforward neural network (multilayer per-
ceptron) with weights. The feature extraction mappingcould
be either entirely absent or it could be included to facilitate
the job of the neural network. Such approximation architectures
may offer gains in practical performance. Unfortunately, there
is not much that can be said analytically in this context, and we
will not study such architectures in this paper.

B. Approximate Value Iteration

Given a choice of parameterization, the computation of
appropriate parameters calls for a numerical algorithm. In
this paper, we study versions of approximate value iteration,
which generate a sequence of parameters ,
leading to approximations to the true
value functions .

The simplest form of approximate value iteration involves a
single projection matrix (acting on the space of value func-
tions) that projects onto the span of , with respect to
a weighted quadratic norm , defined by

where is a probability measure on . In other words, the
projection operator is characterized by

argmin

The algorithm generates iterates satisfying

and

TSITSIKLIS AND VAN ROY: REGRESSION METHODS FOR PRICING 697

Note that the range of the projection is the same as that ofand
therefore, for any function with , there is a weight
vector such that

Clearly, the approximation algorithm generates value functions
by mimicking value iteration, while sacrificing exactness in
order to maintain functions within the range of the approxi-
mator (the span of the features).

A more sophisticated version of the algorithm involves pro-
jections that are dependent on the time period. In particular, one
can define a sequence of probability measures,
as well as projection operators that project with
respect to the norms , respectively. Then,
the approximate value iteration algorithm would generate iter-
ates according to

and

C. Sample-Based Projection and-Values

The approximation algorithm that we have described offers
advantages over value iteration because it uses a parsimonious
representation. Only numerical values need to be stored at
each stage. However, we have not discussed the computation of
these parameters, which can turn out to be time-intensive. In this
section, we address this issue and offer an alternative version of
approximate value iteration that facilitates projection.

Exact computation of a projection is not generally viable.
However, one can approximate a projectioneffectively by
sampling a collection of states according to
the probability measure, and then defining an approximate
projection operator

argmin

As grows, this approximation becomes close to exact, in the
sense that converges to zero with probability 1.

Given the above approximate projection operator, one can
define a modified version of approximate value iteration, gen-
erating parameters according to

and

As opposed to the original version of the algorithm, in which
projections posed a computational burden, this new variant in-
volves the solution of a linear least squares problem, withfree
parameters, and admits efficient computation of projections, as
long as the number of samplesis reasonable. However, there
is an additional obstacle that we must overcome, as we now dis-
cuss.

For each sample , and any function , evaluating
entails the computation of an expec-

tation . This expectation is
over a potentially high-dimensional space and can therefore
pose a computational challenge. Monte Carlo simulation offers
one way to address this task. In particular, for each sample

, we can simulate independent samples from the
transition distribution, conditioned on the current state being

, and then define an approximate expectation operatorby

Then, a modified version of approximate value iteration is given
by

Though this approach is viable, there is an alternative that makes
implementation even more convenient. This alternative, which
we describe next, relies on single-sample estimates of the de-
sired expectations.

D. Using -values and single-sample estimates

Define for each , a -function

Note that represents the expected discounted payoff at
time conditioned on a decision not to exercise. A version of
value iteration can be used to produce-values directly

Furthermore, given a parameterization and a pro-
jection operator , a version of approximate value iteration is
defined by

(1)

Once again, we sample states in order to approximate the pro-
jection and expectation. For the projection, as before, we sample
a collection of states , distributed according to. The
approximate projection operator is then given by

argmin

We will now base our approximation of the expectation on
only a single sample. In particular, for each, we generate one
successor state by simulation. Then, the approximate expec-
tation operator is defined by

698 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

The resulting version of approximate value iteration is of the
form

(2)

In full detail, a typical iteration of the algorithm proceeds
as follows. Given the parameter vector , and the resulting
approximation of , defined by

we select independent random samples of the state,
, according to the probability measure, and for

each , we simulate a successor state. Then, the vector is
found by minimizing

with respect to .
Given a sample state , the expected value (with respect to

the random next state) of is just , for any
function . For this reason, is an unbi-
ased estimate of . This was made pos-
sible because enters linearly and effectively allows for the
noise (in the next state) to be averaged out. Such unbiased-
ness would not be possible with the original version of approxi-
mate value iteration that produced iterates , because the
dependence on was nonlinear.

Of course, there is no need for employing the same prob-
ability measure at each iteration . In a more general
version of the algorithm, we introduce probability measures

. For each time , we generate random states
, sampled independently according to, leading

to an approximate projection operator , and the algorithm

(3)

(4)

In studying the behavior of the algorithms considered here,
we need to address two distinct issues.

1) We need to study the approximation error of an ideal-
ized algorithm such as (1).

2) We need to determine whether the use of an approx-
imate projection and a single-sample estimate of the
expectation [as in (2)] leads to a significant difference
from the results of the idealized algorithm.

The second issue is not hard to resolve using laws of large num-
bers. The first one is more subtle and constitutes our main focus.

IV. THE ACCUMULATION OF ERROR

There is an appealing simplicity to the approximate value iter-
ation algorithms defined in the previous section. Unfortunately,
such algorithms often lead to errors that grow exponentially
in the problem horizon. In this section, we provide examples
demonstrating this phenomenon. A remedy to this undesirable
state of affairs is offered in Sections V and VI.

We focus in this section on the version of approximate value
iteration that involves -functions and exact computation of ex-
pectations and projections. In other words, we consider the al-
gorithm in (1)

Our observations, however, apply to other forms of approximate
value iteration, including those that make use of sample esti-
mates, as well as those that are based on value functions .

A. A Simple Example

Consider a vanilla American put with strike price 1, and
periods until expiration. The intrinsic value given a current stock
price is

We consider risk-neutral price dynamics given by

w.p.
w.p.

with .
Consider using a single basis function , which

is identical to the intrinsic value of the put. Hence, we will gen-
erate for each a scalar such that represents an ap-
proximation to the present value of the option when the time is

and the current stock price is.
For the purposes of approximate value iteration, we define a

distribution over the state space. To keep our computations as
simple as possible, we will choose a trivial distribution, which
assigns all probability to a single state , for some small
positive scalar . Hence, the corresponding projection operator

ensures that there is an exact fit at the state , that is

for any function .
Let us now study how the parametersevolve as approxi-

mate value iteration progresses. Recall that the iteration under
consideration is

For any , we have

TSITSIKLIS AND VAN ROY: REGRESSION METHODS FOR PRICING 699

Given the simple form of the projection, we have

It follows that

and dividing both sides of the inequality by, we have

Hence, for , the sequence grows at an
exponential rate, as progresses from to . Furthermore, the
growth rate can be made arbitrarily large by reducing.

B. A Numerical Example

Let us now consider somewhat more realistic computations,
again involving the same American put. As before, we take the
strike price to be 1 and consider the same binomial model for
stock price movements

w.p.
w.p.

with . Particular values of the variables employed
in our computations are provided in the table below

strike
high return
low return

probability of high return
discount factor

We will approximate the value function using a quadratic.
For each , the weights are given by a three-dimensional vector

, and the approximation is defined by

In the previous section, to keep computations as simple as
possible, we employed a distributionthat assigned all proba-
bility to the single point . Let us now consider a situation
more likely to arise in a practical implementation. Let the dis-
tribution assign probabilities uniformly to points in a discrete
grid spread over a segment of the state space. In particular, we
consider the set

and focus on approximating values at these points. Hence, the
projection is with respect to the norm defined by

As before, the iteration under consideration is

Fig. 1. Exponential growth of the error in the example of Section IV-B.

initialized with . Plotted in Fig. 1 are the
magnitudes of approximations generated
by the algorithm, for various horizons . The magnitudes ap-
parently grow exponentially with . Note that the present value
of the put with periods until expiration is bounded above by

. Hence, the exponential growth of the norm, as depicted in
Fig. 1, implies exponential growth in the error between the true
and approximated -functions, as measured by the norm .

V. THE USE OFTRAJECTORYDISTRIBUTIONS

In this section, we show that if the sample states used in the
approximate projection are obtained by simulating trajectories
of the process , then the approximation error grows no faster
than (instead of growing exponentially in), where is
the best possible approximation error under the chosen approx-
imation architecture.

Let be the probability measures on that
describe the probability distribution of , respec-
tively, under the risk-neutral dynamics of the process. We take

to be known, so that is concentrated on that single point.
We make the following assumption.

Assumption 1:

1) For every , we have

2) For every and every , the feature satisfies

3) (Linear independence of the features.) For everyand
every , the random variable is nonzero
with positive probability. Equivalently, the matrix

is positive definite.
Let be the projection operator with the respect to the norm

. As a consequence of Assumption 1, and for any func-
tion (with), the projection is of the form

, for a unique choice of, given by

700 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

We start by comparing the exact algorithm

with the idealized algorithm (1) (which does not involve any
state sampling) given by

The two algorithms are initialized with

Let

which is the approximation error of the idealized algorithm, and
let

which the best possible error under the chosen approximation
architecture.

Our first and main result states that if the approximation ar-
chitecture is capable of delivering a close approximation (i.e., if
the are small), then the algorithm will succeed (i.e.,will
be small).

Theorem 1: We have and

In particular, if for every , then

and

Proof: Note that

Using the Pythagorean theorem, we have

Note that for any function , we have the following properties
(as long as the norms involved are finite):

(this is a general property of projections), and

To verify the second property, we argue as in [19], [21]. We
have, using the definition of and Jensen’s inequality

Using the above noted properties, we obtain

This establishes the main part of the theorem. The other two
inequalities are straightforward corrollaries.

It now remains to study the additional error introduced by
random sampling of the state space, as opposed to the exact cal-
culation of expectations and projections in the idealized algo-
rithm. Let us first provide a self-contained and precise descrip-
tion of the algorithm to be discussed.

Starting from the given initial state , we simulate inde-
pendent trajectories of the process. Let be the sample
of obtained during theth simulated trajectory. Thus, the
random variables , for , are i.i.d., drawn from
the distribution . The algorithm produces an approximation

of , where is defined by

argmin

The approximation error for this algorithm is
, which is bounded by

where are the parameters in the idealized algorithm. An upper
bound for the second term above is provided by Theorem 1.
We can therefore concentrate on the first term, which can be
bounded as follows:

where is an absolute constant, is the standard Euclidean
norm, and

We have the following result, in which we choose our notation
in a way that emphasizes the dependence of the sample-based
algorithm on the sample size.

TSITSIKLIS AND VAN ROY: REGRESSION METHODS FOR PRICING 701

Theorem 2: Let (a random variable) be the vector of
time parameters, obtained on the basis ofsimulated trajec-
tories. As , the sequence converges (with prob-
ability 1) to the parameter vector obtained by the idealized
algorithm.

Proof: Let be the function defined by
. Then

and we also define

We use the inequality

Let , which is seen to converge to
zero, almost surely, by the strong law of large numbers.

Next, we consider the term . We define

and note that

Thus,

(5)

Let . For , and any , we
have

Using this inequality and (5), we obtain

where are random variables that remain bounded as
.

To summarize, for , we have

For , a simpler argument shows that
converges to zero. (Compare the formulas forand ,
when both and are equal to .) As , the sequence

goes to zero, while remains bounded. It follows

that converges (almost surely) to zero for any fixed.

VI. GENERALIZING OVER TIME

Until now, we have been using a separate parameter vector
for each , in order to approximate . In other words, we

have aimed at approximating separate functions, each with
domain . When is large (e.g., if the time to expiration is
substantial and/or a fine time discretization is used), this results
in a large number of parameters to be computed. Note, however,
that the functions and are often “close.” In this sec-
tion, we exploit this fact to reduce the number of parameters. In
particular, we consider generating, as an approximation, a single
function over the domain

This function is meant to approximate simultaneously every el-
ement in the sequence of -functions.

To enable a concise description of the algorithm, let us first
define some abstract notation. For any function , we
define the operator by . (As in previous
sections, is the transition operator.) As before, we have

, , with the convention .
This relation can be rewritten as

or, more abstractly, as

where , and is an operator acting
on functions defined on .

As before, let be the probability measure describing the
distribution of the random variable , and consider the norm

, where the expectation is with respect to
. Let us define a new norm, on the set of functions with do-

main . For any function , we let

or, in probabilistic terms

The operator is a contraction with respect to this norm. To
see this, note that

702 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001

We have used here the property (established in Section V that
is a contraction, as well as the convention .

The approximation architecture to be employed usesfea-
ture functions and approximate -functions of the
form

where is a vector of free parameters.
We now define an operator that corresponds to the projec-

tion (with respect to the norm) onto the set of functions that
can be represented by our approximation architecture. In partic-
ular, given a function , its projection
is of the form , where is chosen to minimize

The minimizing is given by the closed-form formula

An exact solution to the pricing problem corresponds to com-
puting the function (defined on) which is the unique so-
lution of the equation . Given the approximation
architecture, the closest possible approximation tois given
by . However, it is difficult to compute this function since

itself is unknown. We will therefore settle for the solution to
the fixed point equation . This equation has a unique
solution because is a contraction (as shown earlier), andis
a nonexpansion (this is a generic property of projection opera-
tors). One desirable characteristic of this fixed point is that its
associated approximation error is within a constant factor from
the best possible approximation error , as we now
establish.

Theorem 3: Let be the contraction factor of the operator
. Let be the unique fixed point of . Then

Proof: We have, using the Pythagorean theorem

and the desired conclusion follows.
The fixed point of can be obtained, in principle, by car-

rying out the iteration . In more detail, a typical
iteration uses an available parameter vector, resulting in an

approximate function of the form , and
calculates a new parameter vector according to

(6)

An implementable version of this iteration is obtained by sim-
ulating a number of trajectories. Let , , be the
sample value of obtained during theth simulated trajectory.
Let be the parameter vector afteriterations. We then gen-
erate a new parameter vector according to the formula

(7)

In effect, we are replacing the expectation (with respect to the
underlying probability measure) by an expectation with the re-
spect to the empirical measure provided by the simulations.
Starting with the same parameter vector, i.e., if , the
strong law of large numbers implies that, as the sample size
increases, the vector produced by theth iteration of the sim-
ulation-based algorithm (7) approaches the vectorproduced
by the exact algorithm (6).

We note that there are two variants of the above described
algorithm.

1) During each iteration, simulate and use anew set
of trajectories. In that case, the parameter vector
evolves as a time-homogeneous Markov process.
Eventually, this Markov process reaches steady-state,
but the variance of remains positive, and does not
converge to a constant. Let be a random variable
distributed according to the steady-state distribution
of this Markov process. Also, let be the parameter
vector associated with the fixed point of . We con-
jecture that as the number of simulated trajectories
grows to infinity, the random variable converges
to , in probability. We do not pursue this issue any
further, because the variant we discuss next is more
natural and economical.

2) We simulate a number of trajectories once and for
all. Thesesametrajectories are used at each iteration of
the algorithm (7). Then, the sequenceis guaranteed
to converge. The reason is that the algorithm (7) is iden-
tical to the deterministic algorithm applied
to a new problem in which the probability measure as-
sociated with the process is replaced by the em-
pirical measure provided by the simulation. The con-
traction property of remains true, and therefore
converges. The limit of the sequence, denoted by

, is of course a random variable, since it is affected

TSITSIKLIS AND VAN ROY: REGRESSION METHODS FOR PRICING 703

by the randomly simulated trajectories. Asgrows to
infinity, the empirical measure “converges” to the true
measure, which suggests that converges to , in
probability.

VII. CONCLUSION

We have introduced certain simulation-based methods, of the
value iteration type, for pricing complex American-style op-
tions. We have provided convergence results and error bounds
that establish that such methods are viable, as long as state sam-
pling is carried out by simulating the natural distribution of the
underlying state process. This provides theoretical support for
the apparent effectiveness of this particular form of state sam-
pling.

REFERENCES

[1] V. Averbukh, “Pricing American Options Using Monte Carlo Simula-
tion,” Ph.D. dissertation, Cornell Univ., Ithaca, NY, 1997.

[2] J. Barraquand and D. Martineau, “Numerical valuation of high dimen-
sional multivariate American securities,”J. Financial Quantitative
Anal., vol. 30, pp. 383–405, 1995.

[3] R. Bellman and S. Dreyfus, “Functional approximations and dynamic
programming,” Math. Tables and Other Aids Comp., vol. 13, pp.
247–251, 1959.

[4] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientific, 1995.

[5] A. Benveniste, M. Métivier, and P. Priouret,Adaptive Algorithms and
Stochastic Approximation. Berlin, Germany: Springer-Verlag, 1990.

[6] M. J. Brennan and E. S. Schwartz, “Convertible bonds: Valuation and
optimal strategies for call and conversion,”J. Finance, vol. 32, no. 5,
pp. 1699–1715, 1977.

[7] M. Broadie and P. Glasserman, “Pricing American-style securities using
simulation,”J. Economic Dyn. Contr., vol. 21, pp. 1323–1352, 1997.

[8] , Monte Carlo Methods for Pricing High-Dimensional American
Options: An Overview. New York: Columbia Univ., 1997.

[9] M. Broadie, P. Glasserman, and G. Jain, “Enhanced Monte Carlo es-
timates for American option prices,”J. Derivatives, vol. 5, pp. 25–44,
1997.

[10] J. M. Harrison and D. M. Kreps, “Martingales and arbitrage in multi-
period securities markets,”J. Economic Theory, vol. 20, pp. 381–408,
1979.

[11] J. M. Harrison and S. R. Pliska, “Martingales and stochastic integrals in
the theory of continuous trading,”Stochastic Processes and Their Ap-
plications, vol. 11, pp. 261–271, 1981.

[12] D. Heath, R. Jarrow, and A. Morton, “Bond pricing and the term struc-
ture of interest rates,”Econometrica, vol. 60, pp. 77–106, 1992.

[13] I. Karatzas, “On the pricing of American options,”Appl. Math. Opti-
mization, vol. 17, pp. 37–60, 1988.

[14] F. A. Longstaff and E. S. Shwartz, “Valuing American options by sim-
ulation: A simple least-squares approach,”Rev. Financial Studies, vol.
14, no. 1, pp. 113–147, 2001.

[15] R. C. Merton, “The theory of rational option pricing,”Bell J. Economics
Management Sci., vol. 4, pp. 141–183, 1973.

[16] S. Raymar and M. Zwecher, “A Monte Carlo valuation of American call
options on the maximum of several stocks,”J. Derivatives, vol. 5, pp.
7–23, 1997.

[17] J. Rust, “Using randomization to break the curse of dimensionality,”
Econometrica, vol. 65, no. 3, pp. 487–516, 1996.

[18] J. A. Tilley, “Valuing American options in a path simulation model,”
Trans. Soc. Actuaries, vol. 45, pp. 83–104, 1993.

[19] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,”IEEE Trans. Automat. Contr.,
vol. 42, pp. 674–690, 1997.

[20] , “Optimal stopping of Markov processes: Hilbert space theory, ap-
proximation algorithms, and an application to pricing high-dimensional
financial derivatives,”IEEE Trans. Automat. Contr., vol. 44, no. 10, pp.
1840–1851, Oct. 1999.

[21] B. Van Roy, “Learning and Value Function Approximation in Complex
Decision Processes,” Ph.D. dissertation, Massachusetts Inst. Technol.,
Cambridge, 1998.

John N. Tsitsiklis (F’99) was born in Thessaloniki, Greece, in 1958. He re-
ceived the B.S. degree in mathematics in 1980, and the B.S., M.S., and Ph.D.
degrees, in electrical engineering, all from the Massachusetts Institute of Tech-
nology (MIT), Cambridge, in 1980, 1981, and 1984, respectively.

During the academic year 1983 to 1984, he was an Acting Assistant Professor
of Electrical Engineering at Stanford University, Stanford, CA. Since 1984, he
has been with the Massachusetts Institute of Technology, where he is currently
Professor of Electrical Engineering and Computer Science. His research inter-
ests include systems, optimization, control, and operations research. He is a
coauthor ofParallel and Distributed Computation: Numerical Methods(En-
glewood Cliffs, NJ: Prentice-Hall, 1989),Neuro-Dynamic Programming(Bel-
mont, MA: Athena Scientific, 1996), andIntroduction to Linear Optimization
(Belmont, MA: Athena Scientific, 1997).

Dr. Tsitsiklis has been a recipient of an IBM Faculty Development Award in
1983, an NSF Presidential Young Investigator Award in 1986, an Outstanding
Paper Award by the IEEE Control Systems Society, the MIT Edgerton Faculty
Achievement Award in 1989, the Bodossakis Foundation Prize in 1995, and
the INFORMS/CSTS prize in 1997. He has served as Acting Co-Director of
the MIT Laboratory for Information and Decision Systems (Spring 1996 and
1997). He has also been a visitor with the Department of EECS at the University
of California at Berkeley, and the Institute for Computer Science in Iraklion,
Greece. He was a plenary speaker at the 1992 IEEE Conference on Decision
and Control. He has been an associate editor of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, Automatica, and AppliedMathematicsLetters.

Benjamin Van Roy received the B.S. degree in computer science and engi-
neering and the M.S. and Ph.D. degrees in electrical engineering and computer
science, all from the Massachusetts Institute of Technology (MIT), Cambridge,
in 1993, 1995, and 1998, respectively.

He is currently an Assistant Professor at Stanford University, Stanford, CA,
in the Departments of Electrical Engineering and Management Science and En-
gineering, with a courtesy appointment in the Department of Computer Science.

Dr. Van Roy has received an NSF CAREER Award, the MIT George M.
Sprowls Award for the best doctoral dissertation in computer science, the MIT
Morris J. Levin Memorial Award for an outstanding Master’s thesis, and the
MIT George C. Newton Award for the best undergraduate laboratory project. At
Stanford, he has been named Terman Fellow and Morgenthaler Faculty Scholar.

