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Abstract. We provide an analytical comparison between discounted and average reward temporal-difference
(TD) learning with linearly parameterized approximations. We first consider the asymptotic behavior of the
two algorithms. We show that as the discount factor approaches 1, the value function produced by discounted
TD approaches the differential value function generated by average reward TD. We further argue that if the
constant function—which is typically used as one of the basis functions in discounted TD—is appropriately
scaled, the transient behaviors of the two algorithms are also similar. Our analysis suggests that the computa-
tional advantages of average reward TD that have been observed in some prior empirical work may have been
caused by inappropriate basis function scaling rather than fundamental differences in problem formulations or
algorithms.
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1. Introduction

Sequential decision making problems under uncertainty are often formulated as infinite
horizon dynamic programming problems and can be tackled by a variety of tools. For
relatively small and well-modeled problems, classical methods apply (Bertsekas, 1995).
When a problem is large or when a model is unavailable, one is led to consider simulation-
based approximation methods, including temporal difference (TD) methods (Sutton,
1988).

The original version of TD, as well as most of the subsequent literature, has focused
on problems with a discounted reward criterion. This was a natural first step for two
reasons.

(a) Average reward problems can be accurately approximated (in a well-defined sense) by
discounted problems, as the discount factor approaches 1.

∗This research was partially supported by the National Science Foundation under grants DMI-9625489 and ACI-
9873339, and by a Stanford University Terman Faculty Fellowship.
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(b) The mathematical structure and analysis of average reward formulations can be compli-
cated. This is because the favorable contraction properties of the dynamic programming
operator are only present in the discounted case.

For these reasons, a discounted formulation with a discount factor very close to 1 is often
used a proxy for an average reward problem. While there has been an emerging literature on
the development and deployment of average reward reinforcement learning algorithms (see,
e.g., Abounadi, 1998; Mahadevan, 1996; Marbach, Mihatsch, & Tsitsiklis, 1998; Schwartz,
1993; Singh, 1994; Tsitsiklis & Van Roy, 1999; Tadepalli & Ok, 1998; Van Roy, 1998),
the picture is far from complete as only some of these methods can be adequately justified,
mostly for the case of lookup table representations.

It is natural to inquire whether the practice of avoiding average reward formulations is
necessary and/or sound. Our earlier work (Tsitsiklis & Van Roy, 1999; Van Roy, 1998) has
answered the first question: it has provided a variant of TD that can be applied to average
reward problems. Furthermore, it has established that average reward TD has the same
theoretical guarantees as were established in Tsitsiklis and Van Roy (1997) and Van Roy
(1998) for discounted TD. Assuming a linearly parameterized approximation architecture,
we have convergence with probability 1, a characterization of the limit, and bounds on
approximation error. Results of this type, for both discounted and average reward versions,
refer to Markov chains that are operated under a fixed policy. When the policy is allowed
to change during the learning process, one usually hopes that such methods will deliver
good performance. This has been the case for discounted TD in many applications. The
experience with average TD is limited, but has also been positive (Marbach, Mihatsch, &
Tsitsiklis, 1998).

This paper focuses on the second issue, namely, soundness. Is it safe to replace an av-
erage reward problem by a discounted one? Does discounted TD become more and more
ill-conditioned as the discount factor approaches 1? Could there be an inherent advantage to
average reward TD? These questions have been prompted to a large extent by available ex-
perience, which suggests that average reward methods may offer computational advantages
(Marbach, Mihatsch, & Tsitsiklis, 1998; Tadepalli & Ok, 1998).

The analysis provided in the remainder of the paper indicates that discounted TD (with
a discount factor approaching 1) is essentially identical to average reward TD. The two
methods converge to the same limit. Furthermore, as long as the constant function—which is
typically used as one of the basis functions in discounted TD—is appropriately scaled, their
transient behaviors are also similar. This analysis suggests that the observed computational
advantages of average reward TD may have been caused by inappropriate basis function
scaling rather than fundamental differences in problem formulations or algorithms.

We will limit the discussion in this paper to the special case of TD that is known as
TD(0). This will allow us to keep the exposition simple. However, similar arguments apply
to TD(λ) for general λ, and lead to the same conclusions.

The remainder of this paper is organized as follows. The next section reviews discounted
and average reward temporal-difference learning and discusses how to relate the basis
functions used by the two algorithms in any meaningful comparison. Section 3 establishes
the similarity of the limits of convergence of the two algorithms. The transient behaviors
are compared in Section 4. Concluding remarks are made in Section 5.
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2. Temporal-difference learning algorithms

In this section, we review the discounted and average reward TD(0) algorithms and set the
stage for their comparison. Our discussion will be somewhat brief. We refer the reader to
Tsitsiklis and Van Roy (1997, 1999) for more details.

We consider a Markov chain {xt | t = 0, 1, . . .} with state space S = {1, . . . , n}. The
Markov chain is defined in terms of a transition probability matrix P whose (i, j)th entry is
the probability that xt+1 = j given that xt = i . We assume that the chain is irreducible and
aperiodic, and therefore has a unique invariant distribution vector π ∈ $n , which satisfies
π ′ P = π ′ and π(x) > 0 for all x ∈ S. (In our notation, π ′ stands for the transpose of π , and
π(x) is the x th component. A similar notational convention will be used for all other vectors
to be encountered later on). For each state x ∈ S, there is a scalar g(x) that represents the
one-stage reward for being at that state. We let g ∈ $n be a vector whose x th component is
g(x).

We will make use of an inner product 〈·, ·〉π defined by

〈J, J̄ 〉π =
∑

x∈S

J (x) J̄ (x)π(x), ∀ J, J̄ ∈ $n.

The norm ‖ · ‖π corresponding to the above defined inner product is given by

‖J‖2
π = 〈J, J 〉π .

Finally, we will use the notation

e = (1, 1, . . . , 1)′.

Note that ‖e‖π = 1 because
∑

x e2(x)π(x) =
∑

x π(x) = 1.

2.1. Discounted TD(0)

Given a discount factor α ∈ (0, 1), the discounted value function J (α)(x) is defined as the
expectation of the discounted sum of accumulated rewards, starting from state x :

J (α)(x) = E

[

∞
∑

t=0

αtg(xt )

∣

∣

∣

∣

∣

x0 = x

]

.

In vector notation, we have

J (α) =
∞

∑

t=0

αtPtg.
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We consider approximations to the discounted value function using an approximation ar-
chitecture of the form

J̃ (x, r) =
K

∑

k=1

r(k)φk(x).

Here, r = (r(1), . . . , r(K ))′ is a parameter vector and each φk is a prespecified scalar
function on the state space S. The functions φk can be viewed as basis functions (or as
vectors of dimension n), while each r(k) can be viewed as an associated weight. We will
require that the basis functions be linearly independent, so that each vector r ∈ $K yields
a different function J̃ (·, r). The aim of TD methods is to settle on a value for the parameter
vector r which makes the function J̃ (·, r) a good approximation of J (α).

Given a selection of basis functions and an arbitrary initial parameter vector r0 ∈ $K ,
discounted reward TD(0) observes a sample path x0, x1, x2, . . . of the underlying Markov
process, and generates a sequence r1, r2, . . . , by letting

rt+1 = rt + γt dtφ(xt ). (1)

Here, γt is the stepsize, dt is the temporal difference

dt = g(xt ) + α J̃ (xt+1, rt ) − J̃ (xt , rt ), (2)

corresponding to the transition from xt to xt+1, and φ(xt ) = (φ1(xt ), . . . , φK (xt ))
′.

2.2. Average reward TD(0)

The average reward is defined by µ∗ = π ′g, which is the expectation of the reward per
stage g(xt ), when the Markov chain is in steady state. We define the basic differential reward
function J ∗ : S ,→ $ by

J ∗(x) = lim
T →∞

E

[

∞
∑

t=0

(g(xt ) − µ∗)

∣

∣

∣

∣

∣

x0 = x

]

.

In vector notation, we have

J ∗ =
∞

∑

t=0

Pt (g − µ∗e). (3)

Intuitively, for any two states x and y, the difference J ∗(x) − J ∗(y) measures the relative
advantage (transient gain) of starting in state x rather than state y.

Once again, we consider approximating J ∗ using functions of the form

J̃ (x, r) =
K

∑

k=1

r(k)φk(x).
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Similar to the discounted case, we require that the basis functions φ1, . . . , φK be linearly
independent. In addition, we assume here that the vector e is not in the span of the basis
functions.

In addition to a sequence r1, r2, . . . , average reward TD(0) will generate a sequence
µ1, µ2, . . . of approximations to the average reward µ∗. We define the temporal difference
dt corresponding to the transition from xt to xt+1 by

dt = g(xt ) − µt + J̃ (xt+1, rt ) − J̃ (xt , rt ). (4)

The parameter vector is then updated according to:

rt+1 = rt + γt dtφ(xt ), (5)

where the components of r0 are initialized to arbitrary values and γt is a sequence of scalar
step sizes. The average reward estimate is updated according to

µt+1 = (1 − γt )µt + γt g(xt ),

where µ0 is an initial estimate.

2.3. Relation between basis functions

It is interesting to note that the average reward µ∗ can be computed from the discounted
value function J (α). In particular, since π ′ P = π , we have

π ′ J (α) = π ′
∞

∑

t=0

αtPtg =
∞

∑

t=0

αtπ ′g = µ∗

1 − α
.

Note that for any J , we have π ′ J = 〈e, J 〉π . Therefore, we can also write

µ∗ = (1 − α)
〈

e, J (α)
〉

π
.

Given the last equality, we can interpret the part of J (α) that is aligned with e, i.e.,
e〈e, J (α)〉π as an encoding of the average reward µ∗. It turns out that the rest of J (α), i.e.,
the difference J (α) − e〈e, J (α)〉π , can be interpreted as an encoding of the differential value
function. We now formalize this point.

We define an n × n matrix & by

& = I − eπ ′.

It is easily checked that & is a projection (with respect to the norm ‖·‖π ) on the set of vectors
that are orthogonal to e. It is known that as α approaches 1 the projection & J (α) converges
to the differential value function J ∗.

To verify this property, we start with the equalities Pe = e and π ′P = π ′, which lead to
eπ ′P = Peπ ′. Since & = I − eπ ′, we obtain that

&P = P&.
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We also note that &g = g − eπ ′g = g − µ∗e. Therefore,

&J (α) = &

(

∞
∑

t=0

αtPtg

)

=
∞

∑

t=0

αtPt(g − µ∗e). (6)

It is well known that for irreducible and aperiodic Markov chains, Pt converges to its limit
eπ ′ (the matrix with all rows equal to π ′) at the rate of a geometric progression. It follows that
Pt (g − µ∗e) also approaches its limit, which is zero, geometrically fast. Thus, comparing
Eqs. (3) and (6), we see that, for some constants B > 0 and β < 1,

∥

∥& J (α) − J ∗∥
∥

π
≤

∞
∑

t=0

(1 − αt )‖Pt (g − µ∗e)‖π ≤
∞

∑

t=0

(1 − αt )Bβ t ,

which approaches 0 as α approaches 1.
To summarize the preceding discussion, we have seen that the discounted value function

J (α) provides the average reward and an approximation to the differential value function,
in the following sense:

J ∗ ≈ & J (α) and µ∗ = (1 − α)
〈

e, J (α)
〉

π
.

The limits of convergence of discounted and average reward TD(0), exhibit similar rela-
tionships, which we will explore in subsequent sections.

Recall our assumption that in average reward TD(0), the constant vector e is not within
the span of the basis functions. On the other hand, the estimate µ in average reward TD(0)
plays the same role as the one that would be played in discounted TD(0) by a basis function
aligned with e. Hence, when we compare discounted and average reward TD(0), we should
include an extra basis function in the former. In particular, we will study and compare the
following two situations:

1. Average reward TD(0), with linearly independent basis functions φ1, . . . , φK that do not
include e in their span.

2. Discounted TD(0) with basis functions φ1, . . . , φK , Ce (a total of K +1 basis functions).
Here, C is a fixed real number, which is used to scale the constant basis function e.

The next section compares the ultimate approximations generated by these two approaches,
while Section 4 discusses the incremental updates that occur during execution of the algo-
rithms. It turns out that the algorithms become very similar when α is close to 1.

3. Asymptotic behavior

If X is a subspace of $n and J is some vector, its (orthogonal) projection (with respect
to the metric ‖·‖π ) is defined to be a vector J̄ ∈ X for which the distance ‖J − J̄‖π

is minimized. The mapping from J to J̄ is linear and can be represented by an n × n
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matrix. In this spirit, let ( be the matrix that projects on the subspace spanned by the
basis functions {φ1, . . . , φK , e} of discounted TD(0). Similarly, let (0 be the matrix that
projects on the subspace spanned by the basis functions {φ1, . . . , φK } of average reward
TD(0).

Under the assumptions introduced so far, together with some standard technical con-
ditions on the step size sequence γt , the sequence of value functions J̃ (·, rt ) generated
by TD(0) methods converge, with probability 1, to limiting value functions, which we
denote by J̃ (α) and J̃ for the discounted and average reward cases, respectively. Further-
more, these limits have been characterized as the unique solutions to the following linear
equations:

J̃ (α) = (
(

αPJ̃ (α) + g
)

, J̃ = (0(PJ̃ + g). (7)

Finally, µt in average reward TD(0) converges to µ∗ (Tsitsiklis & Van Roy, 1997, 1999).
Our main result below indicates that for α close to 1, discounted TD is essentially identical

to average reward TD, in the following sense. There is a part of J̃ (α) which is aligned
with e, namely, (1 − α)e〈e, J̃ (α)〉π , which provides an encoding of the average reward µ∗.
In addition, the part of J̃ (α) which is orthogonal to the constant function, namely & J̃ (α),
approximates the corresponding part & J̃ . Note that & J̃ only differs from J̃ by a multiple
of e. Such constant differences are irrelevant when value functions are used in decision
making. Thus, J̃ (α) (through & J̃ (α)) encompasses any relevant information that is contained
in J̃ .

Proposition 1. We assume that the underlying Markov chain is irreducible and aperiodic.
Then the solutions of the equations shown in (7) satisfy:

lim
α↑1

& J̃ (α) = & J̃ and µ∗ = (1 − α)
〈

e, J̃ (α)
〉

π
.

Proof: Recall that ( projects on the span X of {φ1, . . . , φK , e}, whereas I −& projects on
the span of {e}, which is a subspace of X . In this context, it is easily seen that one can project
in any order, and we have (I − &)( = ((I − &), which also implies that &( = (&. We
also recall from Section 2 that &P = P&.

We start with the equation on the left-hand side of (7), right-multiply both sides by & and
use the commutation properties that we have just derived. We obtain

& J̃ (α) = (
(

αP& J̃ (α) + &g
)

.

As shown in Tsitsiklis and Van Roy (1997), the matrix α(P is a contraction with respect to
the norm ‖·‖π , for any α ∈ [0, 1). Therefore, & J̃ (α) is the unique solution of the equations

U = ((αPU + &g), &U = U, (8)

for α ∈ [0, 1).
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Let us now consider the equation on the right-hand side of 7. For any vector J , there
exists a scalar c such that

(J = (0 J + ce.

This is simply because (0 projects onto the subspace of X that is orthogonal to e. We apply
this property to the equation on the right-hand side of (7), which yields

J̃ = ((P J̃ + g) + ce.

We then multiply by &, use commutativity and the property &e = 0, to obtain & J̃ =
((P& J̃ + &g). In particular, & J̃ is a solution to the equations

V = ((PV + &g), &V = V . (9)

We now argue that these equations have a unique solution. Consider any two solutions,
and let J be their difference. We then have J = (PJ and & J = J . Since ‖P‖π ≤ 1 and
‖(‖π ≤ 1 (the latter being a generic property of projections), we must have ‖(PJ‖π =
‖PJ‖π = ‖J‖π . The fact that ‖(PJ‖π = ‖PJ‖π implies that (PJ = PJ. We conclude that
PJ = J , and therefore J is a multiple of e. Together with the property J = & J , we obtain
J = 0. Since the difference of any two solutions is zero, there must be a unique solution.

The proof can now be completed. The system (9) has a unique solution. As α ↑ 1, the
coefficient matrices in the system (8) converge to the coefficient matrices for the system (9).
It is then immediate that the unique solution & J̃ (α) of (8) converges to the unique solution
& J̃ of (9).

To complete the argument, we have
〈

e, J̃ (α)
〉

π
= π ′g + π ′αP J̃ (α) = µ∗ + απ ′ J̃ (α) = µ∗ + α

〈

e, J̃ (α)
〉

π
,

and it follows that

〈

e, J̃ (α)
〉

π
= µ∗

1 − α
. !

4. Transient behavior

The result in the previous section holds no matter how we choose the scaling factor C for
the basis function Ce in discounted TD(0). In particular, the point to which the algorithm
converges does not depend on C . However, a poorly chosen scaling factor can impact signif-
icantly the transient behavior. We will now show that the transient behaviors of discounted
and average TD(0) are essentially the same. However, this argument has to assume a very
particular choice for the scaling factor, namely,

C = 1
1 − α

−
K

∑

k=1

〈e, φk〉2
π .
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This formula is not practical, because the sum on the right is an unknown quantity (although
it can be easily estimated with a Monte Carlo simulation run). What is important, however,
is that the scaling factor increases with 1/(1 − α) as α approaches 1. In the absence of that,
we would expect the transient behavior of discounted TD(0) to be very different from its
average reward counterpart, and to deteriorate as α increases to 1.

Let rt and µt be the parameters generated by average reward TD(0), and let r (α)
t be the

parameters in the discounted case. In the previous section, we focused on the correspondence
between & J̃t and & J̃ (α)

t , as well as on the correspondence between µt and (1−α)〈e, J̃ (α)
t 〉π .

We showed that the correspondence becomes exact in the limit. We will now consider a
situation where the two algorithms start at some time t with an exact such correspondence,
and investigate whether the correspondence will tend to be preserved.

We introduce the notation

φ̄k = &φk, k = 1, . . . , K .

The average reward TD(0) update is given by

rt+1(k) = rt (k) + γtφ(xt )

(

g(xt ) − µt +
K

∑

j=1

φ j (xt+1)rt ( j) −
K

∑

j=1

φ j (xt )rt ( j)

)

= rt (k) + γtφ(xt )

(

g(xt ) − µt +
K

∑

j=1

φ̄ j (xt+1)rt ( j) −
K

∑

j=1

φ̄ j (xt )rt ( j)

)

,

because the component of each φk that is aligned with e evaluates to the same value for
both xt and xt+1.

Suppose that µt = (1 − α)〈e, J̃ (α)
t 〉π . Note that

J̃ (α)
t = & J̃ (α)

t + (I − &) J̃ (α)
t =

K
∑

j=1

φ̄ j r
(α)
t ( j) +

〈

e, J̃ (α)
t

〉

π
.

The update in the discounted case is then given by

r (α)
t+1(k)

= r (α)
t (k) + γtφk(xt )

(

g(xt ) + α J̃ (α)
t (xt+1) − J̃ (α)

t (xt )
)

= r (α)
t (k) + γtφk(xt )

(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

.

We observe that as α approaches 1, the update equation becomes identical to the one used
in the average reward case.

We now study the equations relating to the average reward estimates. In average reward
TD(0), we have

µt+1 = µt + γt (g(xt ) − µt ).
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In the discounted case, the change in the average reward estimate 〈e, J̃ (α)
t 〉π takes a signif-

icantly different form. Always assuming that µt = (1 − α)〈e, J̃ (α)
t 〉π , we have

(1 − α)
〈

e, J̃ (α)
t+1

〉

π

= (1 − α)

〈

e,
K

∑

k=1

r (α)
t+1(k)φk + r (α)

t+1(K + 1)Ce

〉

π

= (1 − α)
K

∑

k=1

r (α)
t+1(k)〈e, φk〉π + (1 − α)r (α)

t+1(K + 1)C

= (1 − α)
K

∑

k=1

(

r (α)
t (k) + γtφk(xt )

(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j)

−
K

∑

j=1

φ̄ j (xt )r
(α)
t ( j)

))

〈e, φk〉π + (1 − α)

(

Cr (α)
t (K + 1) + γt C

×
(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

))

= (1 − α)

〈

e,
K

∑

k=1

r (α)
t (k)φk

〉

π

+ (1 − α)Cr (α)
t (K + 1)

+ (1 − α)γt

(

K
∑

k=1

〈e, φk〉πφk(xt ) + C

)

×
(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

= µt + (1 − α)γt

(

K
∑

k=1

〈e, φk〉πφk(xt ) + C

)

×
(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

.

Denoting the difference (1 − α)〈e, J̃ (α)
t+1〉π − (1 − α)〈e, J̃ (α)

t 〉π by )t , we have

)t = (1 − α)γt

(

K
∑

k=1

〈e, φk〉2
π + C

) (

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j)

−
K

∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

+ (1 − α)γt

K
∑

k=1

〈e, φk〉π φ̄k(xt )

×
(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)
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= γt (g(xt ) − µt ) + γt

(

α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

+ (1 − α)γt

K
∑

k=1

〈e, φk〉π φ̄k(xt )

×
(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

,

where we have used the fact that

C = 1
1 − α

−
K

∑

k=1

〈e, φk〉2
π .

Let us discuss the three terms involved in )t . The first term

γt (g(xt ) − µt ),

is identical to the one in the update equation for µt in average reward TD(0).
The third term

(1 − α)γt

K
∑

k=1

〈e, φk〉π φ̄k(xt )

×
(

g(xt ) − µt + α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

,

is absent in average reward TD(0). However, it is easy to see that as α approaches one, this
term vanishes.

The second term

γt

(

α
K

∑

j=1

φ̄ j (xt+1)r
(α)
t ( j) −

K
∑

j=1

φ̄ j (xt )r
(α)
t ( j)

)

,

does not vanish. However, we will now argue that when we sum this term over time we are
left with a quantity which is of second order in the step size magnitude, and is therefore
negligible when compared to the first order term γt (g(xt ) − µt ).

As shorthand, we let

st,τ =
K

∑

j=1

φ̄ j (xt )r (α)
τ ( j).

Hence, the second term making up )t can be rewritten as γt (αst+1,t − st,t ), and as α

approaches 1, this difference becomes γt (st+1,t − st,t ). Consider the accumulation of the
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term of interest, which is

t
∑

τ=0

γτ (sτ+1,τ − sτ,τ ) = γt st+1,t − γ0s0,0 +
t−1
∑

τ=0

γτ (sτ+1,τ − sτ+1,τ+1).

Roughly speaking, we need only be concerned with the summation because the other terms
do not accumulate over time. The difference between sτ+1,τ and sτ+1,τ+1 is of order γτ since
the only source of difference is the replacement of rτ with rτ+1. Therefore, the sum

t−1
∑

τ=0

γτ (sτ+1,t − sτ+1,τ+1),

involves terms of order γ 2
τ , and the accumulation of such terms becomes insignificant

relative to the sum of terms of order γτ involved in updating the average cost estimate.
It is well known in stochastic approximation theory that any effects that are of second

order in the stepsize can be safely neglected, especially under the standard assumption
∑

t γ 2
t < ∞. In a more rigorous analysis, we could develop an asymptotic result (in the

limit of small stepsizes) of the central limit type, that provides information on the variance
of the transient fluctuations. Second order, O(γ 2

t ) terms, usually disappear in such an
analysis and one would then obtain a formal characterization of the similarities of the two
transient behaviors. However, we feel that the argument given here captures the essence of
the situation, while also being accessible.

5. Conclusion

The general conclusion suggested by our analysis seems to be that the choice between
discounted and average reward TD(0) is of little consequence, as long as one is careful with
the scaling of the constant function. Esthetic considerations (why introduce an extraneous
discount factor when none is called for), together with the possibility of erroneous judgments
in the choice of scaling could argue in favor of average reward TD(0).

Our theoretical analysis still needs to be corroborated by numerical experimentation.
Finally, we have only dealt with the case of autonomous Markov chains (or a Markov
decision process controlled under a fixed stationary policy). One may conjecture that the
similarities extend to the controlled case.
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