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Abstract—We address the issue of optimal energy allocation not require a sophisticated energy consumption strategy. On
and admission control for communications satellites in earth orbit. the other hand, a data communications satellite in medium or

Such satellites receive requests for transmission as they orbit| s ; ;
ow earth orbit will experience prolonged periods of darkness
the earth, but may not be able to serve them all, due to energy b P ged p

limitations. The objective is to choose which requests to serve so_and Ia<_:k_ of energy input. At _the same time, if the satell_lte
that the expected total reward is maximized. The special case iS providing packet data services, demand for such services
of a single energy-constrained satellite is considered. Rewardswill often be bursty, and the satellite must choose amongst

and demands from users for transmission (energy) are random ysers to be served. In such a situation, the need for an energy
and known only at request time. Using a dynamic programming consumption strategy is obvious.

approach, an optimal policy is derived and is characterized in . L . .
terms of thresholds. Furthermore, in the special case where Energy input for a data communications satellite in earth orbit

demand for energy is unlimited, an optimal policy is obtained in generally consists of power from solar cells [12]. The quantity
closed form. Although motivated by satellite communications, our and timing of the input are known and can be determined well
approach is general and can be used to solve a variety of resourcejn advance. As for energy outflow, a major source of energy ex-
allocation problems in wireless communications. penditure is often the power needed to transmit on the downlink
Index Terms—Communication, dynamic programming, re- connection back to earth. Receiving signals sent up from earth
source allocation, satellite. requires relatively little power in comparison, and sending sig-
nals to neighboring satellites (if the satellite is part of a constel-

I. INTRODUCTION lation with satellite crosslinks) is generally not energy intensive.

In the presence of multiple competing demands for downlink

F OR MOST satellites, energy management is a criticgbyyice, the optimization of energy consumption consists of de-
issue, for the simple reason that energy efficiency directbfding which users to serve.

tran;lates into cos_t savings. A satellite with lower energy The amount of service demanded by users is often a widely
requirements requires a smaller energy source (solar paRglying quantity. For instance, a satellite providing wireless
reactor, etc.) and a lighter battery pack, both of which translargﬁone service will likely experience much more demand when
into weight savings. The weight savings generally provide g0js over New York than when it is over the North Pole.
economic benefit—a smaller launch vehicle might be Se|9Ct%rthermore, the energy required for servicing different users
thus decreasing cost, or more maneuvering fuel could Reysually not the same. Thunderstorms, for example, can
carried, which would result in longer system life. severely attenuate satellite signals. Users may differ in distance

Itis thus important to accurately anticipate energy input aRg the satellite, overhead atmospheric conditions, or even
storage requirements for satellites. To do so, one must model igenna size, all of which imply that the satellite must expend a
operation of the satellite and its energy consumption. If apprgitferent amount of energy to service each user. To complicate
priate, it may be necessary to determine a strategy for eneffytters even further, different users or user classes may provide
consumption. o o differing payments and rewards for service by a satellite.

For instance, a television broadcast satellite in geosyn-There js little prior research on the topic of optimal alloca-
chronous orbit will enjoy continuous sunshine for its solgfon of satellite energy under limited power and finite energy
cells except for brief periods of eclipse, while demand fafiorage conditions. In the 1970s, a study by Aein and Kosovych
energy is relatively steady and unchanging [7]. With both inpg; investigated capacity allocation for satellites serving both
and output of energy relatively static, such a satellitt. mM@ycyit-switched and packet-based networks, while Shaft [14]

looked at unconstrained allocation of power and gain to ser-
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Much work has been done on design and analysis of power b, | D
systems for satellites. For instance, Kraus and Hendricks have ‘
developed a model for estimating satellite power system perfor- |
mance [10]. A study in 1986 examined operational scheduling l ¢
for the (then) proposed manned space station [3], and centered ay Sy

on appropriately matching the many power sources to power
sinks on the space station.

In general, current satellite operators follow heuristic rules Cx
about energy allocation. For example, a simple rule would be

.. . . Fig. 1. Energy flow.

to serve all requests as long as sufficient energy is availablé.
Such a“greedy” approach is clearly suboptimal if different users . ) ]
require different amounts of energy or provide different rewardide energy in the battery plus the energy input for time ot
for the same service. denotedy,.

This paper develops a method that allocates energy for al "€ inputsb;. represent incoming energy from the solar

single satellite. As the satellite moves in its orbit, it encounteP&n€ls or reactor. Because orbits and reactor performance are
different users with different overhead atmospheric conditiorﬁr,ed'dable' th? energy inputg are assumed _to be known in
financial rewards, demand levels, and so forth. For each uﬁﬁvance._ln this model, Fhe satellite §tarts with en@r@yand

of energy expended, the satellite receives a certain amoun@bfach timek > 0 receives energy inpuf, according to a
reward, which depends on distances, atmospheric conditiof€€detérmined and known schedule.

and financial considerations. The reward changes with eacft each time sloti, the satellite operator may elect to con-
time step, and is assumed to be random and unknown until {{4N€ &n amount of energy (up toa;) in servicing users. Any
actual time of service, although its probability distribution ignused Energyy, = ap —cy must be stored in the battery, Wh'Ch,
known. The satellite may also face a limit on the amount QS & Capacity aF.,.. Unused energy that cannot be stored is
energy it can expend: there may be a physical power limit slgst. Therefore, for any time slot, the energy in the satellite’s bat-

its transmitter, or there may simply not be enough customi&'Y consists of available energy from the previous stage minus
demand. The demand is again assumed to be random gAgsumption from the previous stage, subject to a battery ca-

not known until the time of service. At the same time, thgacitylimit. The energy stored in the battery at tilnfor use in

parameters that affect the available energy are largely kno/#€ Next stage, which we define as is then given by the term

the satellite has a battery whose size is known and finite,
and receives energy from its solar cells according to a known
schedule. The objective is to expend the energy (service the

users) in a way that maximizes reward. _ As can be seen in Fig. 1, the energy available for use by the
We present a method for optimizing energy consumption yelite at timek -+ 1 is expressed as
maximize reward. In addition, we provide useful suboptimal

heuristics for the general case based on certainty equivalent ak+1 = min(ag — ¢k, Emax) + bpt1. Q)
control and a closed-form optimal solution for the special case _ _ )

where demand is unlimited. Finally, although originally moti&Altérnatively,a;., can be written in terms of unused energy
vated by a satellite energy allocation problem, our approach iysStored energy;, as

a natural application to wireless networking, which we discuss
in Section V.

sk = min(ax — ¢k, Emax)

= min(ug, Fmax)-

a1 = min(ug, Emax) + bry1

= S + bk+1.

Each unit of energy consumed provides the satellite operator
Il. SYSTEM MODEL with a rewardr;,. The rewardr;, is a nonnegative random vari-

) , , i able with a probability distributiop,., ( - ) that varies with time.
We consider a satellite system with slotted time, stochasgc&houghp (-) is knowna priori, the actual value ofy is not
Tk L

reward, stochastic demand, and a finite time horizon. The safglo " Until time . Similarly, the user's demand for energy.
lite receives energy in each time slot according to a fixed ar&d, is also a nonnegative random variable vatpriori known

known sch_edul_e and can store it in a battery_ of finite size. ,% obability distributionp,, ( - ), but the actual value of demand
the same time, it serves customers by expending energy. Thearleﬁmek is not known until imek. The random variables;

ward obtained per unit energy changes randomly in each til’gﬁddk. E=1.92 . . n are assumed independent.

step. The demand for energy during each time step is random ag,o objective is to choose a consumption policy that maxi-
well. The objective is to find an optimal policy that maximizes,,i,as the total expected reward
expected reward by choosing how much (if any) of the demand
to service at each time. n

Denote the energy available for the satellite to spend at time E Z Tici] @)
slot & with the variableay. It is assumed that during any time =1
slot, the satellite can spend the energy in its battery plus aoyer a time horizon of. time steps, subject to demand and en-

incoming energy from the solar panels. Thug, consists of ergy constraints.
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Notice that implicitin (1) is the assumption that any incomingerm represents the reward for consumption; the satellite
energy during a time slot can be consumed during that skeiceivesr; units of reward per unit of energy consumed, up
without being stored in the battery. This amounts to assumitay a maximum consumption af,,. The expected value term
that energy input and consumption rates are constant for the depresents the value of saving energy. As discussed earlier,
ration of a time slot, a realistic assumption for sufficiently smathe satellite’s available energy in the next stage is given by
slot durations. ar+1 = min(ag — ¢k, Fmax) + br+1. The expected reward

Furthermore, there is an inevitable energy loss associafed having this much energy available is given by the expec-
with charging and discharging a battery, and the energy otation E, 4[Jx+1(ak+1,7k+1, dr+1)], Which is taken over the
battery varies with its discharge rate. Although not currentljistribution ofdy; andry1.
captured, these battery effects can be incorporated into thén order to maximize expected reward, the satellite should
model by proper adjustment of the reward structure. It is alshoose the consumptian that maximizes the right-hand side
known that the pulsed discharge of a battery yields significanily (3). Notice that any consumption beyond the demadjpds
more average power and energy than steady discharge, amdted, as is any energy saved beydhd .

Chiasserini and Rao [5], [6] have developed algorithms to An alternative expression for the value function can

exploit this property for data transmission. This property coulte obtained by maximizing over the stored energy term
be included in our formulation by the use of a model wherg, = min(ax — ¢, Emax). Hence, for stagé

reward probabilities are dependent on previous consumpti9n an i dy)

and energy state. However, due to the short duration of batterk); o Tk Ok ) -

pulses, incorporating this effect would require the use of very 0<sk<n1121%§k,Emax){Tk min(ag—sk, di) + Jet1(se+br41)}-
short time slots (e.g., one second or less). (4)

In the following sections, we formulate the energy allocation )
problem within the framework of dynamic programming [4]M&ximizing over the unused energy temn = ax — ¢ gives
Generating an optimal policy and a value function from the dyiSe o yet another useful formulation:
namic programming recursion can be computationally difficulty, (a;., 74, dy.)

We prove corjcawty of th_e value.funcuon and thereby obtalln _ max (ri(an — up) + jk+1(uk>} )
some properties of an optimal policy. The concavity property is max(ay—d,0)<uy<ay

also 'Fhe basis for two' separate methodg of calculating'the VaWﬁere the termy,
function and generating an optimal policy, both of which pro- .

vide scalability and a significant decrease in computation time. ~ Jk(v) = Era[Ji(min(u, Fmax) + be, 7, di)]. (6)

We also analyze the certainty equivalent heuristic and show thakor every formulation, the value function at the final stage,
it has a simple structure in the special case Whgre the expg_(g%en, is given by

reward per energy unit is the same at each period. In addition,
we derive an optimal policy for the special and limiting case
where demand is unlimited. Finally, we present a numerical €khis, of course, represents the reward for consuming the re-
ample contrasting the performance of the three algorithms witfaining energy in the satellite.

a greedy algorithm and examine an alternative application in
wireless networking. A. Concavity of the Value Function

(u) is defined as

Jn(@n, Tnydyn) = 1, min(ay,, d,).

The value function can be evaluated numerically; however,
[1l. DYNAMIC PROGRAMMING FORMULATION execution time can be slow. The major difficulty is computing

In this section, we present a dynamic programming approatle expectationt,. 4[Jy(ax, rx, di)] for every ay, vy, andd,
to the problem formulated in the previous section. As usu@pd allk. In addition, it is necessary to optimize over for
in dynamic programming, we introduce the value functiof2ch combination aiy,rx, anddy. Fortunately, the execution
Ji(ax, e, di ). This function provides a measure of the desitime can be considerably |mproved by taking advantage of some
ability of the satellite having available energy levgl at time Properties of the value function. _ _
k, given that current demand i& and current reward is;. Theorem 1: Ji(ax, 7, di) is concave in, for any fixedry,
The optimal value functionsy, (ax, 71, di,) for each stagé are anddy.

related by the following dynamic programming recursion: Proof: Given in Appendix A. o _ -
Corollary: The expected value functioh, (ar) is concave in
Ji(ag, e, di) = max {r, min(cy, d) aj, as well, since itis a linear combination of concave functions.

Osersar Note that the value function can be shown to be concave in

+ Jrga(min(ar — ¢k, Emax) + bit1)} (3) d, and F ... as well.
The concavity properties of the expected value function
Jr+1(ary1) dictate the nature of an optimizing consumption
Ji(ar) = Eya[Ji(ar, e, di)]. policy. In the dynamic programming recursion, the expected
value function for timek + 1 represents the expected reward
The maximization is taken over consumed enetgyand the for saving energy at timé. Since this function is concave, it
two terms in the maximization represent the tradeoff in rewattanslates into a decreasing marginal reward for saving energy.
between consuming and saving energy. Thenin(cx,dr) The marginal reward for consuming energy, on the other hand,

where
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is 7, and then zero after the demand limit is reached. Prope(l§). Moreover¢(ry) is independent of the demand and avail-
balancing these two functions results in an optimal policy. able energy. Because of this, the expectation of the value func-
We now derive the form of an optimal policy. Lét.(r) be tion overd; becomes similar to a convolution whep is held

a value ofu;, that maximizes the expression fixed. It is then only necessary to weigh and sum oveto get
. the expectation ovet, and complete the calculation fdg (ay).
ri(ar = uk) + et (ur) @) Using this strategy, the expected value function can be ex-

pressed as
Je(ar) = EralJi(ak, 7, di)]

over allug > 0. In other words

¢r(ry) = arg max jk+1(uk) — LU (8) -
U 2
= oo (1) Ba[ Ji (ag, 71, di) | 72
Theorem 2: The choice of “Z::Op (re) EalJu(ak, i, di) | 7]
= {miﬂ(%(?“k% ar), i ag < di(rr) + dr } whereay, 71, anddy, are taken as discrete and integer for the
ap — dg, if pr(rr) +dr < a purposes of computation.

Whenever;, < ¢ (), the optimal consumption is zero (see

attains the maximum in the right-hand side of (5). ;I'heorem 2) and

In effect,¢x(rr) is a threshold beyond which the reward fo

consuming exceeds the reward for saving. It does not depend on Eg|Jk(ag, x, d) | 76] = ij(ak)
g:)eme;vliiéable energy;. or the demandj,, and is hence easy towherejk(u) is defineq i.n (). |
The proof of Theorem 2 uses the following well-known Whenax > ¢x(ry), itis proven in [8] that
lemma, which we state without proof. EqlJx(ar, mr, dr) | 5]
Lemma 1:If f(z) andg(x) are concave in;, and f(z) is ar—¢n(ry)
increasing, therf(g(z)) is concave inc. = Z {pdk(dk) rrdi + Jrga (ax — dk)]}
Proof of Theorem 2:It is an immediate consequence of =0
Lemma 1 and Theorem 1 thﬁgﬂ(uk) is concave iny. Also,
(7) is concave in;, since it is a sum of concave functions. We + Z pa, (di)
also notice that the rangg, > 0 contains the rangeax(as — di>ar, —¢r(rr)

dk./()) S U S ag.
As a result, an optimizing value af;. in the right-hand side

[rian = de(ri)) + Jrsa (Br(re))].

of (5) is simply ¢« (r+) projected on the intervdmax(a;, — In our experience, this method often leads to a dramatic
d,0), ax]. The theorem follows. improvement in computation speed over the standard dynamic

Concavity is also critical in proving the following importantprogramming algorithm, in some cases over two orders of
property of the value function. O magnitude.

Theorem 3: If by, dy, andF,,.. are integer for alk, the value The second method of calculating the optimal value function
function Jy.(ax, &, di.) for fixed 7, andd;. will be piecewise is frequently even faster than the one detailed above. The algo-
linear in ay, with corner points only at integer values @f. rithm relies on the concavity of the value function and essen-
Furthermoregy (1) can be chosen integer for evenandr,,.  tially chooses the maximum of either the expected marginal re-

Proof: Given in Appendix B. O ward from saving or from consuming for each incremental unit

Corollary: If, in addition, the initial energy, is also integer, of energy it is able to use. The dynamic programming recursion
then there exists an optimal policy under whighanda;, are is written in the form
integer for allk. _ . ; _

Proof: We use induction. By Theorem 3y(r) can be Jelar, e, di) = Osnclfsxak{rk min(ex, di) + Jira(ar = eu)}-
assumed to be integer. Then whanis integer, the choice af,, It can be shown (see [8]) that
given by Theorem 2 will be integer as well. As a result, ; is
Ji(ak, 7k, di)

also integer. ‘ .

We have seen that the slope of the value function changes only min(axdi) .

; : = Jry1(ar) + E max(ry — Jy 1 (ar —cx),0) (9)
at integer values af, whenby, d;,, andFE,,,. are integer. As a k+1\Ck k k+1\%k = Ck ),

cr=1

consequence, a numerical method need only consider integer R
values ofa;,. Therefore, let us assume from now on, throughouthere.J;  ; () is the first difference of/; 1 ()
the rest of the paper, that the variabigs sy, ¢, di., Emax, and A - A

- ok o Jiir(@) = Juga (@ +1) = Jesa (@),

by are all integer. O
Note that the term
B. Computation of the Value Function min(ay,dy)
The concavity o/ (ax) not only dictates the form of an op- > max(rk — Jiy(ak — cx),0)
timal policy, but also can be exploited to quickly calculate the er=1

value function itself. Two different methods have been devebk omitted ifmin(ay, dy) = 0.
oped to do so. The first method is based on the fact that knowingequation (9) is a significant simplification of the earlier dy-
¢r(r) eliminates the need to maximize over consumption mamic programming formulations from a numerical standpoint.
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It replaces the maximization ovef, with the summation of a As seen above, dynamic programming requires taking expec-
simple maximum of two quantities. Rather than optimize ovéations over random variables. This process is computationally
all available energy, each incremental unit of energy is allocatedensive and can be extremely slow. With a certainty equivalent

by comparing; andj,g+1(ak —Ck). heuristic, the decision at each stage is found by solving a much
To compute the expected value function, it is necessary e@asier deterministic problem.
average (9) over; andd: The dynamic programming recursion for the deterministic
o - problem underlying the CEQ policy is given by
J(ar) = Z pa, (di) Z Pri(7e) | Jisr(ar) Ji(ar) = max {E[r;]min(cy, E[dy])
dr=0 r=0 0<cp<ap
min(ay,dj,) +Jpt1(min(ar — ¢k, Emax) + brt1)} (11)
+ a - J . — ), 0

Ckz::l max(ry — Jy 4 (ar — cx),0) and

After applying a change in the order of summation, we have jn(an) = E[r,] min(a,, E[d,]).
ag [e’] ~

Je(ar) = Jeya(ar) + Z { [ Z Pa, (dk)] Once the value functiong; (ay,) are available, a decision at time

cr=1 \ Ldp=c; k < n — 1is obtained by maximizingy, in the expression

oo ~

- [Z Pry (1) max(ry, — Ji i (ar — cx), 0)1 } . Ogﬂclk%gak{rk min(cg, di)+ Jr+1(min(ag —cg, Emax) +brk41)}-

=0 (12)
This change in the summation order eliminates a minimiza-

tion in the earlier expressions and eliminates the need to d\he decision at time is set toc,, = min(a,,d,).

erage overl;. The remaining maximization can be eliminated In the special case where rewards in each time step have the

by noticing that same expected valu&(r,] = FE[r] for all k), the certainty
oo equivalent value function and the resulting policy take on a par-
Z Pry (1) max(ry — Jp 1 (ag — cx),0) ticularly simple form.
ro=0 Theorem 4: Assume that’[r,] = E[r] for all k. Then, the
oo . value function/y (ay,) for the underlying deterministic problem
= Z Pro (1) (rk — Jq1(ak — ck))  is of the form
=iy (o)l Ji(ay) = E[r] min(ag, 6;) + (13)
where[ -] is the ceiling operator. Thus R ko Ok
where
Te(ar) = Jrpa(ar) + ) [ > pdk(dk)] 8k = E[dy] + min{ Eumax, max(0, 6x41 — bgy1)}
crp=1 dr=cy, and
= A Ve = Elr]min(bgi1, 6g41) + Vet
v (73) (e — I —c — .
2 Pri (i) (e = Jisa(ax—ex)) Proof: Given in Appendix C. O

=g (el Although the formal proof of the theorem is given in the

(10) Appendix, a more intuitive justification can be obtained by con-
An efficient computational method readily follows from thissidering the underlying deterministic problem. Since the (ex-
representation of,(a; ). Furthermore, note that if the distribu-pected) reward is the same at all times, an optimal policy is a

tion of r, or d;, do not change with time, then quantities such a@eedy policy that consumes as much as possible at all times.
Then J(ay) is equal toF[r] times the total consumption (in

o0
Z pa, (di) the deterministic problem) over the entire horizon.
do—z Given this fact, it is possible to infer the structure of the value
and function. Lety, = Jk(o). As ay, increases from 0, as long as
i each additional unit of available energy can be consumed, now
Z kP, (Tk) or in the future, the total reward increases linearly. However,
TE=T onceay reaches a certain threshold valtig any additional
only need to be computed once, resulting in further reductionawailable energy will have to be wasted and will not result in
computation time. any additional reward. This happens when the current expected

demandE[d,] has been exceeded, and saving the energy for fu-

ture use is not possible because either the battery capacity or the
A certainty equivalent (CEQ) policy is a heuristic policy thafuture expected demand has been exceeded.

at each stage applies a decision that would have been optimaAs seen by the preceding argument, the quantitieand 6y,

if the future rewards;, and demands;, were all deterministic have an intuitive interpretation that results in recursive formulas

and equal to their expectatioddr;] and E[dy], respectively. for computing these constants. The total expected reward given

C. Certainty Equivalent Policy
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that the current available energy is zero is giveppyThe max- demand is unlimited, the dynamic programming recursion
imum available energy at timethat can be consumed immedi-becomes
ately, or saved and consumed later, is giveahyf the satellite

has more available energy, the excess is wasted. k(ax, 7k)
At stagen, it is clear thaty, = 0 andé, = El[d,]. The =0<Ig%§m_{7“kck+Er[Jk+1(min(ak—CIwEmax)+bk+177”k)]}-
formula for~; may be obtained using the fact that= .J;(0): - (14)
Tk = {k(o) Forl <+ < j < n, define the constants
= Jeri(bera) o) = Elr;)
= Elr] min(bgy1,0k+1) + Vt1- 7 i1
oy =F [max (Ti,ozj )]
To determiné;,, we need to determine the maximum possible 3 =E
available energy;, that will not be wasted. The firgt[d;] units i -
are not wasted because they can be consumed immediately. Any fj = max (51' = bi, 0) '

further useful available energy cannot excéggl., since this Theorem 5: An optimal consumption policy, for < k < n
the most that can be conserved for future use. At the next ti”i‘segiven by the following. -

the maximum useful available energydis; ;. Since there will If 7, > a*+1, then
be a fresh supply dfi.1 units, any useful transfer from tirie - "
is limited tomax(6x+1 — br+1,0). Putting everything together, Cp = ag. (15)
we obtain )
Otherwise

8k = Eldi] + min{ Eyax, max(0, 6gr1 — b .
F (] + min{ max(0, -1 e+1)} ¢ = max(ag — [3}“"’1,0) (16)
The consumption policy for the special case whEfey] is

the same for alk is also relatively straightforward to describe WNere; kiflthe smallesj in the ranget + 1 < j < n such that

Expression (12) becomes Tk < oG L
Furthermore, the value function is given by
ogri,lfgxak{rk min(ck, di) + Y1 Je(ar,r)
+ E[r] - [min(min(ar — ¢k, Emax) + bkt1, Ox41)]- = max (rk, aﬁ+1) - [min ([3§+1, ak)]
If r, > E[r], the CEQ policy will consume as much as possible +max (rg, 1) - [min (817, ax) —min (857, ax) ]

(up tody) and then save any remaining energyylf< E[r], the
policy will save as much as possible, updig,1 — br4+1 units :
of energy, and try to consume the rest. This policy appears to  +max (rx, ;T3 - [min (8.3, ar) —min (8;73, ax)]
be a reasonable one, and in tests where reward was uniformly E41y T k+1 i k+1
distributed (see Section V) the CEQ policy regularly obtained +max (rs, O‘.k+1) kE:IIHH (/Bk+1 , ax,) —min (ﬂk+27ak)]
80%-90% of the optimal reward. +ri [op—min (B, ax) 4w an

Itis possible, however, to construct examples where the p@fherew is a constant (the actual value of which does not affect
formance of the CEQ policy is arbitrarily bad. For instancehe policy).
consider the extreme case where demand and battery capacityhe physical intuition behind the constants above is as fol-
are unlimited. Suppose there are four possible rewards that Ritvs. o represents the optimal expected reward in an optimal
pear with equal probability and that are chosen from the sg&bpping problem in which there is a unit of energy that can be
{0,R — €, R+ ¢€,2R}, where0 < ¢ < R. Clearly, the optimal consumed at any timgi + 1,...,j between stagesand ;.
policy is to wait until best reward appears to consume energ¥he rewardr; for any given time step is not known until the

The CEQ policy, on the other hand, will consume all availablgme step is reached, but the probability distribution for the re-
energy whenever the reward is abdveThe difference between ward is known for each time.) Notice that for a giv‘em;l is

the reward obtained by the CEQ policy and an optimal poligyondecreasing witfj.

can be made arbitrarily large simply by adjusting probabilities The constanﬁ;'.“ represents’,... less the incoming energy

and rewards. bit1+---+b;_1 between timé + 1 and timej — 1, as long as

it does not become negative. Notice ti¥t" is nonincreasing

with 5. Itis interpreted as the amount of energy at tintigat can
When demand is unlimited, one can obtain a closed-forbe saved until timg, without overflowing the battery, in view

expression for an optimal consumption policy, described byaddthe future energy inputs 1, ...,b;_1.

simple threshold scheme. This formulation also applies to theThe policy can be interpreted as follows. If the current re-

case where demand is finite but is guaranteed to always excaedld r;, is greater than the expected reward for consuming at

the available energy. This policy can be used as a heuristicatio optimally chosen time between tirhet+ 1 and timen, then

solve the general demand-limited case. the policy consumes all available energy immediately. In other
As before, the objective is to choose a consumption polieyords, if the expected reward for saving is less than the reward

that maximizes total expected reward owetime steps. Since for consuming, the policy consumes.

D. Unlimited Demand Policy
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< Emax ———=> max(ax—@5 ", 0). This leads us to the optimal policy described
above.
- ‘ ’ \ l ‘ ‘ ‘ ‘ - Since the time until expiration is shorter as one moves to-
incoming consumed ward the head of the queue, the satellite will always consume
energy Battery energy energy packets according to FIFO ordering. We have thus ob-
tained an optimal FIFO policy for consuming energy packets.
Fig. 2. Battery FIFO queue. Finally, note that because the energy packets are indistinguish-

able, an optimal FIFO policy is also an optimal policy in general.
If not, the policy finds the smallest timgsuch that current  The value functionyy, (a, r) given in (17) can be better un-
reward is less than the expected reward given that the user nigsstood by using the terminology developed in the proof and
consume between time+ 1 and timej. The policy then con- by looking at each individual line of the expression. Each line
sumes available energy Ie/§J§Jrl (subject to the constraint thatrepresents the total reward that can be obtained from all the en-
consumption cannot go below zero). Note tﬂ}‘ﬁ‘l < E,...so €rgy with a certain expiration time. With the exception of the
that in all instances the policy consumes any energy that cantf? and bottom lines, each line has the form

be saved in the battery. k+1 . k41 . k+1
This closed-form solution can be computed in time propor- max (rk’ai ) [mm (ﬂi ’ak) fn (ﬂ’i“ ’ak)] '

tional to the number of stages and the number of possible The max(rhaikﬂ) term represents the expected reward
values for the rewards;. for energy expiring at timei, and the [min(8F ! ay) —
Proof of Theorem 5:The theorem can be verified throughmin(ﬂfjll? ax)] term represents the amount of energy expiring
tedious algebraic manipulation of (14) [8]. However, there igt timei. The top and bottom lines can be similarly approached.
another approach that is more intuitive. Notice that it is nevegy instance, the bottom line of the equation gives the total
optimal to save more energy than the battery capacity. ARwyard that can be obtained from energy expiring at time
amount of saved energy greater than the battery capacityrige reward per unit energy is given by, and the amount of
wasted, whereas one can always obtain some reward (hOW%rgy expiring at timé is the amount of available energy,

minimal) by consuming, since demand is unlimited. that exceeds battery capaci,... This amount of energy is
With this observation in mind, let us consider the battery asgen by

gueue for energy packets with a capacityfgf... (see Fig. 2).

Assume without loss of generality that each energy packet is of ap — min(Fpax, ar)
size one. At each timk, b;, energy packets arrive, and the satel- )

lite can consume any number of energy packets in the queu@fgauivalently
obtainr; units of reward per unit energy. The task is to find the

consumption policy that generates the greatest expected reward.

Now consider the class of first-in-first-out (FIFO) policies foljence, the total reward from this energy is
managing this queue. First, notice that any energy packet in the
gueue must be either consumed or discarded by thefime Tk [ak — min (ﬂfii ak)]
additional energy packets arrive after it. If the energy packet is . , . . .
not consumed, queue capacity is exceeded and the energy pa\gjgé(fh is precisely the last line in (17). =
will be wasted.

Since the schedule for energy packet arrivals is known, each
energy packet in this queue has an effective expiration time. TheThree procedures for allocating energy have been introduced:
expiration time for each energy packet is the time at whichthe optimal policy for the general case, the certainty equivalent
total of F,,.. additional energy packets arrive after it. Undepolicy, and the optimal policy for the unlimited demand case,
any optimal policy, the energy packet must be consumed by thikich can be used as a heuristic for the general case. We now
time. Note that as one moves from the head of the queue to &pply these three procedures to a hypothetical satellite in low
end of the queue, the time until expiration for each energy paclegtrth orbit and compare their performance to a simple greedy
is nondecreasing. policy that expends as much energy as it canisf ay, di ) units

Given these expiration times, an optimal FIFO policy simplgf energy—during each time step.
picks the best time between the current time and the expiratioriThe objective is to maximize total reward obtained over a
time of the energy packet to consume it. This involves solvirgsi-h time period, which is divided into 15-min time slots. Al-
an optimal stopping problem for each energy packet. though we do not do so in this example, it is possible to use much

The solution to the optimal stopping problem is well knownshorter time slots. In fact, it is possible to use our methodology
For an energy packet with expiration timgan optimal strategy to decide whether to accept or reject individual packets.
is to compare the current rewarg with o/ ™. If rj, < o™ The hypothetical satellite has a 90-min orbital period, half of
the satellite should save the energy packet; if not, it consumekich is spent in sunlight, half in darkness. Accordingly, the
the energy packet. If the satellite consumes an energy packatellite sees a pattern of three time slots with incoming energy,
with expiration timej, it also will want to consume all energyfollowed by three time slots without. The satellite starts with 20
packets with expiration times befoje At time k&, the number units of energy and receives 10 units of energy from its solar
of energy packets with expiration timje— 1 or less is given by cells during each time slot it is in sunlight.

ar — min (/3],:::_'11 ak) .

IV. EXAMPLE: A Low EARTH ORBIT SATELLITE
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Fig. 4. Energy levels and consumption= 15. Fig. 6. Energy levels and consumption= 50.

At each time slot:;, the satellite can expend upd@ units of levels that result from periods of light and darkness are readily
energy forr, units of reward per unit energy. The demahds apparent. The second subplot shows the available energy (bat-
Poisson distributed with parametgr and the reward;, has a tery plus input energy) and consumption. In general, there is
discrete uniform distribution between 1 and 50. much more available energy than demand when the policy elects

Fig. 3 shows the reward and demand parameters for a singleonsume. In such a situation, we would expect the unlimited
randomly generated scenario, along with the energy consundemand policy to yield considerably poorer results than the op-
tion as determined by the optimal policy. Demand was Poisstimal policy.
distributed with\ = 15, and the battery capacity was 50 energy Fig. 5 shows the reward, demand, and energy consumption
units. The first plot shows the relationship between consumptifor another randomly generated scenario where demand was
and demand, and the second the relationship between rewRoisson distributed with = 50. Fig. 6 shows the energy levels
and consumption. As might be expected, the optimal poliof the satellite in this scenario. Unlike the situation where
elected to consume only when reward was relatively high. Alstj, the satellite seldom serves all of the available demand. In this
consumption at peak points was often equal to demand—in thisse the satellite is energy constrained, not demand constrained.
particular scenario, the demand was generally lower than availrder this circumstance, it is to be expected that the unlimited
able energy. Thus if the policy elected to consume, it was usuallgmand heuristic would perform well.
constrained by demand, not available energy. The value function (under an optimal policy) and the value

Fig. 4 shows the energy levels of the satellite in the same s@gactions underlying the unlimited demand and CEQ heuristics
nario. The first subplot shows the energy in the battery and tfag time step 54 are shown in Fig. 7. This particular time step was
energy input from the solar panels. The oscillations in battechosen because the nature of the value functions is more visible
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than at other time steps. Recall that the two heuristics genersitaply the expected value of the reward. The staircase structure
an approximate value function and then generate a policy basesults from the fact that new energy always comes in groups
on them. These are the “underlying” value functions that acd ten units, and accordingly, the expiration time and marginal
plotted in the figures. As can be seen from the figures, all ofward for energy changes every ten energy units.

these functions are concave in energy. Notice that the unlimitedThe first difference of the optimal value function can be un-
demand policy tends to overestimate the value of saving enerdgrstood in the same framework. As can be seen from Fig. 8,
while the CEQ policy significantly underestimates the value dfiis value function is always less than the one corresponding to
saving energy. the unlimited demand case. This reflects the possibility that in-

The first differences of the value functions are plotted iaufficient demand is available and that energy cannot be spent
Fig. 8. The first difference gives the expected marginal rewab@fore expiration. Hence, an extra unit of energy is always worth
for every extra energy unit as calculated by each policy. less when demand is limited.

The first difference of the underlying value function for the The first difference of the underlying value function corre-
unlimited demand heuristic is always a staircase function. Théponding to the CEQ policy is simply a constant. As shown in
structure results from the expiration times (explained earlieFheorem 4, the value function is a piecewise linear function of
that are imposed on incoming energy. If there is not much eavailable energy. In the range shown by the plot, however, the
ergy in the battery, incoming energy does not have to be sp&atue function is completely linear. Since available energy is
for along time. The policy can then wait for a time slot with higlnever outside the range shown by the plot, the underlying value
reward and accordingly, the expected value for an extra unitfohction is effectively linear.
energy is high. However, with a full battery, an extra unit of en- Figs. 9 and 10 show the total reward obtained by the various
ergy must be spentimmediately, and hence the expected valugdBcies as battery capacity changes from 5 to 150, with 15
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approach took 0.39 s. In contrast, the greedy policy required no
precomputation, while a direct calculation of the optimal value
function required about 26 min, 39 s.

V. OTHER APPLICATIONS

The policies and analysis presented above are applicable in
many situations where there is a stored resource that can be ex-
pended for a reward. For instance, the operator of a hydroelec-
tric dam with a limited supply of water could use a similar ap-
proach to maximize revenue when faced with a fluctuating price
for power.

One particularly interesting application is that of maximizing

- throughput in a fading channel given finite battery capacity
[9]. Assume that a mobile transmitter seeks to transmit over

05, s = 5 " P w a fading channel where throughput per unit energy expended
Average Demand is not known until the time of transmission. The probability
Fig. 11. Performance of policies as a functio\afaverage demand). density of the throughput is independently distributed over time

and known. We also impose a power limit on the transmitter
. . . and a deadline by which the transmission must take place.
anq/\ N "0’. rgspectlvely. Fig. 11 shows the performance of the This application gives rise to two problems that can be solved
various policies a& changes from 2 tq 60 and for a fixed patt_er sing the approach described in this paper. First, one may seek to
capacity of 50 energy units. In each figure, every data pointist ximize expected total throughput given a limited amount of

average performance observed in 50 simulations of a policy oyer d K to minimize th ted
the 24-h horizon. The reward obtained by each policy is plott\?ég E;gé/;)ﬁsejr?:a d g:/ir:n%f:; an?orSII"nr'zlcr)r;I(Ztha foesr‘:r:gy expecte

as : fractu;n of the frewarcrj] o?tamed b?]/ thﬁ optlm?l pohcy. h The equations that result for the first problem are almost iden-
S can be seen from the figures, the three policies we haye,| 1, the satellite energy allocation problem. Throughput is

considered significantly outperform the greedy policy. The Ce5(r1alogous to reward in the satellite problem and the power limit

tainty equivalent heuristic always obtained at least 80% of ﬂi?equivalent to demand. There are only two places where the
optimal reward, while the unlimited demand heuristic was ? :
It

. > “prpblems differ. First, energy inputs for the mobile transmitter
0,
ways above_?OA). Figs. 10 and_ll also show that the unlim Fg zero for all time. Second, in most cases power constraints
demand policy performeq pamcularly well when the avera ill be static and knowra priori. These two conditions signif-
demand was relatively high. Also no_t|ce from Figs. 9 and 1 antly simplify calculations; nevertheless, the policies detailed
that the performance of every suboptimal policy deteriorated ove will be completely applicable

battery capacity increased. The explanation is that a larger bat’l’he second problem can be solved with techniques similar to

tery leads to more choices as to when to consume energy, w Q ones used for the first problem; however, the problem is a

the heuristics do not handle as well as the optimal policy. |inimization rather than a maximization, and some modifica-
contrast, when the battery capacity was small, all policies Pg '

f - . ] (igin of our approach will be necessary.
ormed similarly, as the opportunity to save energy was limite
by the battery capacity.

Note that while the plots show the relative performance of
the greedy policy deteriorating with increasing battery capacity This paper developed a dynamic programming formulation
and increasing demand, the total rewards obtained by the greéamyoptimizing satellite energy allocation and presented three
policy actually remained fairly constant. It is easy to see that imethods for efficiently obtaining a policy: the optimal one, the
creasing battery capacity would have little impact on the totahlimited demand policy, and the certainty equivalent policy.
reward obtained by the greedy policy, which stores as little efihe three methods trade off computational complexity against
ergy as possible. Similarly, the greedy policy would not be abperformance and their behavior and properties have been ana-
to take advantage of increased demand levels by saving endyggd. The approach developed is general and can be used for
for future, higher reward opportunities. Hence, the deterioratinmgher stored resource allocation problems, including throughput
relative performance of the greedy policy in the simulation wasaximization for wireless communications.
due mainly to the increased reward obtained by the other poli-There are a number of areas for further investigation. The
cies, which were able to exploit higher battery capacity and dgselicies presented thus far are valid only for a single satellite.
mand levels in making consumption decisions. Additional work needs to be done on extending the results to a

The computations were carried out on a Pentium Ill computeonstellation of satellites. It would also be interesting to explore
using Matlab 5.0. Computing underlying value functions anthe use of these methods as a satellite design tool rather than
optimal policies for a typical data point from Fig. 11 requireés an aid to operation. Because the computations run quickly
roughly 0.92 s when using the second method for calculatingan a computer, the effects of a reduction in battery capacity or
optimal value function [see (10)]. The calculations for the uran increase in average demand can be readily discerned. An-
limited demand approach required 0.51 s and those for the CBEter natural extension of our model would be to capture battery

VI. CONCLUSION
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charge/discharge effects, as discussed earlier. Finally, it woddnilarly

be interesting to study similar problems involving the accep-
tance or rejection of circuit-oriented connections, rather than ofs (v 7k,

fered packets.

APPENDIX

A. Proof of Theorem 1: Concavity of the Value Function

dy) = rpmin (y — s, di)
+ Er.q [Jit1 (55 + bkt rh1s dig1)]
where s} is an optimizing value fors;, in the equation for

Ji(y, 1, dy). Combining the two equations and weighting by
Aor

The dynamic programming equations for stochastic reward ~ \Jy(z, 7k, di) + Ak (y, 7k, di)

and stochastic demand energy allocation are given by

Jk(ak7Tk7 dk) =

max
0<sp <min(as, Bynax)

+ B alJk+1(8k + bkt1, 7et1, de+1)]} (18)

{rr min(ay — s, di)

and

Jn(@n,y Ty dy) = 1 min(an, dy,).

(19)

We now show thaty (ag, rx, di) iS concave iruy, for every
Tk anddk.

Definition: A function f : ® — Ris concaveiffo0 <A <1
and\+ X =1 we have

FOy+A2) > Mf(y) + Af(2)

forall y,z € R.
Lemma 2: If f andg are concave and > 0, thenf + g and
af are concave.
Proof: Follows from definition of concavity. O
Lemma3:1f0 <A< 1and)+ X =1,then

(20)

Amin(a,b) + Amin(e, b) < min(Aa + A, b). (21)

Proof: For fixed b, the functionmin(a,b) is a concave

function ofa and the result follows.
Theorem: Ji(ay, i, dy) is concave iny for any fixedr
anddy,.

Proof: We use induction. First, note that the value functio
Jn(an, ™, dy) is concave im,, and the expected value function

E, a[Jn(an-1 + by, 7, dy)] is concave im,_1. Indeed, from
the problem formulation, we see that

Jn(@n,y Ty dy) = mn min(ag, d,)

is a piecewise linear and concave function @f. Hence,

Jn(8$n—1 + bn,7rn,dy) is concave ins,_; as well, and by

Lemma 2, the expectatiol, 4[Jp(sn—1 + bn,7n,dn)] is

= M min (z — 5%, dg)
+ Era[Jet1 (8§ + brs1, kg1, diy1)]}
+ A{rp min (y — s, dy)
+ Era[Jes1 (8] + bkg1, Trs1, diy1)]}
=7, (Amin (z — s§,dy) + Amin (y — s7, dy))
+ AE, g [Jrt1 (5% + b1, Trt1, dit1)]
+ AEpa [Jr41 (8% + bt Tt dig1)] } -
The termamin(z — s, d,) andmin(y — s}, dj,) are piecewise
linear and concave. By the induction hypothesis, we also know
that E, 4[Ji41(sF + brt1,Tet1, di1)] and B, g[ i1 (s) +
bk+1,7k+1,dr+1)] @re concave ing. Then
(2, rie, di) + A (y, re, di)
< rpmin (Az + Ay — Asp — As¥, dy,)
+ Er.g [Jrt1 (Ash + Asy 4 b1, Trg1, diey1) ]

Now examine the range of the maximization. Since
s7 < min(z, Epax) ands; < min(y, Fpax), we have
Asp + Ast < Az + My (22)
and
)\SZ]S + XSZ S )‘Emax + S‘Emax- (23)
gombining (22) and (23)
Asy 4+ As? < min(Az + Ay, Emax)
and
Mi(z, 71, di) + M (y, 7, d)
< max _ {ri, min(A\z + \y — s, d.)
0<s, <min(Az+Ay, Fyax)
+ Ep g Jk+1(Sk + bkt1, Tet1, diet1)]}
= Jp(Az + Ay, 7y, ). (24)

also concave irs,,—; since it is a weighted sum of concaverpis shows thatly,(ax,, &, dy,) is concave inu,. A direct appli-

functions.

Now assume, ;[ Ji41(sk + bry1, re+1,drt1)] IS cONcave
in sx. We show that/y. (ax, r, di ) is concave imy,. To complete
the induction, we also show thak, 4[Ji(sk—1 + bk, 7. di)] IS
concave ins;_1.

Let us look atJi(z, &, di.) andJi(y, i, di.). We have

Je(z, 78, di) =

max
0< sx <min(a, Finax

+ By alJk+1(Sk + b1, ot 15 diy1)] -

There mustbe an optimizing value fqr. Denote this by;,. Then

{ri min(z — sk, dg)

Je(z, 7%, di) = 7, min (z — s%, di)
+ Er g [Jkg1 (SE + bkt Tht1, dig1)] -

cation of Lemma 2 shows thd, 4[Jx(sk—1 + bk, 7k, dg)] IS
also concave iB;_; and the induction is complete. O

B. Proof of Theorem 3: Piecewise Linearity of the Value
Function

The objective is to show that the value functidi{ax., 7, di)
is piecewise linear with corner points at the integers under the
integrality assumptions of Theorem 3. We prove this by induc-
tion. At timen

In(@n,rn,dpn) = 1 min(ay, dy,).

Since we assumé, to be integer, this function is clearly piece-
wise linear ina,, with corner points only at the integers.
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Now assume that/yii(ag+1,7k+1,dr+1) IS piecewise and
linear ina1 with corner points at the integers. We show that
Jx(ax, rx, di) has the same property, using the formula for the Ve = Elr]min(brt1, Sk41) + Vet
value function given in (5).

It is clear that the terrﬁk+1(u) is also piecewise linear with
corners at the integers. To see this, note that

At time n, the underlying value function can obviously be
written in this form, withy,, = 0 andé,, = E[d,,]. Now, assume
that (26) is true at timé& + 1. We show that it is true at time
Jes1(ars1) = EralJes1(ars1, rryrs dry1)] as well.

First, by the CEQ assumption, future reward is the same
all times and equal t@&[r]. It is also apparent that in the
derlying value function (25), the reward for consuming at
time k is also E[r]. Therefore, an optimal policy is a greedy
ij(u) = Jrpr1(min(u, Emax) + br11)) policy that consumes as much as possible at all times, and
¢, = min(ag, E[dy]). Then the underlying value function can
be written as

is a linear combination of functions with this property, an%t
hence itself is piecewise linear with corners at the integerusr.1
Then, noting that

we see thatfk+1(u) has the same property sinég, ., andby,
are assumed to be integer.

We have from (5) that Ji(ar) = E[r]min(ax, E[d])
Ti(ap, T, di) + Ji41(min(ar — min(ag, E[dy]), Emax) + bk+1)}-
= max {ri(ar — ux) + Jes1(uzx)}.  Using (26) and substituting fofy.; 1 (aj11)

max(ar—di,0)<up<ap

Theorem 2 provides the optimal values fgr in the above ex- Ji(ar) = Elr] min(ax, Ed])

pression. Substituting these values for the maximization, we ob- + E[r] min(min(as, — min(ax, E[di]), Emax)
tain foray < ¢w(r) + bkt 1, Okg1) + Yhg1- (27)
Ji(ag, i, di) = lar — ag) + Jep1(ag) If bry1 > 041, then the term
= Jir1(ax) min(a; — min(ag, F[di]), Pmax) + bk+1

for ¢i.(ri) < ar < Pu(re) + di is always greater thaf)..; and (27) simplifies to

Tk, i di) = ri(ar = bu(ri) + Fua (6a(r0) Ju(a) = Elr min(ax, Blds]) + Elrlon + s

and forgy (re) + di. < ax If bey1 < ki1, then (27) can be written as

Tk, i, di) = riar — (ax — di)) + Joya(ak — di) Je(ar) = E[r] min(ax, Eldy])

=i + Jia(ar = di). + E[r] min(min(ar — min(ag, E[dg])

It is apparent that_]k(ak,rk, dy) is piecew?sg linear with + bt 15 Bumax + brgt)s 051) + Vit
corner points at the integers as longgagry) is integer. But _
¢ (re) is a value ofuy, that maximizes (7). This expressionwhich can be reduced to
?s concave and is glso piecewi§e_ I!near with corners at the Je(ar) = E[r] min(ag + bpi1, ar + Emax
integers. Thus, an integer maximizing value can always be ) Elde] + Funas + b u
found. Therefore/ (ax, 1, d ) is piecewise linear with corner kel BTk max 7 Ok+1) Tk
points at the integers. + Okt 1, Eldi] + Ok41) + Vet 1

Using the fact thaty 1 < 6x4+1 andag + bgr1 < ag + b1 +

C. Proof of Theorem 4 Value Function for Certainty Fmax, We may eliminate several terms from the minimization

Equivalent Policy Under Fixed Avage Reward

above:
The underlying value function for the certainty equivalent . )
policy is given by Ji(ar) = E[r] min(ay, + brt1, E[di] + Emax
z bri1, Fldi] + 6k .
Jo(ar) = max {E[r]min(cy, E[dy]) * e, Bld] +0n1) + e
0<cr<ag = E[r] min(ag, E[di] + min(Emax, O0k+1 — bk+1))
+Jr1(min(ar — ¢k, Emax) + be+1)} (25) + E[r]brg1 + Yrq1-
and The value function is now in the desired form.

= ) We have shown that the underlying value function at tkne
Tn(an) = Elr] min(an, E[d,]). can be written as

We seek to show by induction that (25) takes the form Je(a) = E[r] min(ag, 6,) + vx
Ji(ax) = E[r] min(ax, 6x) + i (26)  where wherby, ;1 > 841
where 8e = Eldy]

b = Eldi] + min(Epax, max(0, 6541 — bri1)) Vi = E[r]0k41 + Y1
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and Wherbk+1 < 5k+1 [16] A. Weenet al, “Dynamic resource allocation for multi-service packet

The definitions of the constants may be consolidated bv
writing

based LEO satellite communications,Rnoc. IEEE GLOBECOIWvol.
8k = E[di] + min(Emax, Se+1 — brs1) 5, 1998, pp. 2954-2959.

Y = E[r]bes1 + Yrt1.
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