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Abstract. In this article, we propose and analyze a class of actor-critic algorithms. These
are two-time-scale algorithms in which the critic uses temporal difference learning with a linearly
parameterized approximation architecture, and the actor is updated in an approximate gradient
direction, based on information provided by the critic. We show that the features for the critic
should ideally span a subspace prescribed by the choice of parameterization of the actor. We study
actor-critic algorithms for Markov decision processes with Polish state and action spaces. We state
and prove two results regarding their convergence.
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1. Introduction. Many problems in finance, communication networks, opera-
tions research, and other fields can be formulated as dynamic programming problems.
However, the dimension of the state space in these formulations is often too large for
the problem to be tractable. Moreover, the underlying dynamics are seldom known
and are often difficult to identify. Reinforcement learning and neuro-dynamic pro-
gramming [5, 19] methods try to overcome these difficulties by combining simulation-
based learning and compact representations of policies and value functions. The vast
majority of these methods falls into one of the following two categories:

(a) Actor-only methods work with a parameterized family of policies. The gra-
dient of the performance, with respect to the actor parameters, is directly
estimated by simulation, and the parameters are updated in a direction of
improvement [8, 10, 16, 23]. A possible drawback of such methods is that the
gradient estimators may have a large variance. Furthermore, as the policy
changes, a new gradient is estimated independently of past estimates. Hence,
there is no “learning” in the sense of accumulation and consolidation of older
information.

(b) Critic-only methods rely exclusively on value function approximation and
aim at learning an approximate solution to the Bellman equation, which will
then hopefully prescribe a near-optimal policy. Such methods are indirect in
the sense that they do not try to optimize directly over a policy space. A
method of this type may succeed in constructing a “good” approximation of
the value function yet lack reliable guarantees in terms of near-optimality of
the resulting policy.

Actor-critic methods [2] aim at combining the strong points of actor-only and critic-
only methods. The critic uses an approximation architecture and simulation to learn
a value function, which is then used to update the actor’s policy parameters in a
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direction of performance improvement. Such methods, as long as they are gradient-
based, may have desirable convergence properties, in contrast to critic-only methods
for which convergence is guaranteed in rather limited settings. They also hold the
promise of delivering faster convergence (due to variance reduction) than actor-only
methods. On the other hand, theoretical understanding of actor-critic methods has
been limited to the case of lookup table representations of policies and value functions
[12].

In this paper, we propose some actor-critic algorithms in which the critic uses
linearly parameterized approximations of the value function, and we provide a con-
vergence proof. The algorithms are based on the following important observation:
since the number of parameters that the actor has to update is relatively small (com-
pared to the number of states), the critic need not attempt to compute or approximate
the exact value function, which is a high-dimensional object. In fact, we show that
the critic should ideally compute a certain “projection” of the value function onto a
low-dimensional subspace spanned by a set of “basis functions,” which are completely
determined by the parameterization of the actor. This key insight was also derived
in simultaneous and independent work [20] that also included a discussion of certain
actor-critic algorithms.

The outline of the paper is as follows. In section 2, we state a formula for the
gradient of the average cost in a Markov decision process with finite state and action
space. We provide a new interpretation of this formula, and use it in section 3 to
derive our algorithms. In section 4, we consider Markov decision processes and the
gradient of the average cost in much greater generality and describe the algorithms in
this more general setting. In sections 5 and 6, we provide an analysis of the asymptotic
behavior of the critic and actor, respectively. The appendix contains a general result
concerning the tracking ability of linear stochastic iterations, which is used in section
5.

2. Markov decision processes and parameterized families of random-
ized stationary policies. Consider a Markov decision process with finite state space
X and finite action space U. Let c : X×U → R be a given one-stage cost function. Let
p(y|x, u) denote the probability that the next state is y, given that the current state
is x and the current action is u. A randomized stationary policy (RSP) is a mapping
µ that assigns to each state x a probability distribution over the action space U. We
consider a set of RSPs {µθ; θ ∈ R

n}, parameterized in terms of a vector θ. For each
pair (x, u) ∈ X×U, µθ(u|x) denotes the probability of taking action u when the state
x is encountered, under the policy corresponding to θ. Hereafter, we will not distin-
guish between the parameter of an RSP and the RSP itself. Therefore, whenever we
refer to an “RSP θ,” we mean the RSP corresponding to parameter vector θ. Note
that, under any RSP, the sequence of states {Xk} and the sequence of state-action
pairs {Xk, Uk} of the Markov decision process form Markov chains with state spaces
X and X × U, respectively. We make the following assumption about the family of
policies.

Assumption 2.1 (finite case).

(a) For every x ∈ X, u ∈ U, and θ ∈ R
n, we have µθ(u|x) > 0.

(b) For every (x, u) ∈ X × U, the mapping θ �→ µθ(u|x) is twice differentiable.
Furthermore, the R

n-valued function θ → ∇ lnµθ(u|x) is bounded and has a
bounded first derivative, for any fixed x and u.∗

∗Throughout the paper, ∇ will stand for the gradient with respect to the vector θ.
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(c) For every θ ∈ R
n, the Markov chains {Xk} and {Xk, Uk} are irreducible and

aperiodic, with stationary probabilities πθ(x) and ηθ(x, u) = πθ(x)µθ(u|x),
respectively, under the RSP θ.

(d) There is a positive integer N, state x∗ ∈ X, and ε0 > 0 such that, for all
θ1, . . . , θN ∈ R

n,

N∑
k=1

[P (θ1) · · ·P (θk)]xx∗ ≥ ε0 ∀x ∈ X,

where P (θ) denotes the transition probability matrix for the Markov chain
{Xk} under the RSP θ. (We use here the notation [P ]xx∗ to denote the (x, x∗)
entry of a matrix P .)

The first three parts of the above assumption are natural and easy to verify. The
fourth part assumes that the probability of reaching x∗, in a number of transitions
that is independent of θ, is uniformly bounded away from zero. This assumption is
satisfied if part (c) of the assumption holds, and the policy probabilities µθ(u|x) are
all bounded away from zero uniformly in θ (see [11]).

Consider the average cost function ᾱ : R
n → R, defined by

ᾱ(θ) =
∑

x∈X,u∈U

c(x, u)ηθ(x, u).

A natural approach to minimize ᾱ(θ) over RSPs θ is to start with a policy θ0 and
improve it using gradient descent. To do this, we will rely on a formula for ∇ᾱ(θ) to
be presented shortly.

For each θ ∈ R
n, let Vθ : X → R be a “differential cost function,” i.e., a solution

of the Poisson equation:

ᾱ(θ) + Vθ(x) =
∑
u

µθ(u|x)
[
c(x, u) +

∑
y

p(y|x, u)Vθ(y)

]
.

Intuitively, Vθ(x) can be viewed as the “disadvantage” of state x: it is the expected
future excess cost—on top of the average cost—incurred if we start at state x. It plays
a role similar to that played by the more familiar value function that arises in total
or discounted cost Markov decision problems. Finally, for every θ ∈ R

n, we define the
Q-value function Qθ : X × U → R by

Qθ(x, u) = c(x, u)− ᾱ(θ) +
∑
y

p(y|x, u)Vθ(y).

We recall the following result, as stated in [16]. (Such a result has been established
in various forms in [7, 8, 10] and elsewhere.)

Theorem 2.2. We have

∇ᾱ(θ) =
∑
x,u

ηθ(x, u)Qθ(x, u)ψθ(x, u),(2.1)

where

ψθ(x, u) = ∇ lnµθ(u|x).
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In [16], the quantity Qθ(x, u) in the above formula is interpreted as the expected
excess cost incurred over a certain renewal period of the Markov chain {Xn, Un},
under the RSP µθ, and is then estimated by means of simulation, leading to actor-
only algorithms. Here, we provide an alternative interpretation of the formula in
Theorem 2.2, as an inner product, and arrive at a different set of algorithms.

For any θ ∈ R
n, we define the inner product 〈·, ·〉θ of two real-valued functions

Q1, Q2 on X × U, viewed as vectors in R
|X||U|, by

〈Q1, Q2〉θ =
∑
x,u

ηθ(x, u)Q1(x, u)Q2(x, u).

(We will be using the above notation for vector- or matrix-valued functions as well.)
With this notation, we can rewrite the formula (2.1) as

∂

∂θi
ᾱ(θ) = 〈Qθ, ψ

i
θ〉θ, i = 1, . . . , n,

where ψi
θ stands for the ith component of ψθ. Let ‖ · ‖θ denote the norm induced by

this inner product on R
|X||U|. For each θ ∈ R

n, let Ψθ denote the span of the vectors
{ψi

θ; 1 ≤ i ≤ n} in R
|X||U|.

An important observation is that although the gradient of ᾱ depends on the
function Qθ, which is a vector in a possibly very high-dimensional space R

|X||U|, the
dependence is only through its inner products with vectors in Ψθ. Thus, instead of
“learning” the function Qθ, it suffices to learn its projection on the low-dimensional
subspace Ψθ.

Indeed, let Πθ : R
|X||U| �→ Ψθ be the projection operator defined by

ΠθQ = arg min
Q̂∈Ψθ

‖Q− Q̂‖θ.

Since

〈Qθ, ψ
i
θ〉θ = 〈ΠθQθ, ψ

i
θ〉θ, i = 1, . . . , n,(2.2)

it is enough to know the projection of Qθ onto Ψθ to compute ∇ᾱ.

3. Actor-critic algorithms. We view actor-critic algorithms as stochastic gra-
dient algorithms on the parameter space of the actor. When the actor parameter
vector is θ, the job of the critic is to compute an approximation of the projection
ΠθQθ, which is then used by the actor to update its policy in an approximate gra-
dient direction. The analysis in [21, 22] shows that this is precisely what temporal
difference (TD) learning algorithms try to do, i.e., to compute the projection of an
exact value function onto a subspace spanned by feature vectors. This allows us to
implement the critic by using a TD algorithm. (Note, however, that other types of
critics are possible, e.g., based on batch solution of least squares problems, as long as
they aim at computing the same projection.)

We note some minor differences with the common usage of TD. In our context,
we need the projection of q-functions rather than value functions. But this is eas-
ily achieved by replacing the Markov chain {xt} in [21, 22] with the Markov chain
{Xk, Uk}. A further difference is that [21, 22] assume that the decision policy and
the feature vectors are fixed. In our algorithms, the decision policy as well as the
features need to change as the actor updates its parameters. As suggested by the
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results of [12, 6, 14], this need not pose any problems, as long as the actor parameters
are updated on a slower time-scale.

We are now ready to describe two actor-critic algorithms, which differ only as far
as the critic updates are concerned. In both variants, the critic is a TD algorithm
with a linearly parameterized approximation architecture for the Q-value function, of
the form

Qr
θ(x, u) =

m∑
j=1

rjφj
θ(x, u),

where r = (r1, . . . , rm) ∈ R
m denotes the parameter vector of the critic. The features

φj
θ, j = 1, . . . ,m, used by the critic are dependent on the actor parameter vector θ

and are chosen so that the following assumptions are satisfied.
Assumption 3.1 (critic features).
(a) For every (x, u) ∈ X×U the map θ → φθ(x, u) is bounded and differentiable,

with a bounded derivative.
(b) The span of the vectors φj

θ, j = 1, . . . ,m, in R
|X||U|, denoted by Φθ, contains

Ψθ.
Note that the formula (2.2) still holds if Πθ is redefined as the projection onto

Φθ, as long as Φθ contains Ψθ. The most straightforward choice would be to let the
number m of critic parameters be equal to the number n of actor parameters, and
φi
θ = ψi

θ for each i. Nevertheless, we allow the possibility that m > n and that
Φθ properly contains Ψθ, so that the critic can use more features than are actually
necessary. This added flexibility may turn out to be useful in a number of ways:

(a) It is possible that for certain values of θ, the feature vectors ψi
θ are either

close to zero or are almost linearly dependent. For these values of θ, the
operator Πθ becomes ill-conditioned, which can have a negative effect on the
performance of the algorithms. This might be avoided by using a richer set
of features φi

θ.
(b) For the second algorithm that we propose, which involves a TD(λ) critic with

λ < 1, the critic can only compute an approximate—rather than exact—
projection. The use of additional features can result in a reduction of the
approximation error.

To avoid the above first possibility, we choose features for the critic so that our next
assumption is satisfied. To understand that assumption, note that if the functions 1
and φj

θ, j = 1, . . . ,m, are linearly independent for each θ, then there exists a positive
function a(θ) such that

||r′φ̂θ||2θ ≥ a(θ)|r|2,
where |r| is the Euclidean norm of r and φ̂θ is the projection of φθ on the subspace
orthogonal to the function 1. (Here and throughout the rest of the paper, 1 stands
for a function which is identically equal to 1.) Our assumption below involves the
stronger requirement that the function a(·) be uniformly bounded away from zero.

Assumption 3.2. There exists a > 0, such that for every r ∈ R
m and θ ∈ R

n

||r′φ̂θ||2θ ≥ a|r|2,
where

φ̂θ(x, u) = φθ(x, u)−
∑
x̄,ū

ηθ(x̄, ū)φθ(x̄, ū).
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Along with the parameter vector r, the critic stores some auxiliary parameters:
a scalar estimate α of the average cost and an m-vector Ẑ which represents Sutton’s
eligibility trace [5, 19]. The actor and critic updates take place in the course of a
simulation of a single sample path of the Markov decision process. Let rk, Ẑk, αk be
the parameters of the critic, and let θk be the parameter vector of the actor, at time
k. Let (X̂k, Ûk) be the state-action pair at that time. Let X̂k+1 be the new state,
obtained after action Ûk is applied. A new action Ûk+1 is generated according to the
RSP corresponding to the actor parameter vector θk. The critic carries out an update
similar to the average cost TD method of [22]:

αk+1 = αk + γk(c(X̂k+1, Ûk+1)− αk),

rk+1 = rk + γkdkẐk,
(3.1)

where the TD dk is defined by

dk = c(X̂k, Ûk)− αk + r′kφθk(X̂k+1, Ûk+1)− r′kφθk(X̂k, Ûk),

and where γk is a positive step-size parameter. The two variants of the critic differ in
their update of Ẑk, which is as follows.

TD(1) critic.

Ẑk+1 = Ẑk + φθk(X̂k+1, Ûk+1) if X̂k+1 �= x∗

= φθk(X̂k+1, Ûk+1) otherwise,

where x∗ is the special state introduced in Assumption 2.1.
TD(λ) critic, 0 < λ < 1.

Ẑk+1 = λẐk + φθk(X̂k+1, Ûk+1).

Actor. Finally, the actor updates its parameter vector according to

θk+1 = θk − βkΓ(rk)r
′
kφθk(X̂k+1, Ûk+1)ψθk(X̂k+1, Ûk+1),(3.2)

where Γ(·) is a scalar that controls the step-size βk of the actor, taking into account
the current estimate rk of the critic.

Note that we have used X̂k, Ûk, and Ẑk to denote the simulated processes in
the above algorithm. Throughout the paper we will use hats to denote the simulated
processes that are used to update the parameters in the algorithm, and Xk, Uk, and
Zk to denote processes in which a fixed RSP θ is used.

To understand the actor update, recall the formulas (2.1) and (2.2). According
to these formulas, if the projection Q̂θ of Qθ onto the subspace Φθ (which contains
Ψθ) was known for the current value of θ ∈ R

n, then Q̂θk(X̂k, Ûk)ψθk(X̂k, Ûk) would
be a reasonable estimate of ∇ᾱ(θk), because the steady-state expected value of the
former is equal to the latter. However, Q̂θk(X̂k, Ûk) is not known, and it is natural

to use in its place the critic’s current estimate, which is Qrk
θk
(X̂k, Ûk) = r′kφθ(X̂k, Ûk).

For the above scheme to converge, it is then important that the critic’s estimate be
accurate (at least asymptotically). This will indeed be established in section 5, under
the following assumption on the step-sizes.

Assumption 3.3.
(a) The step-sizes βk and γk are deterministic and nonincreasing and satisfy∑

k

βk =
∑
k

γk = ∞,
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∑
k

β2
k < ∞,

∑
k

γ2
k < ∞, and

∑
k

(
βk
γk

)d

< ∞

for some d > 0.
(b) The function Γ(·) is assumed to satisfy the following inequalities for some

positive constants C1 < C2:

|r|Γ(r) ∈ [C1, C2] ∀r ∈ R
m,

|Γ(r)− Γ(r̂)| ≤ C2|r − r̂|
1 + |r|+ |r̂| ∀r, r̂ ∈ R

n.(3.3)

The following result on the convergence properties of the actor is established in
section 6 in much greater generality.

Theorem 3.4. Under Assumptions 2.1 and 3.1–3.3, the following hold.
(a) In the actor-critic algorithm with a TD(1) critic, lim infk |∇ᾱ(θk)| = 0, w.p.1.
(b) For each ε > 0, there exists λ sufficiently close to 1 such that, in the actor-

critic algorithm with a TD(λ) critic, lim infk |∇ᾱ(θk)| < ε, w.p.1.
The algorithms introduced in this section are only two out of many possible

variations. For instance, one can also consider “episodic” problems, in which one
starts from a given initial state x∗ and runs the process until a random termination
time (at which time the process is reinitialized at x∗), with the objective of minimizing
the expected total cost until termination. In this setting, the average cost estimate αk

is unnecessary and is removed from the critic update formula. If the critic parameter
rk were to be reinitialized each time that x∗ is entered, one would obtain a method
closely related to Williams’s REINFORCE algorithm [23]. Such a method does not
involve any value function learning, because the observations during one episode do
not affect the critic parameter r during another episode. In contrast, in our approach,
the observations from all past episodes affect the current critic parameter r, and in
this sense, the critic is “learning.” This can be advantageous because, as long as θ
is changing slowly, the observations from recent episodes carry useful information on
the Q-value function under the current policy.

The analysis of actor-critic methods for total and/or discounted cost problems is
similar to (in fact, a little simpler than) that for the average cost case; see [20, 11].

4. Algorithms for Polish state and action spaces. In this section, we con-
sider actor-critic algorithms for Markov decision processes with Polish (complete,
separable, metric) state and action spaces. The algorithms are the same as for the
case of finite state and action spaces and therefore will not be repeated in this section.
However, we will restate our assumptions in the general setting, as the notation and
the theory is quite technical. Throughout, we will use the abbreviation w.p.1 for the
phrase with probability 1. We will denote norms on real Euclidean spaces with | · |
and norms on Hilbert spaces by || · ||. For a probability measure ν and a ν-integrable
function f , ν(f) will denote the expectation of f with respect to ν. Finally, for any
Polish space X, B(X) denotes its countably generated Borel σ-field.

4.1. Preliminaries. Consider a Markov decision process in which the state
space X and the action space U are Polish spaces, and with a transition kernel
p(dy|x, u) which for every (x, u) defines a probability measure on X. In the finite
case, we had considered a parameterized family of randomized stationary policies
(RSPs) described by a parameterized family of probability mass functions. Similarly,
we now consider a family of parameterized RSPs specified by a parameterized family
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of probability density functions. More specifically, let ν be a fixed measure on the
action space U. Let {µθ; θ ∈ R

n} be a family of positive measurable functions on
X×U such that for each x ∈ X, µθ(·|x) is a probability density function with respect
to ν(du), i.e., ∫

µθ(u|x)ν(du) = 1 ∀x, θ.

This parameterized family of density functions can be viewed as a parameterized
family of RSPs where, for each θ ∈ R

n, the probability distribution of an action at
state x under RSP θ is given by µθ(u|x)ν(du).

Note that the state-action process {Xk, Uk} of a Markov decision process con-
trolled by any fixed RSP is a Markov chain. For each θ, let Pθ,x denote the probability
law of the state-action process {Xk, Uk} in which the starting state X0 is x. Let Eθ,x

denote expectation with respect to Pθ,x.
Assumption 4.1 (irreducibility and aperiodicity). For each θ ∈ R

n, the process
{Xk} controlled by RSP θ is irreducible and aperiodic.

For the details on the notion of irreducibility for general state space Markov
chains, see [17]. Under Assumption 4.1, it follows from Theorem 5.2.2 of [17] that
for each θ ∈ R

n, there exists a set of states X0(θ) ∈ B(X), a positive integer N(θ), a
constant δθ > 0, and a probability measure ϑθ on X, such that ϑθ(X0(θ)) = 1 and

Pθ,x(XN(θ) ∈ B) ≥ δθϑθ(B) ∀θ ∈ R
n, x ∈ X0(θ), B ∈ B(X).

We will now assume that such a condition holds uniformly in θ. This is one of the most
restrictive of our assumptions. It corresponds to a “stochastic stability” condition,
which holds uniformly over all policies.

Assumption 4.2 (uniform geometric ergodicity).
(a) There exists a positive integer N , a set X0 ∈ B(X), a constant δ > 0, and a

probability measure ϑ on X, such that

Pθ,x(XN ∈ B) ≥ δϑ(B) ∀θ ∈ R
n, x ∈ X0, B ∈ B(X).(4.1)

(b) There exists a function L : X → [1,∞) and constants 0 ≤ ρ < 1, b > 0, such
that, for each θ ∈ R

n,

Eθ,x[L(X1)] ≤ ρL(x) + bIX0(x) ∀x ∈ X,(4.2)

where IX0
(·) is the indicator function of the set X0. We call a function L

satisfying the above condition a stochastic Lyapunov function.
We note that in the finite case, Assumption 2.1(d) implies that Assumption 4.2

holds. Indeed, the first part of Assumption 4.2 is immediate, with X0 = {x∗}, δθ = ε0,
and ϑ equal to a point mass at state x∗. To verify the second part, consider the first
hitting time τ of the state x∗. For a sequence {θk} of values of the actor parameter,
consider the time-varying Markov chain obtained by using policy θk at time k. For
s > 1, consider the function

L(x) = sup
{θk}

E [sτ |X0 = x] .

Assumption 2.1(d) guarantees that L(·) is finite when s is sufficiently close to 1. Then
it is a matter of simple algebraic calculations to see that L(·) satisfies (4.2).



ACTOR-CRITIC ALGORITHMS 1151

Using geometric ergodicity results (Theorem 15.0.1) in [17], it can be shown that
if Assumption 4.2 is satisfied, then for each θ ∈ R

n the Markov chains {Xk} and
{Xk, Uk} have steady-state distributions πθ(dx) and

ηθ(dx, du) = πθ(dx)µθ(u|x)ν(du),
respectively. Moreover, the steady state is reached at a geometric rate (see Lemma
4.3 below). For any θ ∈ R

n, we will use 〈·, ·〉θ and || · ||θ to denote the inner product
and the norm, respectively, on L2(ηθ). Finally, for any θ ∈ R

n, we define the operator
Pθ on L2(ηθ) by

(PθQ)(x, u) = Eθ[Q(X1, U1) | X0 = x, U0 = u]

=

∫
Q(y, ū)µθ(ū|y)p(dy|x, u)ν(dū) ∀(x, u) ∈ X × U, Q ∈ L2(ηθ).

For the finite case, we introduced certain boundedness assumptions on the maps
θ �→ ψθ(x, u) and θ �→ φθ(x, u) and their derivatives. For the more general case
considered here, these bounds may depend on the state-action pair (x, u). We wish to
bound the rate of growth of such functions, as (x, u) changes, in terms of the stochastic
Lyapunov function L. Toward this purpose, we introduce a class D of functions that
satisfy the desired growth conditions.

We will say that a parameterized family of functions fθ : X × U �→ R belongs to
D if there exists a function q : X × U �→ R and constants C, Kd (d ≥ 1), such that

fθ(x, u) ≤ Cq(x, u) ∀ x ∈ X, u ∈ U, θ ∈ R
n

and

Eθ,x

[|q(x, U0)|d
] ≤ KdL(x) ∀ θ, x, d ≥ 1.

For easy reference, we collect here various useful properties of the class D. The
proof is elementary and is omitted.

Lemma 4.3. Consider a process {X̂k, Ûk} driven by RSPs θk which change with
time but in a nonanticipative manner (i.e., θk is completely determined by (X̂l, Ûl),
l ≤ k). Assume that E[L(X̂0)] < ∞.

(a) The sequence E[L(X̂k)], k = 1, 2, . . . , is bounded.
(b) If the parametric class of functions fθ belongs to D, then for any d ≥ 1 and

any (possibly random) sequence {θ̃k}

sup
k

E
[∣∣fθ̃k(X̂k, Ûk)

∣∣d] < ∞.

(c) In particular, the above boundedness property holds when θk and θ̃k are held
fixed at some θ, for all k, so that the process {X̂k, Ûk} is time-homogeneous.

(d) If fθ ∈ D, then the maps (x, u) → Eθ,x[fθ(x, U0)] and (x, u) → (Pθfθ)(x, u)
also belong to D, and

fθ ∈ Ld(ηθ) ∀θ ∈ R
n, d ≥ 1.

(e) For any function f ∈ D, the steady-state expectation πθ(f) is well-defined and
a bounded function of θ, and there exists a constant C > 0 such that

|Eθ,x[f(Xk, Uk)]− πθ(f)| ≤ CρkL(x) ∀x ∈ X, θ ∈ R
n.(4.3)
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(f) If the parametric classes of functions fθ and gθ belong to D, then

fθ + gθ ∈ D, fθgθ ∈ D.

The next two assumptions will be used to show that the average cost is a smooth
function of the policy parameter θ. In the finite case, their validity is an automatic
consequence of Assumption 2.1.

Assumption 4.4 (differentiability).
(a) For every x ∈ X, u ∈ U, and θ ∈ R

n, we have µθ(u|x) > 0.
(b) The mapping θ �→ µθ(u|x) is twice differentiable. Furthermore, ψθ(x, u) =

∇ lnµθ(u|x) and its derivative belong to D.
(c) For every θ0, there exists ε > 0 such that the class of functions

{∇µθ(u|x)/µθ̄(u|x), |θ − θ0| ≤ ε, |θ̄ − θ0| ≤ ε}
(parameterized by θ and θ̄) belongs to D.

Assumption 4.5. The cost function c(·, ·) belongs to D.
Under the above assumptions we wish to prove that a gradient formula similar

to (2.1) is again valid. By Assumption 4.5 and Lemma 4.3, c ∈ L2(ηθ) and therefore
the average cost function can be written as

ᾱ(θ) =

∫
c(x, u)πθ(dx)µθ(u|x)ν(du) = 〈c, 1〉θ.

We say that Q ∈ L2(ηθ) is a solution of the Poisson equation with parameter θ if Q
satisfies

Q = c− ᾱ(θ)1 + PθQ.(4.4)

Using Proposition 17.4.1 from [17], one can easily show that a solution to the Poisson
equation with parameter θ exists and is unique up to a constant. That is, if Q1, Q2

are two solutions, then Q1 −Q2 and 1 are collinear in L2(ηθ). One obvious family of
solutions to the Poisson equation is

Qθ(x, u) =

∞∑
k=0

Eθ,x [ (c(Xk, Uk)− ᾱ(θ))|U0 = u] .

(The convergence of the above series is a consequence of (4.3).)
There are other (e.g., regenerative) representations of solutions to the Poisson

equation which are useful both for analysis and for derivation of algorithms. For
example, Glynn and L’Ecuyer [9] use regenerative representations to show that the
steady-state expectation of a function is differentiable under certain assumptions. We
use similar arguments to prove that the average cost function ᾱ(·) is twice differ-
entiable with bounded derivatives. Furthermore, it can be shown that there exist
solutions Q̂θ(x, u) to the Poisson equation that are differentiable in θ. From a tech-
nical point of view, our assumptions are similar to those provided by Glynn and
L’Ecuyer [9]. The major difference is that [9] concerns Markov chains {Xk} that have
the recursive representation

Xk+1 = f(Xk,Wk),

where Wk are i.i.d., whereas we allow the distribution of Wk (which is Uk in our
case) to depend on Xk. Furthermore, the formula for the gradient of steady-state
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expectations that we derive here is quite different from that of [9] and makes explicit
the role of the Poisson equation in gradient estimation. The following theorem holds
for any solution Qθ : X × U → R of the Poisson equation with parameter θ. We
provide only an outline of the proof and refer the reader to [15] for the details.

Theorem 4.6. Under Assumptions 4.1, 4.2, 4.4, and 4.5,

∇ᾱ(θ) = 〈ψθ, Qθ〉θ.

Furthermore, ∇ᾱ(θ) has bounded derivatives.
Proof. (Outline) Using regenerative representations and likelihood ratio methods,

we can show that ᾱ(θ) is differentiable and that there exists a parameterized family
{Q̂θ(x, u)} of solutions to the Poisson equation, belonging to D, such that the map
θ → Q̂θ(x, u) is differentiable for each (x, u), and such that the family of functions
∇Q̂θ(x, u) belongs to D (see [15]). Then one can differentiate both sides of equation
(4.4) with respect to θ to obtain

∇ᾱ(θ)1 +∇Q̂θ = Pθ(ψθQ̂θ) + Pθ(∇Q̂θ).

(This step involves an interchange of differentiation and integration justified by uni-
form integrability.) Taking inner product with 1 on both sides of the above equation
and using that ∇Q̂θ ∈ L2(ηθ) and

〈1, Pθf〉θ = 〈1, f〉θ ∀f ∈ L2(ηθ),

we obtain ∇ᾱ(θ) = 〈Q̂θ, ψθ〉θ = 〈Qθ, ψθ〉θ, where the second equality follows from
the fact that Qθ − Q̂θ and 1 are necessarily collinear and the easily verified fact
〈1, ψθ〉θ = 0.

Since ψθ and Q̂θ are both differentiable with respect to θ, with the derivatives
belonging to D, the formula

∇ᾱ(θ) = 〈ψθ, Qθ〉θ = 〈1, ψθQθ〉

implies that ∇ᾱ(θ) is also differentiable with bounded derivative.
Before we move on to present the algorithms for Polish state and action spaces,

we illustrate how the above assumptions can be verified in the context of a simple
inventory control problem.

Example 4.7. Consider a facility with Xk ∈ R amount of stock at the beginning
of the kth period, with negative stock representing the unsatisfied (or backlogged)
demand. Let Dk ≥ 0 denote the random demand during the kth period. The problem
is to determine the amount of stock to be ordered at the beginning of the kth period,
based on the current stock and the previous demands. If Uk ≥ 0 represents the
amount of stock ordered at the beginning of the kth period, then the cost incurred is
assumed to be

c(Xk, Uk) = hmax(0, Xk) + bmax(0,−Xk) + pUk,

where p is the price of the material per unit, b is the cost incurred per unit of back-
logged demand, and h is the holding cost per unit of stock in the inventory. Moreover,
the evolution of the stock Xk is given by

Xk+1 = Xk + Uk −Dk, k = 0, 1, . . . .
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If we assume that the demands Dk, k = 0, 1 . . . , are nonnegative and i.i.d. with finite
mean, then it is well known (e.g., see [4]) that there is an optimal policy µ∗ of the
form

µ∗(x) = max(S − x, 0)

for some S > 0 depending on the distribution of Dk. A good approximation for
policies having the above form is the family of randomized policies in which S is
chosen at random from the density

pθ(s) =
1

2T
sech2

(
s− s̄(θ)

T

)
,

where s̄(θ) = eθC/(1 + eθ). The constant C is picked based on our prior knowledge
of an upper bound on the parameter S in an optimal policy. To define the family of
density functions {µθ} for the above family of policies, let ν(du) be the sum of the
Dirac measure at 0 and the Lebesgue measure on [0,∞). Then the density functions
are given by

µθ(0|x) = 1

2

(
1 + tanh

(
x− s̄(θ)

T

))
,

µθ(u|x) = 1

2T
sech2

(
x+ u− s̄(θ)

T

)
, u > 0.

The dynamics of the stock in the inventory, when controlled by policy µθ, are described
by

Xk+1 = max(Xk, Sk)−Dk, k = 0, 1 . . . ,

where the {Sk} are i.i.d. with density pθ and independent of the demands Dk and
the stock Xk. It is easy to see that the Markov chain {Xk} is irreducible. To prove
that the Markov chain is aperiodic, it suffices to show that (4.1) holds with N = 1.
Indeed, for X0 = [−a, a], x ∈ X0, and a Borel set B consider

Pθ,x(X1 ∈ B) = Pθ,x(max(x, S0)−D0 ∈ B),

≥ Pθ,x(S0 −D0 ∈ B,S0 ≥ a),

≥
∫
B

∫ ∞

a−t

(
inf
θ
pθ(t+ y)

)
D(dy)dt,

where D(dy) is the probability distribution of D0 and ϑ(dy) is the right-hand side
appropriately normalized. This normalization is possible because the above integral
is positive when B = X0.

To prove the Lyapunov condition (4.2), assume that Dk has exponentially de-
creasing tails. In other words, assume that there exists γ > 0 such that

E[exp(γD0)] < ∞.

We first argue intuitively that the function

L(x) = exp(γ̄|x|)
for some γ̄ with min(γ, 1

T ) > γ̄ > 0 is a good candidate Lyapunov function. To see
this, note that the desired inequality (4.2) requires the Lyapunov function to decrease
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by a common factor outside some set X0. Let us try the set X0 = [−a, a] for a
sufficiently larger than C. If the inventory starts with a stock larger than a, then no
stock is ordered with very high probability (since S0 is most likely less than C) and
therefore the stock decreases by D0, decreasing the Lyapunov function by a factor
of E[exp(−γ̄D0)] < 1. If the inventory starts with a large backlogged demand, then
most likely new stock will be ordered to satisfy all the backlogged demand decreasing
the Lyapunov function to almost 1. This can be made precise as follows:

Eθ,x[L(X1)] = Eθ,x[exp(γ̄|max(x, S0)−D0|)]
= exp(γ̄x)Pθ,x(S0 ≤ x)Eθ,x[exp(−γ̄D0);D0 ≤ x]

+ exp(−γ̄x)Pθ,x(S0 ≤ x)Eθ,x[exp(γ̄D0);D0 > x]

+Eθ,x[exp(γ̄|S0 −D0|);S0 > x].

Note that the third term is bounded uniformly in θ, x since γ̄ < min( 1
T , γ). The

first term is bounded when x is negative, and the second term is bounded when x is
positive. Therefore the Lyapunov function decreases by a factor of E[exp(−γ̄D0)] < 1
when x > a and decreases by a factor of P(S0 ≤ −a)E[exp(γ̄D0)] < 1 for a sufficiently
large. The remaining assumptions are easy to verify.

4.2. Critic. In the finite case, the feature vectors were assumed to be bounded.
This assumption is seldom satisfied for infinite state spaces. However, it is reasonable
to impose some bounds on the growth of the feature vectors, as in the next assumption.

Assumption 4.8 (critic features).
(a) The family of functions φθ(x, u) belongs to D.
(b) For each (x, u), the map θ �→ φθ(x, u) is differentiable, and the family of

functions ∇φθ(x, u) belongs to D.
(c) There exists some a > 0, such that

||r′φ̂θ||2θ ≥ a|r|2 ∀θ ∈ R
n, r ∈ R

m,(4.5)

where φ̂θ = φθ − 〈φθ, 1〉θ1.
(d) For each θ ∈ R

n, the subspace Φθ in L2(ηθ) spanned by the features φi
θ,

i = 1, . . . ,m, of the critic contains the subspace Ψθ spanned by the functions
ψj
θ, j = 1, . . . , n, i.e.,

Φθ ⊃ Ψθ ∀θ ∈ R
n.

4.2.1. TD(1) critic. For the TD(1) critic, we will strengthen Assumption 4.2
by adding the following condition.

Assumption 4.9. The set X0 consists of a single state x∗, and

Eθ,x∗ [φθ(x
∗, U0)] = 0 ∀θ ∈ R

n.

The requirement that there is a single state that is hit with positive probability
is quite strong but is satisfied in many practical situations involving queuing systems,
as well as for systems that have been made regenerative using the splitting techniques
of [1] and [18]. The assumption that the expected value of the features at x∗ is zero is
automatically satisfied in the special case where φθ = ψ. Furthermore, for features of
the form φθ(x) that do not depend on u, the assumption is easily satisfied by enforcing
the condition φθ(x

∗) = 0. It is argued in [11] that besides ψθ, there is little benefit in
using additional features that depend on u. Therefore, the assumption imposed here
is not a major restriction.
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5. Convergence of the critic. In this section, we analyze the convergence of
the critic in the algorithms described above, under the assumptions introduced in
section 4, together with Assumption 3.3 on the step-sizes. If θk was held constant
at some value θ, it would follow (similar to [22], which dealt with the finite case)
that the critic parameters converge to some r̄(θ). In our case, θk changes with k, but
slowly, and this will allow us to show that rk − r̄(θk) converges to zero. To establish
this, we will cast the update of the critic as a linear stochastic approximation driven
by Markov noise, specifically in the form of (A.1) in Appendix A. We will show that
the critic update satisfies all the hypotheses of Theorem A.7 of Appendix A, and the
desired result (Theorem 5.7) will follow. The assumptions of the result in Appendix
A are similar to the assumptions of a result (Theorem 2) used in [22]. Therefore, the
proof we present here is similar to that in [22], modulo the technical difficulties due
to more general state and action spaces. We start with some notation.

For each time k, let

Ŷk+1 = (X̂k, Ûk, Ẑk),

Rk =

(
Lαk

rk

)

for some deterministic constant L > 0, whose purpose will be clear later. Let Fk be
the σ-field generated by {Yl, Rl, θl, l ≤ k}. For y = (x, u, z), define

hθ(y) =

(
Lc(x, u)
zc(x, u)

)
,

Gθ(y) =

(
1 0

z/L G̃θ(y)

)
,

where

G̃θ(y) = z (φ′
θ(x, u)− (Pθφθ)

′(x, u)) .

It will be shown later that the steady-state expectation of G̃θ(y) is positive definite.
The constant L is introduced because when it is chosen small enough, we will be able
to show that the steady-state expectation of Gθ(y) is also positive definite.

The update (3.1) for the critic can be written as

Rk+1 = Rk + γk(hθk(Ŷk+1)−Gθk(Ŷk+1)Rk + ξkRk),

which is a linear iteration with Markov-modulated coefficients and ξk is a martingale
difference given by

ξk =

[
0

Ẑk

(
φ′
θk
(X̂k+1, Ûk+1)− (Pθkφ

′
θk
)(X̂k, Ûk)

) ]
.

To apply Theorem A.7 to this update equation, we need to prove that it satisfies
Assumptions A.1–A.6. We will verify these assumptions for the two cases λ = 1 and
λ < 1 separately.

Assumption A.1 follows from our Assumption 3.3. Assumption A.2 is trivially
satisfied. To verify Assumption A.4, we use the actor iteration (3.2) to identify Hk+1

with Γ(rk)r
′
kφθk(X̂k+1, Ûk+1)ψθk(X̂k+1, Ûk+1). Because of Assumption 3.3(b), the
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term Γ(rk)rk is bounded. Furthermore, since ψθ and φθ belong to D (Assumptions
4.4 and 4.8), Lemma 4.3(b) implies that E[|Hk|d] is bounded. This, together with As-
sumption 3.3(a), shows that Assumption A.4 is satisfied. In the next two subsections,
we will concentrate on showing that Assumptions A.3, A.5, and A.6 are satisfied.

5.1. TD(1) critic. Define a process Zk in terms of the process {Xk, Uk} of
section 4.1 (in which the policy is fixed) as follows:

Z0 = φθ(X0, U0), Zk+1 = I{Xk+1 �= x∗}Zk + φθ(Xk+1, Uk+1),

where I is the indicator function. Note that the process {Zk} depends on the param-
eter θ. Whenever we use this process inside an expectation or a probability measure,
we will assume that the parameter of this process is the same as the parameter of
the probability or expectation. It is easy to see that Yk+1 = (Xk, Uk, Zk) is a Markov
chain. Furthermore, the transition kernel of this process, when the policy parameter
is θ, is the same as that of {Ŷk} when the actor parameter is fixed at θ.

Let τ be the stopping time defined by

τ = min{k > 0 | Xk = x∗}.

For any θ ∈ R
n, define Tθ and Qθ by

Tθ(x, u) = Eθ,x[τ | U0 = u],

Qθ(x, u) = Eθ,x

[
τ−1∑
k=0

(c(Xk, Uk)− ᾱ(θ))
∣∣∣ U0 = u

]
.

Lemma 5.1. The families of functions Tθ and Qθ both belong to D.
Proof. The fact that Tθ ∈ D follows easily from the assumption that X0 =

x∗ (Assumption 4.9) and the uniform ergodicity Assumption 4.2. Using Theorem
15.2.5 of [17], we obtain that Eθ,x[Qθ(x, U0)]

d ≤ K ′
dL(x) for some K ′

d > 0, so that
Eθ,x[Qθ(x, U0)]

d also belongs to D. Since

Qθ(x, u) = c(x, u)− ᾱ(θ) +Eθ,x[Qθ(X1, U1)|U0 = u]

is a sum of elements of D, it follows that Qθ also belongs to D.
Using simple algebraic manipulations and Assumption 4.9, we obtain, for every

θ ∈ R
n,

Eθ,x∗

[
τ−1∑
k=0

((
c(Xk, Uk)− ᾱ(θ)

)
Zk − 〈Qθ, φθ〉θ

)]
= 0,

Eθ,x∗

[
τ−1∑
k=0

(
Zk

(
φ′
θ(Xk, Uk)− φ′

θ(Xk+1, Uk+1)
)− 〈φθ, φ

′
θ〉θ

)]
= 0.

This implies that the steady-state expectations of hθ(y) and Gθ(y) are given by

h̄(θ) =

(
Lᾱ(θ)

h̄1(θ) + ᾱ(θ)Z̄(θ)

)
,

Ḡ(θ) =

(
1 0

Z̄(θ)/L Ḡ1(θ)

)
,
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where

h̄1(θ) = 〈Qθ, φθ〉θ, Z̄(θ) = 〈Tθ, φθ〉θ, Ḡ1(θ) = 〈φθ, φ
′
θ〉θ.

For y = (x, u, z), we define

ĥθ(y) = Eθ,x̄

[
τ−1∑
k=0

(hθ(Yk)− h̄(θ))
∣∣∣ Y0 = y

]
,

Ĝθ(y) = Eθ,x̄

[
τ−1∑
k=0

(Gθ(Yk)− Ḡ(θ))
∣∣∣ Y0 = y

]
,

and it can be easily verified that part (a) of Assumption A.3 is satisfied. Note that we
have been working with families of functions that belong to D, and which therefore
have steady-state expectations that are bounded functions of θ (Lemma 4.3(e)). In
particular, Ḡ(·) and h̄(·) are bounded, and part (b) of Assumption A.3 is satisfied.

To verify the other parts of Assumption A.3, we will need the following result.
Lemma 5.2. For every d > 1, supk E[|Ẑk|d] < ∞.
Proof. Let Ŵk denote the vector (X̂k, Ûk, Ẑk, rk, αk, θk). Since the step-size se-

quences {γk} and {βk} are deterministic, {Ŵk} forms a time-varying Markov chain.
For each k, let Pk,ŵ denote the conditional law of the process {Ŵn} given that

Ŵk = ŵ. Define a sequence of stopping times for the process {Ŵn} by letting

τ̂k = min{n > k : X̂n = x∗}.
For 1 < t < 1/ρ, define

V
(d)
k (ŵ) = Ek,ŵ

[
τk−1∑
l=k

tl−k(1 + |Ẑl|d)
]
,

which can be verified to be finite, due to uniform geometric ergodicity and the as-

sumption that φθ belongs to D. It is easy to see that V
(d)
k (Ŵk) ≥ |Ẑk|d. Therefore, it

is sufficient to prove that E[V
(d)
k (Ŵk)] is bounded.

We will now show that V
(d)
k (ŵ) acts as a Lyapunov function for the algorithm.

Indeed,

V
(d)
k (ŵ) ≥ Ek,ŵ

[
τk−1∑
l=k+1

tl−k(1 + |Ẑl|d)
]

= Ek,ŵ

[
τk−1∑
l=k+1

tl−k(1 + |Ẑl|d)I{X̂k+1 �= x∗}
]

= tEk,ŵ

[
V

(d)
k+1(Ŵk+1)I{X̂k+1 �= x∗}

]
= tEk,ŵ

[
V

(d)
k+1(Ŵk+1)

]
− tEk,ŵ

[
V

(d)
k+1(Ŵk+1)I{X̂k+1 = x∗}

]
.

Using the geometric ergodicity condition (4.2), some algebraic manipulations, and the

fact that φθ belongs to D, we can verify that Ek,ŵ[V
(d)
k+1(Ŵ1)I{X̂1 = x∗}] is bounded

by some constant C. We take expectations of both sides of the preceding inequality,
with ŵ distributed as the random variable Ŵk, and use the property

E
[
Ek,Ŵk

[
V

(d)
k+1(Ŵk+1)

]]
= E[V

(d)
k+1(Ŵk+1)]
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to obtain

E[V
(d)
k (Ŵk)] ≥ tE[V

(d)
k+1(Ŵk+1)]− C.

Since t > 1, E[V
(d)
k (Ŵk)] is bounded, and the result follows.

To verify part (c) of Assumption A.3, note that ĥθ(·), Ĝθ(·), hθ(·), and Gθ(·) are
affine in z, of the form

f
(1)
θ (·) + zf

(2)
θ (·),

for some functions f
(i)
θ that belong to D. Therefore, Holder’s inequality and Lemma

5.2 can be used to verify part (c) of Assumption A.3. As in the proof of Theorem
4.6, likelihood ratio methods can be used to verify Assumptions parts (d) and (e) of
Assumption A.3; see [15] for details. Assumption A.5 follows from Holder’s inequality,
Lemma 5.2, and part (b) of Lemma 4.3.

Finally, the following lemma verifies Assumption A.6.
Lemma 5.3. There exist L and ε > 0 such that for all θ ∈ R

n and R ∈ R
m+1,

R′Ḡ(θ)R ≥ ε|R|2.
Proof. Let R = (α, r), where α ∈ R and r ∈ R

m. Using the definition of Ḡ(θ),
and Assumption 4.8(c) for the first inequality, we have

R′Ḡ(θ)R = ||r′φθ||2θ + |α|2 + r′Z̄(θ)α/L

≥ a|r|2 + |α|2 − r′Z̄(θ)α/L

≥ min(a, 1)|R|2 − |Z̄(θ)|(|r|2 + |α|2)/2L

=

(
min(a, 1)− Z̄(θ)

2L

)
|R|2.

We can now choose L > supθ |Z̄(θ)|/min(a, 1), which is possible because Z̄(θ) is
bounded (it is the steady-state expectation of a function in D).

5.2. TD(λ) critic. To analyze the TD(λ) critic, with 0 < λ < 1, we redefine
the process Zk as

Zk+1 = λZk + φθ(Xk+1, Uk+1).

As in the case of TD(1), we consider the steady-state expectations

h̄(θ) =

(
Lᾱ(θ)

h̄1(θ) + ᾱ(θ)Z̄(θ)

)
, Ḡ(θ) =

(
1 0

Z̄(θ)/L Ḡ1(θ)

)

of hθ(Yk) and Gθ(Yk). For the present case, the entries of h̄ and Ḡ are given by

h̄1(θ) =

∞∑
k=0

λk〈P k
θ c− ᾱ(θ)1, φθ〉θ,

Ḡ1(θ) = 〈φθ, φ
′
θ〉θ − (1− λ)

∞∑
k=0

λk〈P k+1
θ φθ, φ

′
θ〉θ,
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and Z̄(θ) = (1−λ)−1〈1, φθ〉θ. As in Assumption 4.8(c), let φ̂θ = φθ−〈φθ, 1〉θ1. Then,
Pθφθ − φθ = Pθφ̂θ − φ̂θ, and Ḡ1(θ) can also be written as

Ḡ1(θ) = 〈φ̂θ, φ̂
′
θ〉θ − (1− λ)

∞∑
k=0

λk〈P k+1
θ φ̂θ, φ̂

′
θ〉θ.

By an argument similar to the one used for the case of TD(1), we can see that Ḡ(·)
and h̄(·) are bounded and, therefore, part (b) of Assumption A.3 is satisfied.

Lemma 5.4. There exists a positive constant C, such that for all k ≥ 0, θ, x, λ,
we have

(a)
∣∣∣Eθ,x

[
(c(Xk, Uk)− ᾱ(θ))Zk

]− h̄1(θ)
∣∣∣ ≤ Ckmax(λ, ρ)kL(x),

(b)
∣∣∣Eθ,x

[
Zk(φ

′
θ(Xk, Uk)− φ′

θ(Xk+1, Uk+1))
]− Ḡ(θ)

∣∣∣ ≤ Ckmax(λ, ρ)kL(x).

Proof. We have∣∣∣Eθ,x

[
(c(Xk, Uk)− ᾱ(θ))Zk

]− h̄1(θ)
∣∣∣

≤
k∑

l=0

λl
∣∣∣Eθ,x

[
(c(Xk, Uk)− ᾱ(θ))φθ(Xk−l, Uk−l)

]− 〈P l
θc− ᾱ(θ)1, φθ〉θ

∣∣∣
+ C ′λk

≤
k∑

l=0

C ′λlρk−lL(x) + C ′λkL(x)

≤
k∑

l=0

2C ′ max(λ, ρ)kL(x),

where the second inequality makes use of Lemma 4.3(e) and the assumption L(x) ≥ 1.
This proves part (a). The proof of part (b) is similar.

From the previous lemma, it is clear that, for θ ∈ R
n and y = (x, u, z),

ĥθ(y) =

∞∑
k=0

Eθ,x

[
(hθ(Yk)− h̄(θ))

∣∣Y0 = y
]
,

Ĝθ(y) =

∞∑
k=0

Eθ,x

[
(Gθ(Yk)− Ḡ(θ))

∣∣Y0 = y
]
,

are well-defined, and it is easy to check that part (a) of Assumption A.3 is satisfied.
To verify part (c) of Assumption A.3, we have the following counterpart of Lemma

5.2.
Lemma 5.5. For every d > 1, we have supk E[|Ẑk|d] < ∞.
Proof. We have, using Jensen’s inequality,

|Ẑk|d =
1

(1− λ)d

∣∣∣(1− λ)

k∑
l=0

λk−lφθk(X̂k, Ûk)
∣∣∣d

≤ 1

(1− λ)d
(1− λ)

k∑
l=0

λk−l
∣∣∣φθk(X̂k, Û)

∣∣∣d .
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We note that E[|φθk(X̂k, Ûk)|d] is bounded (Lemma 4.3(b)), from which it follows

that E[|Ẑk|d] is bounded.
The verification of parts (d) and (e) of Assumption A.3 is tedious, and we provide

only an outline (see [15] for the details). The idea is to write the components of

ĥθ(·), Ĝθ(·) that are linear in z in the form

∞∑
k=0

λkEθ,x[fθ(Yk) | U0 = u, Z0 = z]

for suitably defined functions fθ, and show that the map θ �→ Eθ[fθ(Yk) | U0 =
u, Z0 = z] is Lipschitz continuous, with Lipschitz constant at most polynomial in k.
The “forgetting” factor λk dominates the polynomial in k, and thus the sum will
be Lipschitz continuous in θ. Assumption A.5 follows from Holder’s inequality, the
previous lemma and part (b) of Lemma 4.3. For the components that are not linear
in z, likelihood ratio methods are used.

Finally, we will verify Assumption A.6 in the following lemma.
Lemma 5.6. There exist L and ε > 0 such that, for all θ ∈ R

n and R ∈ R
m+1,

R′Ḡ(θ)R ≥ ε|R|2.

Proof. Recall the definition φ̂θ = φθ − 〈φθ, 1〉θ1 of φ̂θ. Using Lemma 4.3(e) and

the fact πθ(φ̂θ) = 0, we obtain, for some constant C,

||P k
θ φ̂

j
θ||θ ≤ Cρk ∀θ, k.

Therefore, for any r ∈ R
m, we have∥∥∥P k

θ

(
r′φ̂θ

)∥∥∥
θ
=

∥∥∥∑
j

rjP
k
θ φ̂

j
θ

∥∥∥
θ

≤
∑
j

|rj | · ||P k
θ φ̂

j
θ||θ

≤ C1ρ
k|r|.

We note that the transition operator Pθ is nonexpanding, i.e., ‖Pθf‖θ ≤ ‖f‖θ, for ev-
ery f ∈ L2(ηθ); see, e.g., [21]. Using this property and some algebraic manipulations,
we obtain

r′Ḡ1(θ)r = r′〈φ̂θ, φ̂
′
θ〉θr − (1− λ)

∞∑
k=0

λkr′〈P k
θ φ̂θ, φ̂

′
θ〉θr

= ||r′φ̂θ||2θ − (1− λ)

∞∑
k=0

λk〈P k
θ (r

′φ̂θ), r
′φ̂θ〉θ

≥ ||r′φ̂θ||2θ − (1− λ)




k0−1∑
k=0

λk||r′φ̂θ||2θ +
∑
k≥k0

C1λ
kρk||r′φ̂θ||θ|r|




≥ ||r′φ̂θ||2θ − (1− λk0)||r′φθ||2θ − C1(λρ)
k0

(1− λ)

(1− ρλ)
||(r′φθ)||θ|r|

≥ |r|2λk0

(
a− C2ρ

k0(1− λ)

(1− ρλ)

)
,
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where the last step made use of the uniform positive definiteness property (Assumption
4.8(c)). We choose k0 so that

ρk0 <
a(1− ρλ)

C2(1− λ)

and conclude that Ḡ1(θ) is uniformly positive definite. From this point on, the proof
is identical to the proof of Lemma 5.3.

Having verified all the hypotheses of Theorem A.7, we have proved the following
result.

Theorem 5.7. Under Assumptions 3.3, 4.1, 4.2, 4.4, 4.5, 4.8, and 4.9 and for
any TD critic, the sequence Rk is bounded, and limk |Ḡ(θk)Rk − h̄(θk)| = 0.

6. Convergence of the actor. For every θ ∈ R
n and (x, u) ∈ X × U, let

Hθ(x, u) = ψθ(x, u)φ
′
θ(x, u), H̄(θ) = 〈ψθ, φ

′
θ〉θ.

Note that Hθ belongs to D, and consequently H̄(θ) is bounded. Let r̄(θ) be such that
h̄1(θ) = Ḡ1(θ)r̄(θ), so that r̄(θ) is the limit of the critic parameter r if the policy
parameter θ was held fixed. The recursion for the actor parameter θ can be written
as

θk+1 = θk − βkHθk(X̂k+1, Ûk+1)(rkΓ(rk))

= θk − βkH̄(θk) (r̄(θk)Γ(r̄(θk)))

−βk(Hθk(X̂k+1, Ûk+1)− H̄(θk))(rkΓ(rk))

−βkH̄(θk)(rkΓ(rk)− r̄(θk)Γ(r̄(θk))).

Let

f(θ) = H̄(θ)r̄(θ),

e
(1)
k = (Hθk(X̂k+1, Ûk+1)− H̄(θk))rkΓ(rk),

e
(2)
k = H̄(θk)(rkΓ(rk)− r̄(θk)Γ(r̄(θk))).

Using Taylor’s series expansion, one can see that

ᾱ(θk+1) ≤ ᾱ(θk)− βkΓ(r̄(θ))∇ᾱ(θk) · f(θk)− βk∇ᾱ(θk) · e(1)k

−βk∇ᾱ(θk) · e(2)k + Cβ2
k

∣∣∣Hθk(X̂k+1, Ûk+1)(rkΓ(rk))
∣∣∣2 ,(6.1)

where C reflects a bound on the Hessian of ᾱ(θ).

Note that r̄(θ) and f(θ) depend on the parameter λ of the critic. The following
lemma characterizes this dependence.

Lemma 6.1. If a TD(λ) critic is used, with 0 < λ ≤ 1, then f(θ) = ∇ᾱ(θ) +
ε(λ, θ), where supθ |ε(λ, θ)| ≤ C(1− λ), and where the constant C > 0 is independent
of λ.

Proof. Consider first the case of a TD(1) critic. By definition, r̄(θ) is the solution
to the linear equation Ḡ1(θ)r̄(θ) = h̄1(θ), or

〈φθ, φ
′
θ r̄(θ)〉θ = 〈φθ, Qθ〉θ.
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Thus, φ′
θ r̄(θ) − Qθ is orthogonal to φθ in L2(ηθ). By Assumption 4.8(d), the com-

ponents of ψθ are contained in the subspace spanned by the components of φθ. It
follows that φ′

θ r̄(θ)−Qθ is also orthogonal to ψθ. Therefore,

H̄(θ)r̄(θ) = 〈ψθ, φ
′
θ〉θ r̄(θ) = 〈ψθ, Qθ〉θ = ∇ᾱ(θ),

where the last equality is the gradient formula in Theorem 4.6.
For λ < 1, let us write Ḡλ

1 (θ) and h̄λ
1 (θ) for Ḡ1(θ) and h̄1(θ), defined in section

5.2, to show explicitly the dependence on λ. Let φ̂θ = φθ − 〈φθ, 1〉θ1. Then it is easy
to see that

|Ḡλ
1 (θ)− 〈φ̂θ, φ̂

′
θ〉θ| = (1− λ)

∣∣∣∣∣
∞∑
k=0

λk〈P k
θ φ̂θ, φ̂θ〉θ

∣∣∣∣∣ ≤ C

(
1− λ

1− ρλ

)
,

where the inequality follows from the geometric ergodicity condition (4.3). Similarly,

one can also see that |h̄λ
1 (θ)− 〈Qθ, φ̂θ〉θ| ≤ C(1− λ). Let r̄(θ) and r̄λ(θ) be solutions

of the linear equations 〈φ̂θ, φ̂
′
θr〉θ = 〈Qθ, φθ〉θ and Ḡλ

1 (θ)r = h̄λ
1 (θ), respectively. Then

〈φ̂θ, φ̂
′
θ〉θ(r̄(θ)− r̄λ(θ)) = (h̄1(θ)− h̄λ

1 (θ)) + (Ḡλ
1 (θ)− 〈φ̂θ, φ̂

′
θ〉θ)r̄λ(θ),

which implies that |r̄(θ) − r̄λ(θ)| ≤ C(1 − λ). The rest follows from the observation
that H̄(θ)r̄(θ) = ∇ᾱ(θ).

Lemma 6.2 (convergence of the noise terms).

(a)
∑∞

k=0 βk∇ᾱ(θk) · e(1)k converges w.p.1.

(b) limk e
(2)
k = 0 w.p.1.

(c)
∑

k β
2
k|Hθk(X̂k, Ûk)rkΓ(rk)|2 < ∞ w.p.1.

Proof. Since rk is bounded and Γ(·) satisfies the condition (3.3), it is easy to
see that rΓ(r) is bounded and |rΓ(r) − r̂Γ(r̂)| < C|r − r̂| for some constant C. The
proof of part (a) is now similar to the proof of Lemma 2 on page 224 of [3]. Part (b)
follows from Theorem 5.7 and the fact that H̄(·) is bounded. Part (c) follows from
the inequality

|Hθk(X̂k, Ûk)rkΓ(rk)| ≤ C|Hθk(X̂k, Ûk)|
for some C > 0 and the boundedness of E[|Hθk(X̂k, Ûk)|2] (from part (b) of Lemma
4.3).

Theorem 6.3 (convergence of actor-critic algorithms). Let Assumptions 3.3, 4.1,
4.2, 4.4, 4.5, 4.8, and 4.9 hold.

(a) If a TD(1) critic is used, then lim infk |∇ᾱ(θk)| = 0 w.p.1.
(b) For any ε > 0, there exists some λ sufficiently close to 1, so that the algorithm

that uses a TD(λ) critic (with 0 < λ < 1) satisfies lim infk |∇ᾱ(θk)| < ε w.p.1.
Proof. The proof is standard [24], and we provide only an outline. Fix some

T > 0, and define a sequence kj by

k0 = 0, kj+1 = min


k ≥ kj

∣∣∣ k∑
l=kj

βk ≥ T


 for j > 0.

Using (6.1), we have

ᾱ(θkj+1) ≤ ᾱ(θkj )−
kj+1−1∑
k=kj

βk
(|∇ᾱ(θk)|2 − C(1− λ)|∇ᾱ(θk)|

)
+ δj ,
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where δj is defined by

δj =

kj+1−1∑
k=kj

(
βk∇ᾱ(θk) · (e(1)k + e

(2)
k ) + Cβ2

k|Hθk(X̂k, Ûk)rkΓ(rk)|2
)
.

Lemma 6.2 implies that δj goes to zero. If the result fails to hold, it can be shown
that the sequence ᾱ(θk) would decrease indefinitely, contradicting the boundedness of
ᾱ(θ). The result follows easily.

Appendix A. A result on linear stochastic approximation.
We recall the following result from [14]. Consider a stochastic process {Ŷk} taking

values in a Polish space Y with Borel σ-field denoted by B(Y). Let {Pθ(y, dȳ); θ ∈ R
n}

be a parameterized family of transition kernels on Y. Consider the following iterations
to update a vector R ∈ R

m and the parameter θ ∈ R
n:

Rk+1 = Rk + γk(hθk(Ŷk+1)−Gθk(Ŷk+1)Rk + ξk+1Rk),(A.1)

θk+1 = θk + βkHk+1.

In the above iteration, {hθ(·), Gθ(·) : θ ∈ R
n} is a parameterized family of m-vector-

valued and m ×m-matrix-valued measurable functions on Y. We introduce the fol-
lowing assumptions.

Assumption A.1. The step-size sequence {γk} is deterministic and nonincreasing
and satisfies ∑

k

γk = ∞,
∑
k

γ2
k < ∞.

Let Fk be the σ-field generated by {Ŷl, Hl, rl, θl, l ≤ k}.
Assumption A.2. For a measurable set A ⊂ Y,

P(Ŷk+1 ∈ A | Fk) = P(Ŷk+1 ∈ A | Ŷk, θk) = Pθk(Ŷk, A).

For any measurable function f on Y, let Pθf denote the measurable function
y �→ ∫

Pθ(y, dȳ)f(ȳ), and for any vector r, let |r| denote its Euclidean norm.
Assumption A.3 (existence and properties of solutions to the Poisson equation).

For each θ, there exist functions h̄(θ) ∈ R
m, Ḡ(θ) ∈ R

m×m, ĥθ : Y → R
m, and

Ĝθ : Y → R
m×m that satisfy the following:

(a) For each y ∈ Y,

ĥθ(y) = hθ(y)− h̄(θ) + (Pθĥθ)(y),

Ĝθ(y) = Gθ(y)− Ḡ(θ) + (PθĜθ)(y).

(b) For some constant C and for all θ, we have

max(|h̄(θ)|, |Ḡ(θ)|) ≤ C.

(c) For any d > 0, there exists Cd > 0 such that

sup
k

E[|fθk(Ŷk)|d] ≤ Cd,

where fθ(·) represents any of the functions ĥθ(·), hθ(·), Ĝθ(·), Gθ(·).
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(d) For some constant C > 0 and for all θ, θ̄ ∈ R
n,

max(|h̄(θ)− h̄(θ̄)|, |Ḡ(θ)− Ḡ(θ̄)|) ≤ C|θ − θ̄|.

(e) There exists a positive measurable function C(·) on Y such that, for each
d > 0,

sup
k

E[C(Ŷk)
d] < ∞

and

|Pθfθ(y)− Pθ̄fθ̄(y)| ≤ C(y)|θ − θ̄|,

where fθ(·) is any of the functions ĥθ(·) and Ĝθ(·).
Assumption A.4 (slowly changing environment). The (random) process {Hk}

satisfies

sup
k

E
[
|Hk|d

]
< ∞

for all d > 0. Furthermore, the sequence {βk} is deterministic and satisfies

∑
k

(
βk
γk

)d

< ∞

for some d > 0.
Assumption A.5. The sequence {ξk} is an m ×m-matrix-valued Fk-martingale

difference, with bounded moments, i.e.,

E [ξk+1|Fk] = 0, sup
k

E
[|ξk+1|d

]
< ∞

for each d > 0.
Assumption A.6 (uniform positive definiteness). There exists a > 0 such that,

for all r ∈ R
m and θ ∈ R

n,

r′Ḡ(θ)r ≥ a|r|2.

Theorem A.7. If Assumptions A.1–A.6 are satisfied, then the sequence Rk is
bounded and

lim
k

∣∣Rk − Ḡ(θk)
−1h̄(θk)

∣∣ = 0.
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