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CONVERGENCE RATE OF LINEAR TWO-TIME-SCALE
STOCHASTIC APPROXIMATION1

BY VIJAY R. KONDA AND JOHN N. TSITSIKLIS

Massachusetts Institute of Technology

We study the rate of convergence of linear two-time-scale stochastic ap-
proximation methods. We consider two-time-scale linear iterations driven
by i.i.d. noise, prove some results on their asymptotic covariance and estab-
lish asymptotic normality. The well-known result [Polyak, B. T. (1990). Au-
tomat. Remote Contr. 51 937–946; Ruppert, D. (1988). Technical Report 781,
Cornell Univ.] on the optimality of Polyak–Ruppert averaging techniques
specialized to linear stochastic approximation is established as a consequence
of the general results in this paper.

1. Introduction. Two-time-scale stochastic approximation methods [Borkar
(1997)] are recursive algorithms in which some of the components are updated
using step-sizes that are very small compared to those of the remaining compo-
nents. Over the past few years, several such algorithms have been proposed for
various applications [Konda and Borkar (1999), Bhatnagar, Fu, Marcus and Fard
(2001), Baras and Borkar (2000), Bhatnagar, Fu and Marcus (2001) and Konda
and Tsitsiklis (2003)].

The general setting for two-time-scale algorithms is as follows. Let f (θ, r)

and g(θ, r) be two unknown functions and let (θ∗, r∗) be the unique solution to
the equations

f (θ, r) = 0, g(θ, r) = 0.(1.1)

The functions f (·, ·) and g(·, ·) are accessible only by simulating or observ-
ing a stochastic system which, given θ and r as input, produces F(θ, r,V )

and G(θ, r,W). Here, V and W are random variables, representing noise, whose
distribution satisfies

f (θ, r) = E[F(θ, r,V )], g(θ, r) = E[G(θ, r,W)] ∀ θ, r.

Assume that the noise (V,W) in each simulation or observation of the stochastic
system is independent of the noise in all other simulations. In other words, assume
that we have access to an independent sequence of functions F(·, ·,Vk) and
G(·, ·,Wk). Suppose that for any given θ , the stochastic iteration

rk+1 = rk + γkG(θ, rk,Wk)(1.2)
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is known to converge to some h(θ). Furthermore, assume that the stochastic
iteration

θk+1 = θk + γkF
(
θk, h(θk),Vk

)
(1.3)

is known to converge to θ∗. Given this information, we wish to construct an
algorithm that solves the system of equations (1.1).

Note that the iteration (1.2) has only been assumed to converge when θ is
held fixed. This assumption allows us to fix θ at a current value θk , run the
iteration (1.2) for a long time, so that rk becomes approximately equal to h(θk),
use the resulting rk to update θk in the direction of F(θk, rk,Wk), and repeat
this procedure. While this is a sound approach, it requires an increasingly large
time between successive updates of θk . Two-time-scale stochastic approximation
methods circumvent this difficulty by using different step sizes {βk} and {γk} and
update θk and rk, according to

θk+1 = θk + βkF (θk, rk,Vk),

rk+1 = rk + γkG(θk, rk,Wk),

where βk is very small relative to γk . This makes θk “quasi-static” compared to rk
and has an effect similar to fixing θk and running the iteration (1.2) forever. In
turn, θk sees rk as a close approximation of h(θk) and therefore its update looks
almost the same as (1.3).

How small should the ratio βk/γk be for the above scheme to work? The answer
generally depends on the functions f (·, ·) and g(·, ·), which are typically unknown.
This leads us to consider a safe choice whereby βk/γk → 0. The subject of this
paper is the convergence rate analysis of the two-time-scale algorithms that result
from this choice. We note here that the analysis is significantly different from the
case where limk(βk/γk) > 0, which can be handled using existing techniques.

Two-time-scale algorithms have been proved to converge in a variety of contexts
[Borkar (1997), Konda and Borkar (1999) and Konda and Tsitsiklis (2003)].
However, except for the special case of Polyak–Ruppert averaging, there are no
results on their rate of convergence. The existing analysis [Ruppert (1988), Polyak
(1990), Polyak and Juditsky (1992) and Kushner and Yang (1993)] of Polyak–
Ruppert methods rely on special structure and are not applicable to the more
general two-time-scale iterations considered here.

The main result of this paper is a rule of thumb for calculating the asymptotic
covariance of linear two-time-scale stochastic iterations. For example, consider the
linear iterations

θk+1 = θk + βk(b1 − A11θk − A12rk + Vk),(1.4)

rk+1 = rk + γk(b2 − A21θk − A22rk + Wk).(1.5)
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We show that the asymptotic covariance matrix of β
−1/2
k θk is the same as

that of β
−1/2
k θ̄k , where θ̄k evolves according to the single-time-scale stochastic

iteration:

θ̄k+1 = θ̄k + βk(b1 − A11θ̄k − A12r̄k + Vk),

0 = b2 − A21θ̄k − A22r̄k + Wk.

Besides the calculation of the asymptotic covariance of β
−1/2
k θk (Theorem 2.8),

we also establish that the distribution of β
−1/2
k (θk − θ∗) converges to a Gaussian

with mean zero and with the above asymptotic covariance (Theorem 4.1). We
believe that the proof techniques of this paper can be extended to nonlinear
stochastic approximation to obtain similar results. However, this and other possible
extensions (such as weak convergence of paths to a diffusion process) are no
pursued in this paper.

In the linear case, our results also explain why Polyak–Ruppert averaging is
optimal. Suppose that we are looking for the solution of the linear system

Ar = b

in a setting where we only have access to noisy measurements of b − Ar . The
standard algorithm in this setting is

rk+1 = rk + γk(b − Ark + Wk),(1.6)

and is known to converge under suitable conditions. (Here, Wk represents zero-
mean noise at time k.) In order to improve the rate of convergence, Polyak (1990)
and Ruppert (1988) suggest using the average

θk = 1

k

k−1∑
l=0

rl(1.7)

as an estimate of the solution, instead of rk. It was shown in Polyak (1990) that
if kγk → ∞, the asymptotic covariance of

√
kθk is A−1�(A′)−1, where � is the

covariance of Wk . Furthermore, this asymptotic covariance matrix is known to be
optimal [Kushner and Yin (1997)].

The calculation of the asymptotic covariance in Polyak (1990) and Ruppert
(1988) uses the special averaging structure. We provide here an alternative
calculation based on our results. Note that θk satisfies the recursion

θk+1 = θk + 1

k + 1
(rk − θk),(1.8)

and the iteration (1.6)–(1.8) for rk and θk is a special case of the two-time-scale
iterations (1.4) and (1.5), with the correspondence b1 = 0, A11 = I , A12 = −I ,
Vk = 0, b2 = b, A21 = 0, A22 = 0. Furthermore, the assumption kγk → ∞
corresponds to our general assumption βk/γk → 0.
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By applying our rule of thumb to the iteration (1.6)–(1.8), we see that the
asymptotic covariance of (

√
k + 1 )θk is the same as that of (

√
k + 1 )θ̄k , where

θ̄k satisfies

θ̄k+1 = θ̄k + 1

k + 1

(−θ̄k + A−1(b + Wk)
)
,

or

θ̄k = 1

k

k−1∑
l=0

(A−1b + A−1Wl).

It then follows that the covariance of
√

kθ̄k is A−1�(A′)−1, and we recover
the result of Polyak (1990), Polyak and Juditsky (1992) and Ruppert (1988) for
the linear case.

In the example just discussed, the use of two time-scales is not necessary for
convergence, but is essential for the improvement of the convergence rate. This
idea of introducing two time-scales to improve the rate of convergence deserves
further exploration. It is investigated to some extent in the context of reinforcement
learning algorithms in Konda (2002).

Finally, we would like to point out the differences between the two-time-scale
iterations we study here and those that arise in the study of the tracking ability
of adaptive algorithms [see Benveniste, Metivier and Priouret (1990)]. There, the
slow component represents the movement of underlying system parameters and
the fast component represents the user’s algorithm. The fast component, that is,
the user’s algorithm, does not affect the slow component. In contrast, we consider
iterations in which the fast component affects the slow one and vice versa.
Furthermore, the relevant figures of merit are different. For example, in Benveniste,
Metivier and Priouret (1990), one is mostly interested in the behavior of the
fast component, whereas we focus on the asymptotic covariance of the slow
component.

The outline of the paper is as follows. In the next section, we consider
linear iterations driven by i.i.d. noise and obtain expressions for the asymptotic
covariance of the iterates. In Section 3, we compare the convergence rate of two-
time-scale algorithms and their single-time-scale counterparts. In Section 4, we
establish asymptotic normality of the iterates.

Before proceeding, we introduce some notation. Throughout the paper, | · | rep-
resents the Euclidean norm of vectors or the induced operator norm of matrices.
Furthermore, I and 0 represent identity and null matrices, respectively. We use the
abbreviation w.p.1 for “with probability 1.” We use c, c1, c2, . . . to represent some
constants whose values are not important.

2. Linear iterations. In this section, we consider iterations of the form

θk+1 = θk + βk(b1 − A11θk − A12rk + Vk),(2.1)

rk+1 = rk + γk(b2 − A21θk − A22rk + Wk),(2.2)
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where θk is in Rn, rk is in Rm, and b1, b2, A11, A12, A21, A22 are vectors and
matrices of appropriate dimensions.

Before we present our results, we motivate various assumptions that we will
need. The first two assumptions are standard.

ASSUMPTION 2.1. The random variables (Vk,Wk), k = 0,1, . . . , are inde-
pendent of r0, θ0, and of each other. They have zero mean and common covariance

E[VkV
′
k] = �11,

E[VkW
′
k] = �12 = �′

21,

E[WkW
′
k] = �22.

ASSUMPTION 2.2. The step-size sequences {γk} and {βk} are deterministic,
positive, nonincreasing, and satisfy the following:

1.
∑

k γk = ∑
k βk = ∞.

2. βk, γk → 0.

The key assumption that the step sizes βk and γk are of different orders of
magnitude is subsumed by the following.

ASSUMPTION 2.3. There exists some ε ≥ 0 such that

βk

γk

→ ε.

For the iterations (2.1) and (2.2) to be consistent with the general scheme of two-
time-scale stochastic approximations described in the Introduction, we need some
assumptions on the matrices Aij . In particular, we need iteration (2.2) to converge
to A−1

22 (b2 − A21θ), when θk is held constant at θ . Furthermore, the sequence θk

generated by the iteration

θk+1 = θk + βk

(
b1 − A12A

−1
22 b2 − (A11 − A12A

−1
22 A21)θk + Vk

)
,

which is obtained by substituting A−1
22 (b2 − A21θk) for rk in iteration (2.1), should

also converge. Our next assumption is needed for the above convergence to take
place.

Let � be the matrix defined by

� = A11 − A12A
−1
22 A21.(2.3)

Recall that a square matrix A is said to be Hurwitz if the real part of each
eigenvalue of A is strictly negative.
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ASSUMPTION 2.4. The matrices −A22, −� are Hurwitz.

It is not difficult to show that, under the above assumptions, (θk, rk) converges
in mean square and w.p.1 to (θ∗, r∗). The objective of this paper is to capture
the rate at which this convergence takes place. Obviously, this rate depends on
the step-sizes βk, γk , and this dependence can be quite complicated in general.
The following assumption ensures that the rate of mean square convergence
of (θk, rk) to (θ∗, r∗) bears a simple relationship (asymptotically linear) with the
step-sizes βk, γk .

ASSUMPTION 2.5. 1. There exists a constant β̄ ≥ 0 such that

lim
k

(β−1
k+1 − β−1

k ) = β̄.

2. If ε = 0, then

lim
k

(γ −1
k+1 − γ −1

k ) = 0.

3. The matrix −(� − β̄
2 I ) is Hurwitz.

Note that when ε > 0, the iterations (2.1) and (2.2) are essentially single-
time-scale algorithms and therefore can be analyzed using existing techniques
[Nevel’son and Has’minskii (1973), Kusher and Clark (1978), Benveniste,
Metivier and Priouret (1990), Duflo (1997) and Kusher and Yin (1997)]. We in-
clude this in our analysis as we would like to study the behavior of the rate of
convergence as ε ↓ 0. The following is an example of sequences satisfying the
above assumption with ε = 0, β̄ = 1/(τ1β0):

γk = γ0

(1 + k/τ0)
α
,

1

2
< α < 1,

βk = β0

(1 + k/τ1)
,

Let θ∗ ∈ Rm and r∗ ∈ Rn be the unique solution to the system of linear
equations

A11θ + A12r = b1,

A21θ + A22r = b2.

For each k, let

θ̂k = θk − θ∗,
(2.4)

r̂k = rk − A−1
22 (b2 − A21θk)
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and

	k
11 = β−1

k E[θ̂kθ̂
′
k],

	k
12 = (	k

21)
′ = β−1

k E[θ̂k r̂
′
k],

	k
22 = γ −1

k E[r̂kr̂ ′
k],

	k =
[

	k
11 	k

12

	k
21 	k

22

]
.

Our main result is the following.

THEOREM 2.6. Under Assumptions 2.1–2.5, and when the constant ε of
Assumption 2.3 is sufficiently small, the limit matrices

	
(ε)
11 = lim

k
	k

11, 	
(ε)
12 = lim

k
	k

12, 	
(ε)
22 = lim

k
	k

22(2.5)

exist. Furthermore, the matrix

	(0) =
[

	
(0)
11 	

(0)
12

	
(0)
21 	

(0)
22

]

is the unique solution to the following system of equations

�	
(0)
11 + 	

(0)
11 �′ − β̄	

(0)
11 + A12	

(0)
21 + 	

(0)
12 A′

12 = �11,(2.6)

A12	
(0)
22 + 	

(0)
12 A′

22 = �12,(2.7)

A22	
(0)
22 + 	

(0)
22 A′

22 = �22.(2.8)

Finally,

lim
ε↓0

	
(ε)
11 = 	

(0)
11 , lim

ε↓0
	

(ε)
12 = 	

(0)
12 , lim

ε↓0
	

(ε)
22 = 	

(0)
22 .(2.9)

PROOF. Let us first consider the case ε = 0. The idea of the proof is to study
the iteration in terms of transformed variables:

θ̃k = θ̂k, r̃k = Lkθ̂k + r̂k,(2.10)

for some sequence of n × m matrices {Lk} which we will choose so that the faster
time-scale iteration does not involve the slower time-scale variables. To see what
the sequence {Lk} should be, we rewrite the iterations (2.1) and (2.2) in terms of
the transformed variables as shown below (see Section A.1 for the algebra leading
to these equations):

θ̃k+1 = θ̃k − βk(B
k
11θ̃k + A12r̃k) + βkVk,

(2.11)
r̃k+1 = r̃k − γk(B

k
21θ̃k + Bk

22r̃k) + γkWk + βk(Lk+1 + A−1
22 A21)Vk,
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where

Bk
11 = � − A12Lk,

Bk
21 = Lk − Lk+1

γk

+ βk

γk

(Lk+1 + A−1
22 A21)B

k
11 − A22Lk,

Bk
22 = βk

γk

(Lk+1 + A−1
22 A21)A12 + A22.

We wish to choose {Lk} so that Bk
21 is eventually zero. To accomplish this, we

define the sequence of matrices {Lk} by

Lk = 0, 0 ≤ k ≤ k0,
(2.12)

Lk+1 = (Lk − γkA22Lk + βkA
−1
22 A21B

k
11)(I − βkB

k
11)

−1 ∀ k ≥ k0,

so that Bk
21 = 0 for all k ≥ k0. For the above recursion to be meaningful, we

need (I − βkB
k
11) to be nonsingular for all k ≥ k0. This is handled by Lemma A.1

in the Appendix, which shows that if k0 is sufficiently large, then the sequence
of matrices {Lk} is well defined and also converges to zero.

For every k ≥ k0, we define

	̃k
11 = β−1

k E[θ̃kθ̃
′
k],

(	̃k
21)

′ = 	̃k
12 = β−1

k E[θ̃k r̃
′
k],

	̃k
22 = γ −1

k E[r̃kr̃ ′
k].

Using the transformation (2.10), it is easy to see that

	̃k
11 = 	k

11,

	̃k
12 = 	k

11L
′
k + 	k

12,

	̃k
22 = 	k

22 +
(

βk

γk

)
(Lk	

k
12 + 	k

21L
′
k + Lk	

k
11L

′
k).

Since Lk → 0, we obtain

lim
k

	k
11 = lim

k
	̃k

11,

lim
k

	k
12 = lim

k
	̃k

12,

lim
k

	k
22 = lim

k
	̃k

12,

provided that the limits exist.
To compute limk 	̃k

22, we use (2.11), the fact that Bk
21 = 0 for large enough k,

the fact that Bk
22 converges to A22, and some algebra, to arrive at the following

recursion for 	̃k
22:

	̃k+1
22 = 	̃k

22 + γk

(
�22 − A22	̃

k
22 − 	̃k

22A
′
22 + δk

22(	̃
k
22)

)
,(2.13)
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where δk
22(·) is some matrix-valued affine function (on the space of matrices) such

that

lim
k

δk
22(	22) = 0 for all 	22.

Since −A22 is Hurwitz, it follows (see Lemma A.2 in the Appendix) that the limit

lim
k

	k
22 = lim

k
	̃k

22 = 	
(0)
22

exists, and 	
(0)
22 satisfies (2.8).

Similarly, 	̃k
12 satisfies

	̃k+1
12 = 	̃k

12 + γk

(
�12 − A12	

(0)
22 − 	̃k

12A
′
22 + δk

12(	̃
k
12)

)
(2.14)

where, as before, δk
12(·) is an affine function that goes to zero. (The coefficients

of this affine function depend, in general, on 	̃k
22, but the important property is

that they tend to zero as k → ∞.) Since −A22 is Hurwitz, the limit

lim
k

	k
12 = lim

k
	̃k

12 = 	
(0)
12

exists and satisfies (2.7). Finally, 	̃k
11 satisfies

	̃k+1
11 = 	̃k

11 + βk

(
�11 − A12	

(0)
21 − 	

(0)
12 A′

12 − �	̃k
11

(2.15)
− 	̃k

11�
′ + β̄	̃k

11 + δk
11(	̃

k
11)

)
,

where δk
11(·) is some affine function that goes to zero. (Once more, the coefficients

of this affine function depend, in general, on 	̃k
22 and 	̃k

12, but they tend to zero

as k → ∞.) Since −(� − β̄
2 I ) is Hurwitz, the limit

lim
k

	k
11 = lim

k
	̃k

11 = 	
(0)
11

exists and satisfies (2.6).
The above arguments show that for ε = 0, the limit matrices in (2.5) exist

and satisfy (2.6)–(2.8). To complete the proof, we need to show that these limit
matrices exist for sufficiently small ε > 0 and that the limiting relations (2.9) hold.
As this part of the proof uses standard techniques, we will only outline the analysis.

Define for each k,

Zk =
(

θ̂k

r̂k

)
.

The linear iterations (2.1) and (2.2) can be rewritten in terms of Zk as

Zk+1 = Zk − βkBkZk + βkUk,

where Uk is a sequence of independent random vectors and {Bk} is a sequence
of deterministic matrices. Using the assumption that βk/γk converges to ε, it can
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be shown that the sequence of matrices Bk converges to some matrix B(ε) and,
similarly, that

lim
k

E[UkU
′
k] = �(ε)

for some matrix �(ε). Furthermore, when ε > 0 is sufficiently small, it can be

shown that −(B(ε) − β̄
2 I ) is Hurwitz. It then follows from standard theorems

[see, e.g., Polyak (1976)] on the asymptotic covariance of stochastic approxima-
tion methods, that the limit

lim
k

β−1
k E[ZkZ

′
k]

exists and satisfies a linear equation whose coefficients depend smoothly on ε

(the coefficients are infinitely differentiable w.r.t. ε). Since the components of the
above limit matrix are 	

(ε)
11 , 	(ε)

12 and 	
(ε)
22 modulo some scaling, the latter matrices

also satisfy a linear equation which depends on ε. The explicit form of this equation
is tedious to write down and does not provide any additional insight for our
purposes. We note, however, that when we set ε to zero, this system of equations
becomes the same as (2.6)–(2.8). Since (2.6)–(2.8) have a unique solution, the
system of equations for 	

(ε)
11 , 	

(ε)
12 and 	

(ε)
22 also has a unique solution for all

sufficiently small ε. Furthermore, the dependence of the solution on ε is smooth
because the coefficients are smooth in ε. �

REMARK 2.7. The transformations used in the above proof are inspired by
those used to study singularly perturbed ordinary differential equations [Kokotovic
(1984)]. However, most of these transformations were time-invariant because the
perturbation parameter was constant. In such cases, the matrix L satisfies a static
Riccati equation instead of the recursion (2.12). In contrast, our transformations
are time-varying because our “perturbation” parameter βk/γk is time-varying.

In most applications, the iterate rk corresponds to some auxiliary parameters
and one is mostly interested in the asymptotic covariance 	

(0)
11 of θk . Note that

according to Theorem 2.6, the covariance of the auxiliary parameters is of the order
of γk, whereas the covariance of θk is of the order of βk . With two time-scales, one
can potentially improve the rate of convergence of θk (cf. to a single-time-scale
algorithm) by sacrificing the rate of convergence of the auxiliary parameters. To
make such comparisons possible, we need an alternative interpretation of 	

(0)
11 , that

does not explicitly refer to the system (2.6)–(2.8). This is accomplished by our next
result, which provides a useful tool for the design and analysis of two-time-scale
stochastic approximation methods.
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THEOREM 2.8. The asymptotic covariance matrix 	
(0)
11 of β

−1/2
k θk is the same

as the asymptotic covariance of β
−1/2
k θ̄k , where θ̄k is generated by

θ̄k+1 = θ̄k + βk(b1 − A11θ̄k − A12r̄k + Vk),(2.16)

0 = b2 − A21θ̄k − A22r̄k + Wk.(2.17)

In other words,

	
(0)
11 = lim

k
β−1

k E[θ̄kθ̄
′
k].

PROOF. We start with (2.6)–(2.8) and perform some algebraic manipulations
to eliminate 	

(0)
12 and 	

(0)
22 . This leads to a single equation for 	

(0)
11 , of the form

�	
(0)
11 + 	

(0)
11 �′ − β̄	

(0)
11

= �11 − A12A
−1
22 �21 − �12(A

′
22)

−1A′
12 + A12A

−1
22 �22(A

′
22)

−1A′
12.

Note that the right-hand side of the above equation is exactly the covariance of
Vk − A12A

−1
22 Wk . Therefore, the asymptotic covariance of θk is the same as the

asymptotic covariance of the following stochastic approximation:

θ̄k+1 = θ̄k + βk(−�θ̄k + Vk − A12A
−1
22 Wk).

Finally, note that the above iteration is the one obtained by eliminating rk from
iterations (2.16) and (2.17). �

REMARK. The single-time-scale stochastic approximation procedure in The-
orem 2.8 is not implementable when the matrices Aij are unknown. The theorem
establishes that two-time-scale stochastic approximation performs as well as if
these matrices are known.

REMARK. The results of the previous section show that the asymptotic
covariance matrix of β

−1/2
k θk is independent of the step-size schedule {γk} for

the fast iteration if
βk

γk

→ 0.

To understand, at least qualitatively, the effect of the step-sizes γk on the
transient behavior, recall the recursions (2.13)–(2.15) satisfied by the covariance
matrices 	̃k:

	̃k+1
11 = 	̃k

11 + βk

(
�11 − A12	

(0)
21 − 	

(0)
12 A′

12

− �	̃k
11 − 	̃k

11�
′ − β̄	̃k

11 + δk
11(	̃

k
11)

)
,

	̃k+1
12 = 	̃k

12 + γk

(
�12 − A12	

(0)
22 − 	̃k

12A
′
22 + δk

12(	̃
k
12)

)
,

	̃k+1
22 = 	k

22 + γk

(
�22 − A22	

k
22 − 	k

22A
′
22 + δk

22(	
k
22)

)
,
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where the δk
ij (·) are affine functions that tend to zero as k tends to infinity. Using

explicit calculations, it is easy to verify that the error terms δk
ij are of the form

δk
11 = A12

(
	̃k

21 − 	
(0)
21

) + (
	̃k

12 − 	
(0)
12

)
A′

12 + O(βk),

δk
12 = A12

(
	

(0)
22 − 	̃k

22
) + O

(
βk

γk

)
,

δk
22 = O

(
βk

γk

)
.

To clarify the meaning of the above relations, the first one states that the affine
function δk

11(	11) is the sum of the constant term A12(	̃
k
21 − 	

(0)
21 ) + (	̃k

12 −
	

(0)
12 )A′

12, and another affine function of 	k
11 whose coefficients are proportional

to βk.

The above relations show that the rate at which 	̃k
11 converges to 	

(0)
11 depends

on the rate at which 	̃k
12 converges to 	

(0)
12 , through the term δk

11. The rate of
convergence of 	̃k

12, in turn, depends on that of 	̃k
22, through the term δk

12. Since
the step-size in the recursions for 	̃k

22 and 	̃k
12 is γk, and the error terms in these

recursions are proportional to βk/γk , the transients depend on both sequences {γk}
and {βk/γk}. But each sequence has a different effect. When γk is large, instability
or large oscillations of rk are possible. On the other hand, when βk/γk is large,
the error terms δk

ij can be large and can prolong the transient period. Therefore,
one would like to have βk/γk decrease to zero quickly, while at the same time
avoiding large γk . Apart from these loose guidelines, it appears difficult to obtain
a characterization of desirable step-size schedules.

3. Single time-scale versus two time-scales. In this section, we compare the
optimal asymptotic covariance of β

−1/2
k θk that can be obtained by a realizable

single-time-scale stochastic iteration, with the optimal asymptotic covariance
that can be obtained by a realizable two-time-scale stochastic iteration. The
optimization is to be carried out over a set of suitable gain matrices that can be used
to modify the algorithm, and the optimality criterion to be used is one whereby a
covariance matrix 	 is preferable to another covariance matrix 	̃ if 	̃ − 	 is
nonzero and nonnegative definite.

Recall that Theorem 2.8 established that the asymptotic covariance of a two-
time-scale iteration is the same as in a related single-time-scale iteration. However,
the related single-time-scale iteration is unrealizable, unless the matrix A is known.
In contrast, in this section we compare realizable iterations that do not require
explicit knowledge of A (although knowledge of A would be required in order to
select the best possible realizable iteration).

We now specify the classes of stochastic iterations that we will be comparing.
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1. We consider two-time-scale iterations of the form

θk+1 = θk + βkG1(b1 − A11θk − A12rk + Vk),

rk+1 = rk + γk(b2 − A21θk − A22rk + Wk).

Here, G1 is a gain matrix, which we are allowed to choose in a manner that
minimizes the asymptotic covariance of β

−1/2
k θk .

2. We consider single-time-scale iterations, in which we have γk = βk , but in
which we are allowed to use an arbitrary gain matrix G, in order to minimize
the asymptotic covariance of β

−1/2
k θk . Concretely, we consider iterations of the

form [
θk+1
rk+1

]
=

[
θk

rk

]
+ βkG

[
b1 − A11θk − A12rk + Vk

b2 − A21θk − A22rk + Wk

]
.

We then have the following result.

THEOREM 3.1. Under Assumptions 2.1–2.5, and with ε = 0, the minimal
possible asymptotic covariance of β

−1/2
k θk , when the gain matrices G1 and G can

be chosen freely, is the same for the two classes of stochastic iterations described
above.

PROOF. The single-time-scale iteration is of the form

Zk+1 = Zk + βkG(b − AZk + Uk),

where

Zk =
[
θk

rk

]
, Uk =

[
Vk

Wk

]

and

b =
[
b1
b2

]
, A =

[
A11 A12
A21 A22

]
.

As is well known [Kushner and Yin (1997)], the optimal (in the sense of positive
definiteness) asymptotic covariance of β

−1/2
k Zk over all possible choices of G is

the covariance of A−1Uk . We note that the top block of A−1Uk is equal
to �−1(Vk − A12A

−1
22 Wk). It then follows that the optimal asymptotic covariance

matrix of β
−1/2
k θk is the covariance of �−1(Vk − A12A

−1
22 Wk).

For the two-time-scale iteration, Theorem 2.8 shows that for any choice of G1,
the asymptotic covariance is the same as for the single-time-scale iteration:

θk+1 = θk + βkG1(b1 − �θk + Vk − A12A
−1
22 Wk).

From this, it follows that the optimal asymptotic covariance of β
−1/2
k θk is the

covariance of �−1(Vk − A12A
−1
22 Wk), which is the same as for single-time-scale

iterations. �
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4. Asymptotic normality. In Section 2, we showed that β−1
k E[θ̂kθ̂

′
k] con-

verges to 	
(0)
11 . The proof techniques used in that section do not extend easily

(without stronger assumptions) to the nonlinear case. For this reason, we develop
here a different result, namely, the asymptotic normality of θ̂k , which is easier to
extend to the nonlinear case. In particular, we show that the distribution of β

−1/2
k θ̂k

converges to a zero-mean normal distribution with covariance matrix 	
(0)
11 . The

proof is similar to the one presented in Polyak (1990) for stochastic approximation
with averaging.

THEOREM 4.1. If Assumptions 2.1–2.5 hold with ε = 0, then β
−1/2
k θ̂k

converges in distribution to N(0,	
(0)
11 ).

PROOF. Recall the iterations (2.11) in terms of transformed variables θ̃ and r̃ .
Assuming that k is large enough so that Bk

21 = 0, these iterations can be written as

θ̃k+1 = (I − βk�)θ̃k − βkA12r̃k + βkVk + βkδ
(1)
k ,

r̃k+1 = (I − γkA22)r̃k + γkWk + βkδ
(2)
k + βk(Lk+1 + A−1

22 A21)Vk,

where δ
(1)
k and δ

(2)
k are given by

δ
(1)
k = A12Lkθ̃k,

δ
(2)
k = −(Lk+1 + A−1

22 A21)A12r̃k.

Using Theorem 2.6, E[|θ̃k|2]/βk and E[|r̃k|2]/γk are bounded, which implies that

E
[∣∣δ(1)

k

∣∣2] ≤ cβk|Lk|2,
(4.1)

E
[∣∣δ(2)

k

∣∣2] ≤ cγk,

for some constant c > 0. Without loss of generality assume k0 = 0 in (2.11). For
each i, define the sequence of matrices �i

j and Ri
j , j ≥ i, as

�i
i = I,

�i
j+1 = �i

j − βj��i
j ∀ j ≥ i,

Ri
i = I,

Ri
j+1 = Ri

j − γjA22R
i
j ∀ j ≥ i.

Using the above matrices, r̃k and θ̃k can be rewritten as

θ̃k = �0
kθ̃0 −

k−1∑
i=0

βi�
i
kA12r̃i +

k−1∑
i=0

βi�
i
kVi +

k−1∑
i=0

βi�
i
kδ

(1)
i(4.2)
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and

r̃k = R0
k r̃0 +

k−1∑
i=0

γiR
i
kWi +

k−1∑
i=0

βiR
i
kδ

(2)
i

(4.3)

+
k−1∑
i=0

βiR
i
k(Li+1 + A−1

22 A21)Vi.

Substituting the right-hand side of (4.3) for r̃k in (4.2), and dividing by β
1/2
k ,

we have

β
−1/2
k θ̃k = 1√

β0
�̃0

kθ̃0 +
k−1∑
i=0

βi�̃
i
kA12(β

−1/2
i R0

i r̃0)

+
k−1∑
i=0

βi�̃
i
k

(
β

−1/2
i δ

(1)
i

) + S
(1)
k + S

(2)
k + S

(3)
k(4.4)

+
k−1∑
i=0

√
βi�̃

i
k(Vi + A12A

−1
22 Wi),

where

�̃i
k =

√
βi

βk

�i
k ∀ k ≥ i,

S
(1)
k =

k−1∑
i=0

βi�̃
i
kA12

(
β

−1/2
i

i−1∑
j=0

βjR
j
i δ

(2)
j

)
,

S
(2)
k =

k−1∑
i=0

βi�̃
i
kA12

(
β

−1/2
i

i−1∑
j=0

βjR
j
i (Lj+1 + A−1

22 A21)Vj

)
,

S
(3)
k =

k−1∑
i=0

√
βi�̃

i
kA12

i−1∑
j=0

γjR
j
i Wj −

k−1∑
j=0

√
βj�̃

j
kA12A

−1
22 Wj.

We wish to prove that the various terms in (4.4), with the exception of the last
one, converge in probability to zero. Note that the last term is a martingale and
therefore, can be handled by appealing to a central limit theorem for martingales.
Some of the issues we encounter in the remainder of the proof are quite standard,
and in such cases we will only provide an outline.

To better handle each of the various terms in (4.4), we need approximations
of �i

k and Ri
k . To do this, consider the nonlinear map A �→ exp(A) from

square matrices to square matrices. A simple application of the inverse function
theorem shows that this map is a diffeomorphism (differentiable, one-to-one
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with differentiable inverse) in a neighborhood of the origin. Let us denote
the inverse of exp(·) by ln(·). Since ln(·) is differentiable around I = exp(0),
the function ε �→ ln(I − εA) can be expanded into Taylor’s series for sufficiently
small ε as follows:

ln(I − εA) = −ε
(
A − E(ε)

)
,

where E(ε) commutes with A and limε→0 E(ε) = 0. Assuming, without loss of
generality, that γ0 and β0 are small enough for the above approximation to hold,
we have for k ≥ 0,

�i
k = exp

(
−

k−1∑
j=i

βj

(
� − E

(1)
j

))
,

(4.5)

Ri
k = exp

(
−

k−1∑
j=i

γj

(
A22 − E

(2)
j

))
,

for some sequence of matrices {E(i)
k }, i = 1,2, converging to zero. To obtain a

similar representation for �̃i
k , note that Assumption 2.5(1) implies

βk

βk+1
= (

1 + βk(εk + β̄)
)
,(4.6)

for some εk → 0. Therefore, using the fact that 1+x = exp(x(1−o(x))) and (4.5),
we have

�̃i
k = exp

(
−

k−1∑
j=i

βj

((
� − β̄

2
I

)
− E

(3)
j

))
,(4.7)

for some sequences of matrices E
(3)
k converging to zero. Furthermore, it is not

difficult to see that the matrices E
(i)
k , i = 1,2,3, commute with the matrices �, A22

and � − (β̄/2)I , respectively. Since −�, −(� − (β̄/2)I ) and −A22 are Hurwitz,
using standard Lyapunov techniques we have for some constants c1, c2 > 0,

max
(|�i

k|, |�̃i
k|

) ≤ c1 exp

(
−c2

k−1∑
j=i

βj

)
,

(4.8)

|Ri
k| ≤ c1 exp

(
−c2

k−1∑
j=i

γj

)
.

Therefore it is easy to see that the first term in (4.4) goes to zero w.p.1. To prove
that the second term goes to zero w.p.1, note that lnβi ≈ −β̄

∑i−1
j=0 βj [cf. (4.6)]

and therefore for some c1, c2 > 0,

|β−1/2
i R0

i r̃0| ≤ c1 exp

(
−c2

i−1∑
j=0

(
γj − β̄

2
βj

))
,
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which goes to zero as i → ∞ (Assumption 2.3). Therefore, it follows from
Lemma A.3 that the second term also converges to zero w.p.1. Using (4.1)
and Lemma A.3, it is easy to see that the third term in (4.4) converges in the
mean (i.e., in L1) to zero. Next, consider E[|S(1)

k |]. Using (4.1), we have for some
positive constants c1, c2 and c3,

E

[∣∣∣∣∣β−1/2
i

i−1∑
j=0

βjR
i
j δ

(2)
j

∣∣∣∣∣
]

≤ c1

i−1∑
j=0

γj exp

(
−

i−1∑
l=j

(c2γl − c3βl)

)√
βj

γj

.

Since βj/γj → 0, Lemma A.3 implies that S
(1)
k converges in the mean to zero. To

study S
(2)
k , consider

E

[∣∣∣∣∣β−1/2
i

i−1∑
j=0

βjR
j
i (Lj+1 + A−1

22 A21)Vj

∣∣∣∣∣
2]

.

Since the Vk are zero mean i.i.d., the above term is bounded above by

c1

i−1∑
j=0

γj exp

(
−

i−1∑
l=j

(c2γl − c3βl)

)
βj

γj

for some constants c1, c2 and c3. Lemma A.3 implies that S
(2)
k converges in the

mean to zero. Finally, consider S
(3)
k . By interchanging the order of summation,

it can be rewritten as

k−1∑
j=0

√
βj�̃

j
k

[
γj

βj

k−1∑
i=j

βi(�
j
i )

−1A12R
j
i − A12A

−1
22

]
Wj .(4.9)

Since −A22 is Hurwitz, we have

A−1
22 =

∫ ∞
0

exp(−A22t) dt,

and we can rewrite the term inside the brackets in (4.9) as

k−1∑
i=j

γi

(
γjβi

βjγi

(�
j
i )

−1 − I

)
A12R

j
i

+ A12

(
k−1∑
i=j

γiR
j
i −

∫ ∑k−1
i=j γi

0
exp(−A22t) dt

)
− A12A

−1
22 exp

(
−

k−1∑
i=j

γiA22

)
.
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We consider each of these terms separately. To analyze the first term, we wish to
obtain an “exponential” representation for γjβi/βjγi . It is not difficult to see from
Assumptions 2.5 (1) and (2) that

βk+1

γk+1
= βk

γk

(1 − εkγk)

= βk

γk

exp
(−εkγk + O(ε2

kγ
2
k )

)
,

where εk → 0. Therefore, using (4.5) and the mean value theorem, we have∣∣∣∣γjβi

βjγi

(�
j
i )

−1 − I

∣∣∣∣
≤ c1 sup

l≥j

(
εl + βl

γl

)(
i−1∑
l=j

γl

)
exp

(
c2

i−1∑
l=j

(
εl + βl

γl

)
γl

)
,

which in turn implies, along with Lemma A.4 (with p = 1) and Assumption 2.3,
that the first term is bounded in norm by c supl≥j (εl + γl/βl) for some
constant c > 0. The second term is the difference between an integral and its
Riemannian approximation and therefore is bounded in norm by c supl≥j γl for
some constant c > 0. Finally, since −A22 is Hurwitz, the norm of the third term is
bounded above by

c1 exp

(
−c2

k−1∑
i=j

γi

)

for some constants c1, c2 > 0. An explicit computation of E[|S(3)
k |2], using

the fact that (Vk,Wk) is zero-mean i.i.d., and an application of Lemma A.3
shows that S

(3)
k converges to zero in the mean square. Therefore, the distribution

of β
−1/2
k θ̃k converges to the asymptotic distribution of the martingale comprising

the remaining terms. To complete the proof, we use the standard central limit
theorem for martingales [see Duflo (1997)]. The key assumption of this theorem
is Lindberg’s condition which, in our case, boils down to the following: for
each ε > 0,

lim
k

k−1∑
i=0

E
[∣∣X(k)

i

∣∣2I{∣∣X(k)
i

∣∣ ≥ ε
}] = 0,

where I is the indicator function and for each i < k,

X
(k)
i = √

βi�̃
i
k(Vi + A12A

−1
22 Wi).

The verification of this assumption is quite standard. �

REMARK. Similar results are possible for nonlinear iterations with Markov
noise. For an informal sketch of such results, see Konda (2002).
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APPENDIX: AUXILIARY RESULTS

A.1. Verification of (2.11). Without loss of generality, assume that b1 =
b2 = 0. Then, θ∗ = 0 and

θ̃k = θ̂k = θk,

and, using the definition of r̃k [cf. (2.4) and (2.10)], we have

r̃k = Lkθk + r̂k = Lkθk + rk + A−1
22 A21θk = rk + Mkθk,(A.1)

where

Mk = Lk + A−1
22 A21.

To verify the equation for θ̃k+1 = θk+1, we use the recursion for θk+1, to obtain

θk+1 = θk − βk(A11θk + A12rk − Vk)

= θk − βk

(
A11θk + A12r̃k − A12(Lk + A−1

22 A21)θk − Vk

)
= θk − βk(A11θk − A12A

−1
22 A21θk − A12Lkθk + A12r̃k − Vk)

= θk − βk(�θk − A12Lkθk + A12r̃k) + βkVk

= θk − βk(B
k
11θk + A12r̃k) + βkVk,

where the last step makes use of the definition Bk
11 = � − A12Lk .

To verify the equation for r̃k+1, we first use the definition (A.1) of r̃k+1, and
then the update formulas for θk+1 and rk+1, to obtain

r̃k+1 = rk+1 + (A−1
22 A21 + Lk+1)θk+1

= rk − γk(A21θk + A22rk − Wk) + (A−1
22 A21 + Lk+1)θk+1

= rk − γk

(
A21θk + A22

(
r̃k − (Lk + A−1

22 A21)θk

) − Wk

)
+ (A−1

22 A21 + Lk+1)θk+1

= rk − γk(A22r̃k − A22Lkθk − Wk) + Mk+1θk+1

= rk + Mk+1θk − γk(A22r̃k − A22Lkθk − Wk)

− βkMk+1(B
k
11θk + A12r̃k − Vk)

= rk + Mkθk − γk

[
Lk − Lk+1

γk

− A22Lk + βk

γk

Mk+1B
k
11

]
θk

+ γkWk − γk

(
A22 + βk

γk

Mk+1A12

)
r̃k + βkMk+1Vk

= r̃k − γk(B
k
21θ̃k + Bk

22r̃k) + γkWk + βkMk+1Vk,

which is the desired formula.
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A.2. Convergence of the recursion (2.12).

LEMMA A.1. For k0 sufficiently large, the (deterministic) sequence of
matrices {Lk} defined by (2.12) is well defined and converges to zero.

PROOF. The recursion (2.12) can be rewritten, for k ≥ k0, as

Lk+1 = (I − γkA22)Lk

(A.2)
+ βk

(
A−1

22 A21B
k
11 + (I − γkA22)LkB

k
11

)
(I − βkB

k
11)

−1,

which is of the form

Lk+1 = (I − γkA22)Lk + βkDk(Lk),

for a sequence of matrix-valued functions Dk(Lk) defined in the obvious manner.
Since −A22 is Hurwitz, there exists a quadratic norm

|x|Q = √
x′Qx,

a corresponding induced matrix norm, and a constant a > 0 such that

|(I − γA22)|Q ≤ (1 − aγ )

for every sufficiently small γ . It follows that

|(I − γA22)L|Q ≤ (1 − aγ )|L|Q
for all matrices L of appropriate dimensions and for γ sufficiently small.
Therefore, for sufficiently large k, we have

|Lk+1|Q ≤ (1 − γka)|Lk|Q + βk|D(Lk)|Q.

For k0 sufficiently large, the sequence of functions {Dk(·)}k≥k0 is well defined
and uniformly bounded on the unit Q-ball {L : |L|Q ≤ 1}. To see this, note that
as long as |Lk|Q ≤ 1, we have |Bk

11| = |� − A12Lk| ≤ c, for some absolute
constant c. With βk small enough, the matrix I − βkB

k
11 is invertible, and

satisfies |(I − βkB
k
11)

−1| ≤ 2. With |Bk
11| bounded by c, we have

|A−1
22 A21B

k
11 + (I − γkA22)LkB

k
11| ≤ d(1 + |Lk|),

for some absolute constant d . To summarize, for large k, if |Lk|Q ≤ 1, we
have |Dk(Lk)| ≤ 4d . Since any two norms on a finite-dimensional vector space
are equivalent, we have

|Lk+1|Q ≤ (1 − γka)|Lk|Q + (γka)

(
d1βk

aγk

)
,
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for some constant d1 > 0. Recall now that the sequence Lk is initialized with
Lk0 = 0. If k0 is large enough so that d1βk/aγk < 1, then |Lk|Q ≤ 1 for all k.
Furthermore, since 1 − x ≤ e−x, we have

|Lk|Q ≤
k−1∑
j=k0

γj exp

(
−a

k−1∑
i=j

γi

)(
d1βj

γj

)
.

The rest follows from Lemma A.3 as βk/γk → 0. �

A.3. Linear matrix iterations. Consider a linear matrix iteration of the form

	k+1 = 	k + βk

(
� − A	k − 	kB + δk(	k)

)
for some square matrices A, B , step-size sequence βk and sequence of matrix-
valued affine functions δk(·). Assume:

1. The real parts of the eigenvalues of A are positive and the real parts of
the eigenvalues of B are nonnegative. (The roles of A and B can also be
interchanged.)

2. βk is positive and

βk → 0,
∑
k

βk = ∞.

3. limk δk(·) = 0.

We then have the following standard result whose proof can be found, for example,
in Polyak (1976).

LEMMA A.2. For any 	0, limk 	k = 	∗ exists and is the unique solution to
the equation

A	 + 	B = �.

A.4. Convergence of some series. We provide here some lemmas that are
used in the proof of asymptotic normality. Throughout this section, {γk} is
a positive sequence such that:

1. γk → 0, and
2.

∑
k γk = ∞.

Furthermore, {tk} is the sequence defined by

t0 = 0, tk =
k−1∑
j=0

γk, k > 0.
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LEMMA A.3. For any nonnegative sequence {δk} that converges to zero and
any p ≥ 0, we have

lim
k

k∑
j=0

γj

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj = 0.(A.3)

PROOF. Let δ(·) be a nonnegative function on [0,∞) defined by

δ(t) = δk, tk ≤ t < tk+1.

Then it is easy to see that for any k0 > 0,

k∑
j=k0

γj

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj

=
∫ tk

tk0

(tk − s)pe−(tk−s)δ(s) ds + e
k0
k ,

where

|ek0
k | ≤ c

k∑
j=k0

γ 2
j

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj

for some constant c > 0. Therefore, for k0 sufficiently large, we have

lim
k

k∑
j=k0

γj

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj

≤ limt

∫ t
0 δ(s)(t − s)pe−(t−s) ds

1 − c supk≥k0
γk

.

To calculate the above limit, note that

lim
t

∣∣∣∣
∫ t

0
(t − s)pe−(t−s)δ(s) ds

∣∣∣∣
= lim

t

∣∣∣∣
∫ t

0
spe−sδ(t − s) ds

∣∣∣∣
≤ lim

t

(
sup

s≥t−T

|δ(s)|
)∫ T

0
spe−s ds + sup

s
|δ(s)|

∫ ∞
T

spe−s ds

= sup
s

|δ(s)|
∫ ∞
T

spe−s ds.

Since T is arbitrary, the above limit is zero. Finally, note that the limit in (A.3)
does not depend on the starting limit of the summation. �
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LEMMA A.4. For each p ≥ 0, there exists Kp > 0 such that for any k ≥ j ≥ 0,

k∑
i=j

γi

(
i−1∑
l=j

γl

)p

exp

(
−

i−1∑
l=j

γl

)
≤ Kp.

PROOF. For all j sufficiently large, we have

k∑
i=j

γi

(
i−1∑
l=j

γl

)p

exp

(
−

i−1∑
l=j

γl

)
≤

∫ (tk−tj )

0 τpe−τ dτ

1 − c supl≥j γl

,

for some c ≥ 0. �
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