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Deciding who should receive a mail-order catalog is among the most important decisions that mail-order-
catalog firms must address. In practice, the current approach to the problem is invariably myopic: firms

send catalogs to customers who they think are most likely to order from that catalog. In doing so, the firms
overlook the long-run implications of these decisions. For example, it may be profitable to mail to customers
who are unlikely to order immediately if sending the current catalog increases the probability of a future order.
We propose a model that allows firms to optimize mailing decisions by addressing the dynamic implications of
their decisions. The model is conceptually simple and straightforward to implement. We apply the model to a
large sample of historical data provided by a catalog firm and then evaluate its performance in a large-scale field
test. The findings offer support for the proposed model but also identify opportunities for further improvement.
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1. Introduction
Catalog firms mailed almost 17 billion catalogs in
2000 (Direct Marketing Association 2001). To deter-
mine who should receive these catalogs, firms typ-
ically estimate the probability that a customer will
purchase from historical data. They then mail catalogs
to all customers for whom this probability exceeds
the breakeven level, at which mailing costs equal
expected profits. In doing so, firms focus solely on
the response to the next catalog, overlooking any
long-term effects on demand. Yet, there is consider-
able evidence that receiving a catalog has an endur-
ing impact on customer purchasing behavior beyond
the current period. We propose a model that allows
firms to address the dynamic implications of mailing
decisions. In developing this model, we have several
goals. First, the model is intended to be managerially
relevant—it is conceptually simple and straightfor-
ward to implement. Second, we seek a model that is
modular in the components that firms may choose to
implement. As we will discuss, the model has two
components: (1) the design of a discrete state space
and (2) the optimization of the mailing policy on
that state space. There are alternative procedures that
can be used to perform each component, and these
alternatives are substitutable. For example, firms may
choose an alternative method to design the state space

while using the procedures that we propose for opti-
mizing the mailing policy (and vice versa). Third, we
would like the model to be modular in the segments
of customers on which firms choose to implement it.
A firm may choose to implement the proposed model
on customers with certain characteristics while retain-
ing its current policy for other customers. Because the
characteristics of the customers change over time, this
modularity requires that the model explicitly take into
account the possibility that the customers will shift
between policies. Our final goal focuses on validation.
To validate the proposed model, we use both histori-
cal data and a large-scale field test.
Because dynamic considerations have little influ-

ence on mailing policies for prospective customers,
we restrict attention to past (house) customers. The
proposed model requires data describing both the
mailing history and the transaction history for each
customer. Although maintaining a record of a cus-
tomer’s mailing history is no more difficult than
maintaining a record of the customer’s purchase his-
tory, many catalog retailers do not store complete
mailing histories. This might be interpreted as an
explanation for why the mailing history is typically
not used to design the mailing policy. It is more likely
that the causation operates in the reverse; many firms
do not store the mailing history because they do not

683



Simester, Sun, and Tsitsiklis: Dynamic Catalog Mailing Policies
684 Management Science 52(5), pp. 683–696, © 2006 INFORMS

use it. One explanation for this omission is that the
mailing history is highly correlated with the purchase
history, so that the purchase history provides a suf-
ficient statistic. However, in practice, stochasticity in
the mailing policy ensures that the purchase history
is not a sufficient statistic.
The proposed model requires stochasticity in the

historical mailing policy. For example, if the firm his-
torically mailed only to customers who had recently
purchased, then the model cannot predict how other
customers would respond if they received a catalog.
Fortunately, there is often considerable stochasticity
in historical mailing policies. There are at least two
primary sources for this stochasticity. First, stochastic-
ity is introduced by regular randomized split-sample
testing. The company that provided data for this
study regularly conducts these types of tests, and dis-
cussions with other catalog companies confirm that
the practice is widespread. The second source of
variation in mailing policies reflects changes in the
mailing policy over time resulting from changes in
the models used to predict customer response rates.
The company employs analysts who are continually
searching for opportunities to improve the profitabil-
ity of the firm’s mailing policies. Other changes in
management policies and personnel have led to ongo-
ing changes in the mailing policy.
The requirement for stochasticity in the histori-

cal mailing policy explains in part the desire for a
model that is modular in the segments of customers
on which firms choose to implement it. The level of
stochasticity in the historical policy often will vary
across customers with different characteristics. For
example, in the sample of historical data used in this
study, the firm mailed to an average of 59% of its cus-
tomers in each time period. However, for some of the
most valuable customers, this percentage increased to
93%, whereas it was as low as 9% for some of the less
valuable customers. Modularity allows for restricting
application of the model to states in which there is
sufficient stochasticity.

Literature
There is extensive literature investigating topics rel-
evant to the catalog industry. This includes a series
of studies that use catalog data to investigate pric-
ing cues and the impact of price promotions (see, for
example, Anderson and Simester 2004). Other topics
range from customer merchandise returns (Hess and
Mayhew 1997), to customer privacy (Schoenbachler
and Gordon 2002), and catalog copy issues (Fiore and
Yu 2001). In addition, several researchers have inves-
tigated optimal catalog mailing strategies. Bult and
Wansbeek (1995) present a model for making mailing
decisions that builds on work by Banslaben (1992).
They develop a model to predict whether customers

will respond to a catalog and link the model to the
firm’s profit function to derive a profit-maximizing
decision rule. They evaluate their model using a sam-
ple of historical data provided by a direct market-
ing company that sells books, periodicals, and music
in the Netherlands. They show that their methodol-
ogy offers strong predictive accuracy and the poten-
tial to generate higher net returns than traditional
approaches.
Bitran and Mondschien (1996) focus on the role

of cash flow constraints when making catalog mail-
ing decisions. The cash flow constraint introduces a
trade-off between mailing to prospective customers
and mailing to house customers. Mailing to prospec-
tive customers is an investment that yields negative
cash flow in the short term but builds the company’s
house list, whereas mailing to the house list enables
the firm to harvest value from its earlier invest-
ments. The model incorporates inventory decisions,
so that the profitability of the mailing policy depends
on the availability of inventory. The authors present
heuristics that approximate a solution to their model
and test the model using a series of Monte Carlo
simulations.
As early as 1960, it was recognized that catalog

companies may be able to profit by focusing on long-
run rather than immediate profits when designing
their mailing policies (Howard 2002). This recogni-
tion has led to several attempts to design dynamic
catalog mailing policies. The most widely cited
example was published by Gönül and Shi (1998).
Drawing on the structural dynamic programming
literature (see, for example, Rust 1994), Gönül and
Shi propose a model in which customers optimize
a stochastic and dynamic Markov game. In partic-
ular, the model assumes that customers understand
both the firm’s mailing strategy and the stochastic-
ity in their own purchasing decisions. Among other
factors, customer utility is an increasing function of
whether they receive catalogs, and, therefore, it is
assumed that customers contemplate how their pur-
chasing decisions will affect the likelihood that they
will receive catalogs in the future. For any value
of the parameters of the customer utility function,
a value function is defined, which corresponds to
the solution of the postulated stochastic game. This
value function results in a model of firm and cus-
tomer behavior. The “true” parameters of the util-
ity function are estimated using maximum likelihood
by comparing the behavior predicted by the model
with available data. The authors test their predic-
tions using the purchase histories for 530 customers
of a durable household goods retailer. The findings
suggest that their proposed policy has the potential
to increase the firm’s profits by approximately 16%.
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If their assumptions hold, Gönül and Shi’s (1998)
approach offers an important advantage over the
model that we propose: It provides a means of pre-
dicting how customers will behave under mailing
policies that do not arise in the historical data. As
such, it does not require the same level of stochas-
ticity in the historical policy as our proposed model.
For example, even if the company mailed only to
customers who had recently purchased, the response
model provides a means of estimating how other cus-
tomers would respond if they received a catalog. Of
course, these predictions will be more accurate if there
is stochasticity in the historical policy, so that there
are past examples of mailing to all types of customers.
The Gönül and Shi approach also may be able to bet-
ter account for changes in customer behavior resulting
from changes in the mailing policy (see limitations in
§6).
These benefits come at some cost. First, as Gönül

and Shi (1998) acknowledge, computation is very dif-
ficult when there are more than two state variables.
In practice, firms often use a rich array of histori-
cal measures when designing their mailing policies.
Second, the model depends on the specification of
the utility function and an assumption that, in the
available data, customers derive their own optimal
dynamic policy based on their observation of the
firm’s policy. This assumption that customers derive
their optimal policy appears strong in light of Gönül
and Shi’s conclusion that the firm’s current policy
is suboptimal. Empirially, we observe stochasticity in
the firm’s policy resulting from constant experimen-
tations and tests, which further limits a customer’s
ability to “observe” the firm’s true policy. Third, the
response function simply predicts whether a customer
will purchase and does not consider the magnitude of
that purchase.1 In practice, we also would like to con-
sider the size of customers’ orders. Finally, the model
requires that the data identify which catalog a cus-
tomer ordered from, which raises practical difficulties.
Customers often do not have the catalog code when
they are placing an order; therefore, it is not possible
to link transactions with specific catalogs. Discussions
with different catalog managers reveal that the Inter-
net has greatly aggravated this problem, as customers
can use the Internet as an ordering mechanism with-
out reference to a catalog.
For these and other reasons, the Gönül and Shi

(1998) model has attracted more attention from
academics than practitioners, which reflects, in part,

1 In an appendix, Gönül and Shi briefly describe an extension to
their model that considers how much customers spend on each
purchase (where the amount spent is discretized into k brackets).
However, computational limitations prevented estimation of this
model.

a difference in objectives. The structural dynamic
programming literature has traditionally focused on
understanding what factors affect customer or firm
decision making. Agents are assumed to be optimiz-
ing dynamically, and the model then searches for
parameters that yield the observed behavior as an
optimal outcome. In this paper, we have a different
objective. We propose a model with additional practi-
cal relevance that is conceptually simple and straight-
forward to implement. The proposal uses a different
approach to overcome the practical limitations in the
Gönül and Shi model. As we will discuss, we cal-
culate transition probabilities and one-step rewards
directly from the data. This direct (nonparametric)
estimation of the customers’ response function from
the data does not impose functional form assump-
tions and allows us to greatly expand the dimen-
sionality of the problem. The method has its own
limitations, for which we propose solutions.
In a recent paper, Elsner et al. (2003) present a

description of the success that Rhenania, a German
catalog company, enjoyed when implementing a
dynamic approach to optimizing catalog mailing
policies. They used a lengthy series of split-sample
mailing tests to estimate the response to different
mailing frequencies together with a chi-square auto-
matic interaction detection (CHAID) algorithm to seg-
ment customers. Rhenania’s success confirmed that
mailing to low-valued customers may be profitable
even when these customers are unlikely to respond
immediately. In a related proof of concept, Pednault
et al. (2002) use a publicly available sample of direct-
mail promotion data to compare a myopic policy
with a dynamic policy estimated using reinforce-
ment learning. Their results provide further evidence
that a dynamic approach can significantly outperform
purely static approaches to solving direct-mail circu-
lation problems (see also Abe et al. 2002).

2. Overview of the Proposed Model
Before presenting the proposed model, it is helpful
to begin with a brief overview and several defini-
tions. We interpret the company’s sequence of mailing
decisions as an infinite horizon task (there is no end
point) and seek to maximize the discounted stream of
expected future profits. Time is measured in discrete
periods defined by exogenously determined catalog
mailing dates. The intervals between mailing dates
typically vary; therefore, we will allow time periods
to have different lengths. We use the term reward to
describe the profit earned in any time period !rt". This
reward is defined as the net profit earned from a cus-
tomer’s order less mailing costs.
Customers’ histories (and their current status)

will be described at each time period by a set of
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n variables, so that a point in an n-dimensional space
represents each customer at each time period. The
n variables span a vector space X. We will segment
the space into mutually exclusive and collectively
exhaustive discrete states (we use S to denote the
set of discrete states). Intuitively, each state groups
together neighboring observations (customers at each
time period) that have comparable histories and are
expected to respond in a similar way to future poli-
cies. Obviously, the design of the states is an impor-
tant challenge, which we address in §3.
There are two possible actions at each time period:

mail or not mail. We identify the action at time
period t by ats ∈ #0$1%, where ats = 1 denotes a deci-
sion to mail at time period t to every customer in
state s. A policy !&" describes a mailing decision for
each state. The firm’s objective is to choose a policy
that maximizes the following objective function:

V &!s"=
#∑

t=1

'Tt r&t !s" ∀ s( (1)

Because the lengths of the time periods may dif-
fer, we define Tt as the number of days between the
beginning of the initial time period and the end of the
tth time period, and ' as a discount factor. Here, r&t !s"
is the immediate reward expected in time period t,
under policy &, given the initial state at period zero
was s.
We attribute purchases to the time periods in which

they occurred, rather than the date of the catalog
from which the customer ordered. This offers three
advantages. First, it overcomes the practical problem
described in the previous section in that it is often
difficult to link a purchase to a specific catalog. This
problem arises for approximately 15% of the pur-
chases in our data set. This percentage is larger in the
more recent data (and is expected to grow) because
of an increase in the number of orders placed over
the Internet. Second, attributing profits to the time
period in which they occurred, rather than the date
of the catalog, overcomes the need to explicitly con-
sider cannibalization across catalogs. A customer who
is ready to purchase will often purchase from a prior
catalog if they do not receive the most recent catalog.
As a result, customers may be less likely to purchase
from a prior catalog if they are mailed another catalog
two weeks later. If we attribute purchases to a spe-
cific catalog when evaluating the profitability of each
mailing, we would need to account for the adverse
impact of this mailing decision on the profitability
of previous mailing decisions. This problem does not
arise if we record purchases in the period they are
earned irrespective of which catalog they are ordered
from. Finally, treating purchases as a consequence of
the stock of prior mailing decisions rather than a
specific mailing decision is more consistent with our

claim that the effect of mailing a catalog to a cus-
tomer extends beyond the immediate purchase occa-
sion. Customers’ experiences with a catalog are not
limited to the catalog that they ordered from; there-
fore, their purchasing decisions are not determined
solely by that mailing decision.

3. Constructing the State Space
The standard industry approach to designing a dis-
crete state space is to tile the (continuous) state vari-
ables. There are several difficulties with this approach.
Notably, it can yield a large number of states, and
observations are often unevenly distributed across
these states (many states are populated with few or no
observations). An alternative approach is to develop
a predictive model of how likely customers are to
respond to a catalog and to discretize predictions
from this model. The Direct Marketing Association
(2001) reports that this approach, which will tend to
yield fewer more evenly distributed segments, is used
by approximately 28% of catalog firms. However,
although this alternative is well suited to a myopic
mailing policy, it is not well suited to a dynamic pol-
icy. There is no guarantee that grouping customers
according to the predicted response to the next cat-
alog will allow the model sufficient discrimination
in a dynamic context. In particular, a new customer
with few prior purchases may have the same pur-
chase probability as an established customer who has
extensive experience with the catalog. Yet, the long-
term benefits of mailing the established customer may
be different from the benefits of mailing the new
customer.
In proposing a new algorithm for constructing a

discrete state space, we adopt three objectives. First,
the states should be “meaningful,” so that each state
s ∈ S contains observations in the historical data. Sec-
ond, the states should be “representative,” so that
data points in the same state are geometrically close
to each other. Finally, the states should be “homoge-
nous,” so that the observations within a state share a
similar profit stream given an identical mailing policy.
We begin by initially estimating a value function for

each customer under the historical mailing policy. For
a customer at point x ∈ X, let %V &H !x" be an estimate
of the present value of the expected discounted future
profit stream under the historical mailing policy. Here,
&H indicates the historical mailing policy, and the
tilde denotes the initial estimation. If the period of
time covered by the historical data is sufficiently long,
this estimate can be derived by fitting a function of
the discounted aggregate profits earned for a repre-
sentative sample of customers (see the implementa-
tion discussion in §5). Given %V &H !x", we use a series
of separating hyperplanes to divide the state space
into pieces organized by a binary tree structure.
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Figure 1 State Space Design
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We illustrate the intuition for the binary tree struc-
ture in Figure 1. Assume that we describe customers’
history using just two variables !n= 2". A sample of
data represented in this two-dimensional X space is
portrayed in Figure 1(a). Line 1 represents a hyper-
plane in this X space that separates the sample in two
subsegments (Figure 1(b)). The next iteration begins
by selecting the segment with the highest variance
for %V &H (not shown) and placing a second separat-
ing hyperplane (Line 2) through this segment. Fol-
lowing this second iteration, there are a total of three
segments (Figure 1(c)). The process continues until a
stopping rule is met, such as the desired number of
segments or an upper bound on the largest variance
in %V &H within any state.
The outcome is a tree structure (Figure 1(d)), in

which the hyperplanes are branches on the tree and
the segments are the leaves. A state space with N seg-
ments requires a tree with N − 1 hyperplanes. Given
the tree structure, the path from the root to each
leaf node defines a set of inequalities identifying
each state. Aggregation of states is also easily accom-
plished by pruning a large tree structure to a smaller
one. This use of a binary tree structure is similar
in spirit to the decision tree methods for classifica-
tion (Duda et al. 2000) and the CHAID methods in
customer segmentation (see, for example, Bult and
Wansbeek 1995). The primary difference between the
methods is the design of the hyperplanes determining
the branches.
The algorithm that we use for identifying the

hyperplanes proceeds iteratively, where each iteration
has two steps. First, we select the segment for which

the variance in %V &H !x" is the largest. Formally, we
select the segment Xi for which

∑
x∈Xi

! %V &H !x"− 'VXi
"2 is

largest, where 'VXi
is the average of %V &H !x" calculated

over all x ∈ Xi. This criterion favors the selection of
segments that are least homogenous and/or have the
most members. To prevent states with very few obser-
vations, we only select from among segments with
at least 1,000 observations in them.
In the second step, we divide Xi into two segments

X ′
i and X ′′

i . To satisfy the homogeneity criterion, we
would like the observations within each subsegment
to have similar values of %V &H !x". To achieve this, we
could fit a step function to the %V &H !x" values in Xi.
However, computationally this is a difficult problem;
therefore, we use a heuristic to approximate this step.
The heuristic uses the following steps:
Step 1. Use ordinary least squares (OLS) to estimate

) and * in %V &H = )+*T x++ using all x ∈Xi. That is,
we find ) and * that minimize

∑
x∈Xi

! %V &H !x" − ) −
*T x"2.
Step 2. Find the center of the observations in the

segment x̄=∑
x∈Xi

x by calculating the average of the
observations on each of the n state variables.
Step 3. Compute )′ such that )′ + *T x̄ = 0 and

divide segment Xi into two segments X ′
i and X ′′

i along
the hyperplane defined by )′ +*T x= 0.
We can again illustrate this process using a two-

dimensional X space (see Figure 2). In Figure 2(a),
we depict the observations in a selected segment. The
center of these observations is defined by x̄, and each
observation has an estimated %V &H (Figure 2(b)). We
use OLS to regress %V &H on x, which we illustrate in
Figure 2(c) as a plane intersecting with the X space.
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Figure 2 Dividing Segments
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The intersection of the regression function and the
X space defines a separating hyperplane ()+*T x= 0"
that separates the chosen segment into two subseg-
ments. The slope of the hyperplane is given by *, and
its location is determined by ). To satisfy the mean-
ingfulness objective, we locate the hyperplane so that
it passes through the center of the observations in the
segment (Figure 2(d)). We accomplish this by dividing
along )′ +*T x= 0.
The primary difference between this approach

and other binary tree methods (such as CHAID)
is that the hyperplanes need not be perpendicular
to the axes of the X space. The use of a response
measure ( %V &H " and the continuous nature of this
response variable also distinguish this approach from
both clustering and classification methods. Cluster-
ing methods generally do not include a response
variable. They focus on the representative objective
without regard to the homogeneity criterion. Clas-
sification methods do use a response measure, but
they require that the response measure be binary or
discrete.

4. Dynamic Optimization
Recall that the firm’s objective is to maximize its dis-
counted aggregate profits. Having designed a discrete

state space, two tasks are required to identify the opti-
mal policy: (1) For each state, we need to estimate the
(one-period) rewards and transition probabilities for
both the “mail” and “not mail” actions, and (2) using
these estimated rewards and transition probabilities,
we can use standard techniques to calculate the value
function for a given policy and then iterate to improve
on that policy.

Estimating the Rewards and Transition
Probabilities
In the original applications for which dynamic
programming was first proposed, the rewards and
transition probabilities were known. However, in this
application, and indeed in almost any social science
application, these model parameters are not known
and, instead, must be estimated from historical data.
The traditional approach to estimating the rewards
and transition probabilities is to estimate an under-
lying response process as a continuous function of
the state variables according to an assumed functional
form. This parametric approach is used by Gönül
and Shi (1998), who estimate the probability that a
customer will purchase as the underlying response
process. We propose a different approach for estimat-
ing the rewards and transition probabilities. For each
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state and mailing decision, we simply observe from
the historical data the average (one-period) reward
and the proportion of times customers transitioned to
each of the other states. We claim that this nonpara-
metric approach offers four advantages.
First, the next state, after a transition, depends

not only on whether a customer purchased but also
on how much they spent. Explicitly estimating a
customer response function under the parametric
approach, therefore, requires a model of purchase
probabilities, together with a second jointly estimated
model describing the size of the purchase (condi-
tional on purchase). The process would be both
extremely complex and sensitive to errors; therefore,
it is unlikely that such a model would have practical
relevance. Gönül and Shi (1998) abstract away from
this problem in their model by both focusing on a
very simple state space and only considering whether
customers purchase (ignoring the variation in the size
of those purchases).
Second, the functional form assumptions under

the parametric approach can cause problems if the
steady-state probabilities change. We use an example
with a one-dimensional state space to illustrate this
in Figure 3. Most of the historical observations are
clustered in one portion of the state space (Area A).
Because we can only estimate the response func-
tion using historical data, imposing a functional form
favors accuracy in states with a lot of historical data
(Area A) at the expense of states with few historical
data (Area B). In Figure 3, we illustrate this trade-
off by imposing a linear functional form. This may
not be a problem if the steady-state probabilities do
not change under different policies. But, if they do
change, so that under the optimal policy customers
transition to Area B, the errors introduced by the
functional form assumption can be severe. One solu-
tion is to introduce additional degrees of freedom
to the functional form, so that the response func-
tion is no longer linear. The nonparametric approach
that we propose can be interpreted as an extreme
interpretation of this suggestion. By estimating spe-
cific parameters for each state, we allow for any

Figure 3 Functional Form Assumptions

Area A Area B State space

Response

and all nonlinearities (and interactions) across states.
Of course, the nonparametric estimates are less pre-
cise when there are fewer historical data, but the
estimates are unhindered by the functional form
restriction.
Third, the optimization portion of the dynamic pro-

gramming algorithm favors actions for which (1) the
errors in the expected rewards are positive, and
(2) errors in the transition probabilities favor transi-
tions to more valuable states. This leads to upward
bias in the value function estimates (and can be
interpreted as an application of Jensen’s inequal-
ity). We will later show that under the proposed
nonparametric approach, we can overcome this bias
through cross-validation, as drawing a new sample
of data yields an independent set of errors. In con-
trast, this solution is not available under the para-
metric approach. The distribution of the data across
the states will tend to be stable across draws of
the data; therefore, the functional form assumptions
ensure that the errors are not independent (the errors
illustrated in Figure 3 will occur in each sample).
Finally, under the proposed nonparametric ap-

proach, the precision of the transition probabilities
is known. In particular, under weak assumptions,
the estimates of the transition probabilities follow a
multinomial distribution. As a result, it is possible
to approximate the bias and variance in the value
function estimates (Mannor et al. 2005). Under the
parametric approach, it is not clear from which distri-
bution the estimates of the transition probabilities in
each state are drawn. We could calculate the estima-
tion errors for each state using the residuals; however,
this is equivalent to reverting to the nonparametric
approach.
As we acknowledged when distinguishing our ap-

proach from the Gönül and Shi (1998) model, the
parametric approach does offer an advantage. If the
assumptions hold, it provides a means of predicting
how customers will behave under mailing policies
that do not arise in the historical data. Of course, the
Gönül and Shi approach also benefits from stochastic-
ity in the historical data. Indeed, absence of stochas-
ticity will make the continuous parametric approach
particularly sensitive to the errors illustrated in
Figure 3.

Policy Evaluation and Improvement
With the rewards and transition probabilities in hand,
the value function can be calculated using Bellman’s
(1957) optimality equation:

V !s"=max
&

Er$T !s"$ s′ ,rs$&!s"+ 'T !s"V !s′" ! s$&!s"-

∀ s ∈ S( (2)

Here, we use the notation rs$a for the random variable
representing the immediate profit from the Markov
chain after visiting state s and taking mailing action a,
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' for the discount factor per unit time, and T for the
length of the intermailing time period after visiting
state s. Because we anticipate that T would generally
be included in the state variables used to define and
construct the state space, we write T as T !s", recog-
nizing that T is a random variable whose distribution
is determined by s.
For any fixed policy &, the following equation char-

acterizes the expected discounted aggregate profits
(value function) when starting at state s:

V &!s"= Er$T $ s′ ,rs$&!s"+ 'T V &!s′" ! s$&!s"- ∀ s ∈ S( (3)

If we use r̄s$a to represent the expected rewards
earned from a customer in state s when the firm
chooses mailing action a, the above system of equa-
tions can be expressed as

V &!s" = r̄s$&!s"+ET $ s′ ,'
T V &!s′" ! s$&!s"- ∀ s ∈ S

= r̄s$&!s"+
∑

s′
V &!s′"

∑

T

'T ps$&!s"→T $ s′ ∀ s ∈ S( (4)

Here, ps$&!s"→T $ s′ represents the joint probability that
a customer in state s after the mailing action a will
transition to state s′ and that the duration of the
time period will be T . In the computation, we can
directly estimate ps$ s′$a ≡

∑
T '

T ps$a→T $ s′ from the data,
which takes care of both the transition probability
and the discounting. With a slight modification of
notation, we can express Equation (4) in vector form.
Let P& denote a matrix for a given policy such that
P&i$ j = pi$ j$&!i", let r̄& denote the vector of expected
rewards (with the ith element equal to r̄i$&!i"", and let
v& denote the vector with elements V &!i". Given this
notation, we have v& = r̄& + P&v& , which yields v& =
!I−P&"−1r̄& as the value function under policy &.
Following the above notation, we can define a pol-

icy &H for the historical mailing decisions. We assume
that the historical mailing actions out of each state s
follow the probability distribution observed in the
data. The corresponding P&H and r̄&H can be directly
estimated from the data as well, which leads to the
value function under this historical policy: v&H =
!I − P&H "−1r̄&H . This provides both a benchmark
against which to evaluate the optimal policy and
an obvious starting point for computing the optimal
policy.
Having v&H , we use the classical policy-iteration

algorithm to compute the optimal mailing policy. The
algorithm iterates between policy evaluation and pol-
icy improvement. In particular, the algorithm begins
with a policy for which we calculate the value func-
tion. We then use this value function to improve the
policy, which yields a new policy with which to begin
the next iteration. The sequence of policies improves
monotonically until the current policy is optimal. It

is well known that the policy-iteration algorithm con-
verges to a stationary policy that is optimal for the
finite state infinite time horizon Markov decision pro-
cess (Bertsekas 1995). In practice, the speed of conver-
gence is surprisingly fast (Puterman 1994).

5. Implementation
We implemented the model on a data set provided
by a women’s clothing catalog that sells items in
the moderate to high price range. We received data
describing the purchasing and mailing history for
approximately 1.73 million customers who had pur-
chased at least one item of women’s apparel from the
company. The purchase history data included each
customer’s entire purchase history. The mailing his-
tory data was complete for the six-year period from
1996 through 2002 (the company did not maintain a
record of the mailing history prior to 1996). In this
six-year period, catalogs containing women’s cloth-
ing were mailed on 133 occasions, so that on aver-
age a mailing decision in this category occurred every
two to three weeks. The company also mails catalogs
for other product categories, and the historical data
received from the company contained a complete pur-
chasing record for the other product categories.

State Variables
With the assistance of the firm, we identified a set of
13 explanatory variables to describe each customer’s
mailing and purchase histories. These variables can be
grouped into three categories: purchase history, mail-
ing history, and seasonality. We begin with a discus-
sion of the purchase history variables.

Women’s Clothing Purchase History
Purchase Recencyit : Number of days since customer

i’s most recent purchase prior to period t.
Purchase Frequencyit : Number of orders placed by

customer i prior to period t.
Monetary Valueit : Average size in dollars of orders

placed by customer i prior to period t.
Monetary Value Stockit : Discounted stock of prior

purchases.
Customer Ageit : Number of days between period t

and customer i’s first purchase.

Purchase History for Other Categories
Purchase Frequencyit : Number of orders placed by

customer i prior to period t for items outside the
women’s clothing category.

The Monetary Value Stockit measure can be distin-
guished from the Recency, Frequency, and Monetary
Value measures by the increased weight that it gives
to more recent transactions. In particular, the measure
is calculated as follows: pit =

∑
j∈Jit .

Tj xj , where Jit is
the set of purchases by customer i prior to period t,
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. ∈ ,0$1- is a decay rate per unit of time, Tj denotes
the number of units of time between period t and the
jth purchase, and xj describes the amount spent on
the jth purchase. In preliminary analysis, we consid-
ered different values for these decay variables. This
led to inclusion of two Monetary Value Stockit variables
with decay rates 0.9 and 0.8 per month, respectively.
We used two mailing stock variables to describe the

history of women’s clothing catalogs mailed to each
customer. These were defined analogously to the pur-
chase stock measures: mit =

∑
k∈Kit

.Tk , where Kit iden-
tifies the set of catalogs mailed to customer i prior
to period t. The decay rates for these two mailing
stock variables were set at 0.9 and 0.8 per week. These
values were chosen because they yielded greater vari-
ance in the optimal mailing policies. The final esti-
mates of the value function V were relatively stable
to different values of these decay rates. We also con-
sidered a variety of variables describing customers’
mailing and purchase histories from other product
categories, but these variables had little effect on esti-
mates of the optimal value function !V " or the optimal
mailing policies.
Analysis of the raw data confirmed the presence of

seasonality in both the purchasing and mailing histo-
ries. We used the following three variables to capture
seasonality:
Purchase Seasonalityt : Average number of orders

received in the corresponding week across all years
in the data set.
Mailing Seasonalityt : Average number of catalogs

mailed in the corresponding week across all years in
the data set.
Individual Seasonalityit: Discounted sum of the num-

ber of purchases by customer i in the same quarter in
prior years.
To smooth the purchase and mailing seasonality

variables, we used a moving average for each mea-
sure. In the individual seasonality measure, we gave
greater weight to more recent purchases by decay-
ing prior purchases using an exponential weighting
function (using a decay rate of 0.9 per year). We
also considered including dummy variables identify-
ing the four quarters in a year. However, these had
little impact on the findings. In general, although it
is obviously important to include variables describing
seasonality, the findings were robust to modifications
in these variables (such as the use of different decay
rates in the Individual Seasonalityit measure).
Finally, an additional variable was included to con-

trol for the variation in the length of each mailing
period. This variable was labeled Period Lengtht , and
was defined as the number of weeks in the current
mailing period (period t).

Design of the State Space
Having defined the vector space X, we discretized it
using the approach described in §4. This process is
computationally intensive; therefore, we focused on
a random sample of 100,000 of the 1.73 million cus-
tomers for this step. Data for the first 25 mailing peri-
ods (1996 through July 1997) were used to initialize
the mailing and purchase stock measures, and the
period from August 1997 through July 2002 was used
as the estimation period. This estimation period com-
prised 108 mailing periods.
To obtain initial estimates of the value function

for the current policy ( %V &H ), we randomly selected a
mailing period in 1996 for each of the 100,000 cus-
tomers and calculated the discounted profits earned
from each customer in the subsequent periods. The
randomization ensured that all values of the season-
ality variables were represented. Using the total dis-
counted profit as a dependent measure, we regressed
%V &H as a quadratic function of the !n" explanatory
variables describing the customers’ mailing and pur-
chase histories. To ensure that the estimates were
robust, we repeated this process 100 times and aver-
aged the resulting parameter estimates to derive final
estimates for %V &H .

The company supplements its purchase history
data with additional information from other sources
to make mailing decisions for inactive customers
(defined as customers who have not purchased within
the past three years). Because we do not have access
to this additional data, this introduces the poten-
tial for bias in the calculated optimal value function.
For this reason, we calculate only the optimal mail-
ing policy for customers who purchased in the three
years prior to the current time period. Specifically, we
divided the vector space X into two half spaces X′

and X′′, where observations in X′ represent customers
who purchased within three years of the current time
period. The state space discretization procedure was
then conducted separately to design 500 states in each
of the X′ and X′′ spaces.

Dynamic Optimization
Having discretized the state space, we calculated the
value function estimates for both the current and opti-
mal policies. The policy improvement procedure was
conducted only on states in X′. Before calculating the
transition probabilities and expected rewards, we first
randomly selected a validation sample of 100,000 cus-
tomers (none of these customers were in the sam-
ple used to design the state space). For comparison
purposes, we then separately estimated the transi-
tion probabilities and expected rewards for two dif-
ferent samples. Sample 1 represents the 1.63 million
customers that remained after removing the valida-
tion sample; Sample 2 is a smaller sample of 100,000
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customers randomly selected from this sample of
1.63 million customers.
As we discussed, the policy improvement algo-

rithm focuses on the 500 states in which customers
are active (X′). We need separate transition probabili-
ties and expected rewards for each of the two possi-
ble decisions (“mail” and “not mail”), yielding 1,000
“state–action pairs.” Estimating the rewards simply
requires calculating the mean reward for each of these
state–action pairs. However, from each state, there
are potentially 1,000 possible transitions (including
the other 499 active states, the 500 inactive states,
and back to the same state). Therefore, the transi-
tion matrix has one million elements (1,000 potential
transitions from 1,000 state–action pairs). Fortunately,
most of the transitions are infeasible. For example, a
customer who has placed three orders cannot tran-
sition to states for customers who have purchased
fewer orders. Indeed, if customers do not purchase in
a mailing period, they frequently transition back to
the same state. In Table 1, we summarize the amount
of data available to estimate the expected rewards
and transition probabilities under the 1.63 million and
100,000 customer samples.

Results
For ease of exposition, we refer to the improved pol-
icy as the “optimal” policy. However, we caution that
the optimality of the policy is conditional on the
design of the discrete state space and the accuracy of
the transition probabilities and expected rewards. In
Table 2, we report estimates of the current and opti-
mal policy value functions for different discount rates.
The discount rates are monthly interest rates, with a
rate of 0.87% corresponding to an annual rate of 10%.
The estimates for the current policy are derived using
Sample 1. We restrict attention to active customers

Table 1 Sample Sizes Used to Calculate the Transition Probabilities
and Expected Rewards

Sample 1 Sample 2

Number of customers in the sample 1!639!363 100!000
Total number of observations 82!404!362 4!702!845

across all mailing periods
Expected rewards

Average sample size 82!404 4!703
Minimum sample size 301 71

Transition probabilities
Percentage of transitions to the same state 42 38
Percentage of elements with zero transitions 80 90
Average sample size for each nonzero 405.0 45.5

transition

Notes. An observation is defined as an active customer in a single mail-
ing period. The missing data reflect the acquisition of some customers after
the first mailing period. Zero transitions describe elements of the transition
matrix that were never observed in the data.

Table 2 Value Function Estimates by Monthly Interest Rate

Optimal policy
Monthly interest
rate (%) Current policy Sample 1 Sample 2

15 $11"29 $12"36 $13"20
10 $17"80 $19"57 $20"90
5 $35"45 $42"40 $44"90
3 $55"82 $74"14 $78"31
0.87 $141"29 $260"03 $275"45

Percentage of customers mailed (%)
15 59 21 27
10 59 43 43
5 59 64 68
3 59 73 77
0.87 59 76 79

and weigh the estimates for each state by the num-
ber of visits to each state in the training sample. The
table also reports the average percentage of (active)
customers mailed a catalog in each mailing period.
The value function for the current policy varies

across interest rates. Although the policy does not
vary, the rate at which future transactions are dis-
counted affects the value function. The value function
estimates for the optimal policy also vary with the
interest rate. However, this variance reflects both the
change in the rate at which future transactions are
discounted and differences in the optimal policy. At
lower interest rates, it is optimal to mail a higher pro-
portion of customers because the model gives more
weight to the favorable impact that mailing has on
future purchasing.
The value function estimates for the optimal pol-

icy in Table 2 are consistently higher in Sample 2,
which is the smaller of the two samples. Because the
transition probabilities and expected rewards are cal-
culated directly from the data, they inevitably con-
tain error; the observed transition probabilities and
expected rewards are only estimates of the true tran-
sition probabilities and expected rewards. The error
in these estimates raises three important issues.
First, imprecision in the transition probabilities and

expected rewards leads to variance in the value func-
tion estimates. Second, because the expression used to
evaluate the value function v& = !I−P&"−1r̄& is nonlin-
ear in the transition probabilities, errors in transition
probabilities lead to bias in the value function esti-
mates. Third, in choosing actions to maximize future
discounted returns, the optimization algorithm favors
actions for which the errors in the expected rewards
are positive and errors in the transition probabilities
favor transitions to more valuable states. This also
leads to upward bias in the value function estimates
and can be interpreted as an application of Jensen’s
inequality (recall the discussion in §4).
These issues have received little attention in the

literature. Fortunately, the use of a nonparametric
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Table 3 Corrected Value Function Estimates

Optimal policy
Monthly interest
rate (%) Current policy ($) Sample 1 ($) Sample 2 ($)

15 11"14 11"88 11"57
10 17"58 18"82 18"18
5 35"13 40"40 38"76
3 55"25 71"16 67"76
0.87 140"45 248"81 235"07

Standard errors
15 0"05 0"05 0"05
10 0"08 0"08 0"08
5 0"17 0"22 0"21
3 0"30 0"51 0"47
0.87 1"47 3"89 3"39

approach to estimate the transition probabilities and
expected rewards yields a solution to all three issues.
As we discussed, under weak assumptions, the esti-
mates of the transition probabilities follow a multino-
mial distribution. The properties of this distribution
can be used to derive expressions for the bias and
variance in the value function estimates (Mannor
et al. 2005). The nonparametric estimation of the
model parameters also ensures that when redrawing
a new sample of data, the errors are independent.
As a result, we can test for the bias induced by the
optimization by reestimating the value function for
the optimal policy using the validation sample.2 In
Table 3, we summarize the corrected value function
estimates and the standard errors of these estimates.
Comparison of these findings with Table 2 highlights
the impact that imprecision in the transition probabil-
ities and expected rewards has on the value function
estimates. After correcting the estimates, the value
function estimates derived from the (larger) Sample 1
are now consistently higher than those derived from
Sample 2.
In other findings of interest, we see that the ben-

efits of adopting the optimal policy (compared with
current policy) depend on the monthly interest rate.
At monthly interest rates higher than 10%, the value
function for the optimal policy is similar to that of
the current policy. At these high interest rates, the
objective function is relatively myopic, giving little
weight to transactions that occur in later periods. The
findings indicate that the improvement on the cur-
rent policy is relatively small in these conditions. This
is perhaps unsurprising given the myopic focus of
the current policy and the extensive feedback that

2 In contrast, for the reasons described earlier (see Figure 3), the
errors are not independent across samples when using the paramet-
ric approach to estimate the transition probabilities and expected
rewards. Under that approach, cross-validation is not available, nor
is there an obvious way to derive expressions for the bias and vari-
ance in the value function estimates.

the firm receives about the immediate response to
its mailing policies. However, as the interest rate
decreases, so that more value is attributed to future
earnings, the difference in the estimated value func-
tions increases.

6. Field Test
Whereas comparisons of internal validity are common
in the management science literature, tests of external
validity at the individual level are rare. In this section,
we describe the validation of the proposed model in
a large-scale randomized field test conducted with
the company that provided the historical data. The
field test was conducted over a period of six months
and included 12 mailing dates and a total of 60,000
customers. These customers were randomly selected
by the firm from its database of 1.73 million cus-
tomers, subject to the restriction that the customers
had purchased within three years of the starting date
of the field test. This restriction is consistent with the
focus on active customers in our application and was
designed to limit the number of inactive customers in
the test.
Because the mailing strategies were varied for six

months only, the predicted differences in the prof-
its earned under the optimal and current policies
are smaller than the differences presented in Table 3
(which evaluates permanent changes in the mailing
policy). Moreover, the predicted improvements vary
based on the initial states. In low-value states, the pre-
dicted profit improvements occur faster than in higher
value states. For this reason, we broke the 60,000
customers into three approximately equally sized sub-
samples based on values of the states in which cus-
tomers started the test. We label the subsamples as
low-value, moderate-value, and high-value.3
The field test employed a 3×2 experimental design,

reflecting the value of the states in which customers
started the field test (the three subsamples) and the
mailing policies used during the test period (two
conditions). In particular, customers in each of the
three subsamples were randomly assigned to either a
treatment or a control group. In the treatment group,
mailing decisions for all 12 catalogs mailed during
the six-month test period used the proposed model,
and the firm’s current mailing policy was used for the
customers in the control group.
Following the company’s guidance, we adopted a

3% monthly interest rate when designing the mail-
ing policy for the treatment group. Because of a
time constraint, the estimated rewards and transition

3 We used (current policy) value function cutoffs of $24 and $71
to demarcate the three subsamples. There were 20,030, 20,061, and
19,909 customers in the low-, moderate-, and high-value subsam-
ples, respectively.
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probabilities were estimated using Sample 2 (100,000
customers). In this respect, the field study can be con-
sidered a conservative test of the model’s potential.

Results
The results are summarized in Table 4, which shows
both the profits earned during the six-month test
period and the value function estimates for the cus-
tomers at the end of the period.4 We also report the
sum of these two measures (which we label “total
profit”). For each measure, we report the observed and
predicted differences between the treatment and con-
trol groups. The findings for the low- and moderate-
value customers are reassuring. The optimal policy
transitioned customers to more valuable states by
the end of the field test. For the moderate-value
customers, this was done without incurring any lost
profits during the six-month test period. For the low-
value customers, transitioning customers to the more
valuable states required increased mailing frequencies
during the test period, and these additional mailing
costs outweighed the additional revenue earned dur-
ing this period. Although the observed reduction in
profits during the test period was larger than we had
predicted (−96% versus −56%), the total improve-
ments were roughly consistent with the predicted
improvements (7% versus 11%).
Unfortunately, the outcome of the field test for the

high-value customers was less favorable. For these
customers, the optimal policy mailed less frequently
than the control policy and generated less revenue as
a result, with the reduction in sales outweighing the
savings in mailing costs. Although the findings for
the high-value customers were disappointing, a more
detailed examination of the data reveals some promis-
ing evidence even for these customers. In Figure 4(a),
we report the percentage difference between condi-
tions in the average weekly gross profit earned from
these customers during the field test. The gross profit
measure includes revenue less the cost of goods sold
(it does not include mailing costs). In Figure 4(b), we
report the percentage of customers mailed on each of
the 12 mailing periods in the treatment and control
conditions.
Throughout the test, the mailing rates in the treat-

ment condition were considerably lower than in the
control condition. Although there is an upward trend
in the mailing rates under the treatment condition, at
the end of the test, the number of catalogs mailed
in the treatment condition was still almost 20%
fewer than in the control condition. The gross prof-
its (excluding mailing costs) are initially a lot lower

4 The value function estimates at the end of the test period were
calculated using the firm’s current policy. Using the optimal pol-
icy instead of the current policy has little effect on the pattern of
results.

Table 4 Field Test Results: Percentage Difference
(Treatment−Control)

Low-value Moderate-value High-value

Six-month profit
Predicted −56 −2 0
Observed −96 0 −26

Final value function
prediction

Predicted 22 7 5
Observed 27 14 −15

Total profit
Predicted 11 5 3
Observed 7 10 −16

Note. The findings reflect the percentage difference between the treatment
and control groups, calculated as (treatment− control)/control.

in the treatment condition, but by the end of the test
period they meet or exceed the profits in the control
condition, despite the lower mailing rates. Indeed, in
the last four weeks of the test, 20% fewer catalogs
were mailed to customers in the treatment condition,
yet the company earned over 2% more in gross profit
(compared with the control condition).
Further investigation revealed an explanation for

the poor initial outcome with the high-value cus-
tomers. In the historical data, the firm mailed over
85% of the time to the high-value customers, so that
only 15% of the data in these states was available to
evaluate what would happen if the firm did not mail
to these customers (it was as low as 7% in one state).
Moreover, almost all of these “not mail” data occurred
on just nine of the 108 mailing dates in the historical
data. It seems that there is simply insufficient data to
reliably predict the impact of not mailing to the firm’s
most valuable customers. To identify an optimal pol-

Figure 4 (a) High-Valued Customers: % Difference in Gross Weekly
Profit (Three-Week Centered Moving Average); (b) High-
Valued Customers: Percentage Mailed Each Mailing Period
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icy for its most valuable customers, the firm would
first need to introduce stochasticity in its mailing pol-
icy to better predict the outcome of not mailing to
these customers.

Limitations
The results of the field test are subject to some impor-
tant limitations. In Table 4, total profit is calculated
as the sum of the profits earned during the six-month
test period, together with the value function estimates
for customers at the end of that six-month period.
The results rely on the accuracy of the value function
estimates. Ideally, we would measure the discounted
future profit stream actually earned from these cus-
tomers after the field test. However, these data are not
available.
A related issue raised by one of the reviewers is that

the changes to the mailing policy may have affected
customers’ expectations about the future mailing pol-
icy. As a result, the behavior of customers in a given
state at the end of the field test may differ from
the historical behavior of customers in that state. It
was this concern that motivated Gönül and Shi (1998)
to explicitly model customers’ expectations regard-
ing a firm’s mailing policy. Our model assumes that
the state space is rich enough to describe changes in
customers’ purchasing behavior resulting from any
changes in the mailing policy because mailing vari-
ables are included in the state space. In particular,
we assume that any change in the mailing policy that
affects customers’ purchasing behavior is accounted
for by customers transitioning to different states. If
customers stay in the same state, the change in cus-
tomer behavior would require a change in the Markov
chain parameters within that state, for which the
model does not allow. In practice, the state space may
not be rich enough to discriminate between different
mailing treatments. In this respect, the reviewer is cor-
rect that the model will not be capable of fully cap-
turing customers’ behavior changes (within a state).
Another related issue concerns the content of the

catalogs. If there were changes in the catalog content
across periods, this would also need to be included in
the state variables. In this application, we attempted
to describe these changes through the seasonality
variables and limited our attention to catalogs from
a single product category (recall that the catalog
company also sells products in several product cat-
egories). To the extent that these variables did not
fully capture variation in the catalog content, then,
we have introduced additional noise. In practice, it
will generally be impossible to fully capture variation
in catalog content. For example, the design of gar-
ments may simply be more attractive in some seasons
than in other seasons. This is presumably an impor-
tant source of the stochasticity in the model, helping

to explain why there is variation in rewards and tran-
sitions across observations.

7. Conclusions
We have presented a model that seeks to improve cat-
alog mailing decisions by explicitly considering the
dynamic implications of those decisions. The pro-
posed model is conceptually simple and straightfor-
ward to implement. Moreover, it is modular both in
the components that firms choose to implement and
the segments of customers on which they implement
it. We have validated the model using both historical
data and a large-scale field test. The findings show
considerable promise and also highlight opportunities
for further improvement.
A limitation of the proposed model is that it

requires stochasticity in the historical policy. In partic-
ular, if the historical policy mailed only to customers
who had recently purchased, then we cannot esti-
mate the effects of mailing to customers who have
not purchased recently. Fortunately, there is often con-
siderable stochasticity in the historical policy because
of both randomized testing of mailing policies and
changes in mailing policies over time. This is appar-
ently true of catalog companies in general, not just the
company from which we received data.
The level of stochasticity in the historical mailing

policy varies across states. In the data that we analyze,
the firm almost always mailed to its most valuable
customers, so that there were insufficient data avail-
able to evaluate what would happen if the firm did
not mail to these customers. Fortunately, the modu-
larity of the model offers the firm the flexibility to
implement the model only on customers for which
there is sufficient stochasticity in the historical mail-
ing policy. In particular, on receiving the results of
the field test, the firm was enthusiastic about imple-
menting the proposed model with its less valuable
customers but preferred to maintain its current policy
with its more valuable customers.
The results are also subject to two other impor-

tant limitations. First, the model assumes that any
change in the mailing policy that affects customers’
purchasing behavior is accounted for by customers
transitioning to different states. In practice, the state
space may not be rich enough to discriminate between
different mailing treatments. Second, we estimate
the future behavior of the customers that partici-
pated in the field test using value function estimates
from the proposed model. Ideally, we would measure
the discounted future profit stream actually earned
from these customers after the field test. Because these
data are not yet available, we leave this issue for
future research.
There are other important issues worthy of future

research. When designing the state space, we sought
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to group customers with similar value function esti-
mates. We did so using an initial estimate of the value
function under the historical policy. It would be inter-
esting to investigate the extent to which the design of
the state space would change if we used final value
function estimates under the optimal policy. Although
this issue is not specific to our proposed model, the
issue has not received much attention in the litera-
ture. Nor is it obvious how to address the problem as
most of the potential solutions have difficulties. For
example, the value function estimates for the opti-
mal policy are the same for all of the customers in
each state; therefore redesigning the state space with
these values will yield essentially the same states. The
field test provides only six months’ worth of data;
therefore, it is not possible to calculate the on-policy
value function directly from these data. Even com-
paring the steady-state probabilities under the current
and optimal policies is a challenge. In the field test,
we can evaluate the distribution of customers’ final
states. However, the field test focuses on a fixed sam-
ple of customers, whereas the dynamics in the overall
system also reflect new customers arriving.
We have not addressed the issue of how many

states to use in the analysis. This issue introduces
a trade-off. Classifying the observations more finely
by using a larger number of states offers additional
degrees of freedom with which to optimize. On the
other hand, as we have shown, the accuracy of the
value function estimates depends on the accuracy
of the rewards and transition probabilities. Using a
larger number of states results in fewer observations
to estimate these model parameters. Validating the
policies on a separate sample of validation data offers
one option for resolving this trade-off. Because this
issue is not specific to the proposed model, we leave
further investigation to future research.
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