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A Scalable Network Resource Allocation Mechanism
With Bounded Efficiency Loss

Ramesh Johari, Member, IEEE, and John N. Tsitsiklis, Fellow, IEEE

Abstract—The design of pricing mechanisms for network
resource allocation has two important objectives: 1) a simple
and scalable end-to-end implementation and 2) efficiency of the
resulting equilibria. Both objectives are met by certain recently
proposed mechanisms when users are price taking, but not when
users can anticipate the effects of their actions on the resulting
prices. In this paper, we partially close this gap, by demonstrating
an alternative resource allocation mechanism which is scalable
and guarantees a fully efficient allocation when users are price
taking. In addition, when links have affine marginal cost, this
mechanism has efficiency loss bounded by 1/3 when users are
price anticipating. These results are derived by studying Cournot
games, and in the process we derive the first nontrivial constant
factor bounds on efficiency loss in these well-studied economic
models.

Index Terms—Computer networks, game theory, resource
management.

I. INTRODUCTION

I N THIS PAPER, we consider a congestion pricing approach
to resource allocation in communication networks; see, e.g.,

[1] for an overview. Congestion pricing mechanisms in net-
works must tradeoff two competing goals: simplicity/scalability
of the mechanism, and efficiency. In this paper, we define a scal-
able mechanism as one where each user’s strategic decision de-
pends only on end-to-end path information, rather than detailed
information on individual link states. Efficiency is defined in
terms of the aggregate value of a network allocation. The ab-
straction we consider assumes that each user has a utility func-
tion, and each link has a cost function; an efficient allocation is
one that maximizes aggregate surplus (aggregate utility less ag-
gregate cost).

Several previous efforts have considered the design of scal-
able and efficient market mechanisms, with varying degrees of
success depending on the assumptions made about the behavior
of network users. Kelly and coworkers have shown that as long
as users act as “price takers” (i.e., if users do not anticipate the
effect of their strategic decisions on the prices), then a simple
proportional bidding mechanism can achieve efficient alloca-
tions when link capacities are fixed [2] or elastic [3]. The mech-
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anism asks each user to submit a single bid, which conveys the
total payment of that user. In the case of a single link, resources
are allocated to users in proportion to the bids submitted. The
network case is a graceful generalization of this model, where
each user is only required to choose a bid in response to the
prices on each available path, rather than on each link of the
network.

Since Kelly et al. assume that users are price takers, they ig-
nore the possibility of strategic users that are fully rational and
anticipate the effect of their decisions on the link prices. A game
theoretic formulation of the mechanisms in [2] and [3] for the
case of price anticipating users has been considered for a single
link by Johari et al. [4], [5], and aggregate surplus at a Nash
equilibrium was shown to be within a constant factor of the max-
imum possible aggregate surplus. However, the results in [4] and
[5] exhibit an undesirable scaling behavior in the network con-
text: in order to ensure a bounded efficiency loss, the authors re-
quired that each user submit individual bids to each link in the
network, rather than a single bid per path as in the original pro-
posal of [2], [3]. The ramifications of such a mechanism are that
each user must be aware of each link he can potentially use, as
well as the prices of those links. If, instead, the user submits only
a single bid, Hajek and Yang [6] have shown that the efficiency
loss can be arbitrarily high when users are price anticipating.

We close the gap in preceding results, by demonstrating that
it is possible to design a network resource allocation mecha-
nism that is scalable and has good efficiency properties when
users are price taking, as well as price anticipating. We con-
sider a simple market mechanism for link data rate allocation,
where users choose the rates along each path they desire from
the network, and optimize their payoff only based on the ag-
gregate price of each path available to them (rather than indi-
vidual link prices). When users are price taking, this mecha-
nism achieves an efficient allocation. We also show that if every
link has an affine marginal cost function the efficiency loss is no
worse than 1/3 of the maximal aggregate surplus—regardless of
the utility functions of the users. This result is of practical im-
portance: while affine approximations to links’ marginal cost are
still quite rich, it is unlikely that detailed knowledge of users’
utilities will be available. Furthermore, the assumption of affine
marginal costs is no more restrictive than the affine latency as-
sumption in the seminal work of Roughgarden and Tardos [7].

Mechanisms where market participants choose their desired
quantities are known as Cournot models [8]. Cournot games are
among the best studied economic models for competition be-
tween market participants; see, e.g., [9]–[11] for surveys of this
rich topic. The results of this paper are among the first constant
factor bounds available for Cournot competition models, and
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thus the analysis of this paper constitutes an important contri-
bution to the existing results in economics as well. Additional
bounds using similar techniques can be derived for other eco-
nomic models of interest, in particular for monopoly pricing
with general concave demand, and Cournot oligopoly pricing
with affine demand; for details, see [12].

Our investigation forms part of a broader body of work that
quantifies the efficiency loss in environments where participants
may be selfish. Results have been obtained for routing [13],
traffic networks [7], [14], and network design problems [15],
[16]. We note in particular that Roughgarden and Tardos showed
that when nonatomic users selfishly route through a network,
and if delays are affine functions of flow on each link of the net-
work, then the average delay is a factor of at most 4/3 higher
than the optimal average delay.

The outline of the remainder of this paper is as follows. In
Section II, we describe the operation of the mechanism for a
single link, and establish that when users are price taking the
resulting allocation is efficient (a consequence of the first fun-
damental theorem of welfare economics [17]). We then show
that at a Nash equilibrium of this game when users are price an-
ticipating and the link has affine marginal cost, the efficiency
loss is no more than 1/3 of the maximal aggregate surplus, re-
gardless of the utility functions of the users; we also show this
bound is tight.

We then consider general networks in Section III, where each
user chooses the rate at which they wish to send on each avail-
able path. It is again the case that price taking users end up max-
imizing the aggregate surplus. We then establish that as long as
all links have affine marginal cost functions, the efficiency loss
at a Nash equilibrium is no worse than a factor of 1/3, matching
the result of the single-link case.

II. A SINGLE LINK

In this section, we consider a game where multiple users com-
pete for a single link, and where the strategies of the users rep-
resent their desired rates. Although it is easy to check that such
games can yield arbitrarily high efficiency loss in general [12],
we will establish a bound on efficiency loss in the important spe-
cial case where the link has affine marginal cost.

Formally, we consider the following model. We assume that
users compete for a single link. We assume that each user

has a utility function , and that the total data rate through the
link incurs a cost characterized by a cost function . We make
the following assumptions.

Assumption 1: For each , and over the domain ,
the utility function is concave, nondecreasing, and con-
tinuously differentiable (where we interpret as the right
directional derivative of at 0).

Assumption 2: There exists a differentiable, convex, nonde-
creasing function over , with and

as , such that for

In particular, is convex and nondecreasing.

We assume that both utility and cost are measured in mone-
tary units, so that an efficient allocation is characterized as an
optimal solution of the following optimization problem:

(1)

(2)

We refer to the objective function (1) as the aggregate surplus
[17]. Since as , while only grows at most
linearly, it follows that an optimal solution exists.

We now consider the following pricing scheme for resource
allocation. Each user chooses a desired rate . Given the
vector , the link sets a single price

. User then pays . We first consider the case
where, given a price , user chooses to maximize

(3)

Notice that in the previous expression, each user is acting as a
price taker; that is, he does not anticipate the effect of a change
in his strategy on the resulting price. Since we are using mar-
ginal cost pricing, i.e., since , we expect that
price taking users will maximize aggregate surplus at a competi-
tive equilibrium. This is formalized in the following proposition,
a special case of the first fundamental theorem of welfare eco-
nomics [17]. This result is similar to that proven by Kelly et al. in
[3] for a proportionally fair pricing scheme, where users choose
the total amount they are willing to pay, rather than their total
rate.

Proposition 1: Suppose Assumptions 1 and 2 hold. There
exists a competitive equilibrium, that is, a vector and a scalar

such that , and

(4)

Any such vector solves (1) and (2). If the functions are
strictly concave, such a vector is unique.

Proposition 1 shows that with marginal cost pricing, and if
the users of the link behave as price takers, there exists a vector
of rates , where all users have optimally chosen their , with
respect to the given price ; and at this “equilib-
rium,” the aggregate surplus is maximized.

When the price taking assumption is violated, however,
the model changes into a game and the guarantee of Propo-
sition 1 is no longer valid. Consider, then, an alternative
model where the users of a single link are price anticipating,
rather than price taking, and play a Cournot game to ac-
quire a share of the link. We use the notation to denote
the vector of all rates chosen by users other than ; i.e.,

. Then, given ,
each user chooses to maximize

(5)

The payoff function is similar to the payoff function ,
except that the user now anticipates that the price will be set ac-
cording to . A Nash equilibrium of the game defined
by is a vector such that for all

(6)
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We first show that a Nash equilibrium exists for this game.
The proof is a standard application of Rosen’s existence the-
orem [18], and is omitted; details may be found in [12] and [19].

Proposition 2: Suppose that Assumptions 1 and 2 hold.
Then there exists a Nash equilibrium for the game defined by

.
Because the payoff is concave in for fixed , a

vector is a Nash equilibrium if and only if the following first-
order conditions are satisfied for each , where :

(7)

(8)

We will use these conditions to investigate the efficiency loss
when users are price anticipating. Specifically, we are inter-
ested in comparing the aggregate surplus achieved at a Nash
equilibrium to the aggregate surplus achieved at a competitive
equilibrium.

It is not difficult to construct examples in which the effi-
ciency loss is arbitrarily high, under the general assumptions
we have made in this section; one such example is presented in
[12]. Indeed, the knowledge that Cournot oligopoly models can
yield high-efficiency loss is a generally accepted piece of folk-
lore in the economics community; see, e.g., [20]. However, in
the next theorem, we consider the important special case where
marginal cost is affine. Even though the utility functions of the
users may be arbitrary, we show that the efficiency loss of the
resulting mechanism is no worse than 1/3 when users are price
anticipating.

Theorem 3: Suppose that Assumption 1 holds, and that
for some , . Suppose also that

for all . If is any solution to (1), (2), and is
any Nash equilibrium of the game defined by ,
then

(9)

Furthermore, this bound is tight: for every , , and
, there exists a choice of and a choice of (linear) utility

functions , , such that a Nash equilibrium
exists with

(10)

Proof: The proof follows in three steps. We first show that
we can assume without loss of generality that

, and . Next,
we show that the worst case occurs when the utility functions
of the users are linear (Lemma 4). We then optimize over all
games with linear utility functions to determine the worst case
efficiency loss.

Define , and . If , then
for all ; and by (8), we have for all . But this
is a sufficient condition for optimality for (1) and (2), so we
conclude is an optimal solution to (1) and (2). Thus if ,
the bound trivially holds.

From now on we assume, without loss of generality, that
. Now, for any user with , from (7) to-

gether with the fact that , we conclude that
. Thus, ,

so that . Furthermore, since
is concave, nondecreasing, and nonnegative, we have

. Thus, ;
since is an optimal solution to (1), (2), we have

.
We will use the next lemma to establish that linear utility

functions yield the worst efficiency loss. The proof uses the con-
cavity of the utility functions, and is closely related to the proof
of Lemma 4 in [4]. For this reason, we omit the proof; details
can be found in [12].

Lemma 4: Suppose that Assumptions 1 and 2 hold. Suppose
also that for all . Fix any rate vector , and let

be any optimal solution to (1), (2). Define . If
and ,

then the following inequality holds:

(11)

If we replace the utility function by a new utility function
for each , where , then continues

to be a Nash equilibrium, since the optimality conditions (7) and
(8) still hold. Applying Lemma 4, therefore, we see that the ratio
of Nash equilibrium aggregate surplus to the maximal aggregate
surplus cannot increase if we replace by for all .

Thus, we assume without loss of generality that the utility
functions of all users are linear, i.e., . Since we
have assumed , we know that

for at least one . Thus, by replacing by ,
and by , we can also assume without loss
of generality that . Furthermore, by relabeling if
necessary, we can assume that . Note that after rescaling,
the new price function is still affine but may have a different
slope.

Since we have restricted attention to settings where
, we must also have .

Thus, from (7) and the fact that , we must have
; in particular, this implies that .

We start by computing the maximal aggregate surplus under
these assumptions. Since the price function is ,
the maximal aggregate surplus is achieved when , i.e.,
when ; this rate is entirely allocated to user 1.
The maximal aggregate surplus is thus

Since the maximal aggregate surplus is fixed as ,
by (7) and (8) the worst case game is identified by solving
the following optimization problem (with unknowns

):

(12)

(13)
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(14)

(15)

(16)

(17)

The objective function is the aggregate surplus associated with
a Nash equilibrium allocation . The conditions (13) and (14)
are equivalent to the Nash equilibrium conditions established in
(7) and (8). The constraint (15) ensures that the total allocation
made at the Nash equilibrium is equal to . The constraints in
(16) follow since we have restricted without loss of generality to
games where . The constraint (17) ensures
the rate allocated to each user is nonnegative.

We start by assuming that is fixed, and optimize only
over and . In this case, we start by noting that we may assume
without loss of generality that for all
users . Indeed, if is a feasible solution and

for some , then (13) and (14) imply that
. On the other hand, if for some

, we can set ; this preserves
feasibility, but does not impact the term in the objective
function (12). We can, therefore, restrict attention to feasible
solutions for which

(18)

Having done so, observe that the constraint (16), that ,
may be written as

Finally, the constraint (16) that becomes redundant, as
it is guaranteed by the fact that , , and .

It follows from (16) together with (13) that a candidate so-
lution satisfying (15) can only exist if , in which case
we have , so that

. In particular, we conclude immediately that for a
feasible solution to exist, we must have .
This yields the following reduced optimization problem:

(19)

(20)

(21)

(22)

The objective function (19) is equivalent to (12) upon substitu-
tion for [from (13)] and [also from (13)]. The constraint
(20) is equivalent to the allocation constraint (15); and the con-
straint (21) ensures , as required in (16).

For fixed , the resulting problem is symmetric in the
rates for . It is clear that a feasible solution
exists if and only if

(23)

In this case, the following symmetric solution is feasible:

Furthermore, since the objective function (19) is strictly convex,
this symmetric solution must in fact be optimal. If we substi-
tute in the objective function (19), the resulting optimal value
is strictly decreasing as increases; the worst case occurs as

, and the optimal objective value (19) becomes

(24)

Furthermore, the feasibility requirements (23) on , , and
become , or upon rearranging,

.
Until now, we have kept the price function and the total rate

fixed, and found the worst case game. We now optimize over all
possible choices of price function (i.e., over and ),
as well as over possible Nash equilibrium rates (i.e., over ).
Recall that the maximal aggregate surplus is .
Thus, the worst case ratio is identified by the following opti-
mization problem over , , and :

If we let , then this problem becomes equivalent to the
following problem:

By substituting and differentiating, it is straight-
forward to establish that the minimum value of this optimization
problem occurs at any pair and satisfying the constraints,
such that . One such pair is given by ,
and . At any such solution, the minimum objective value
is equal to 2/3. This establishes (9).

We now show (10), for a fixed price function
with and . We choose the utility functions so that

Let . It is then straightforward to check that
for sufficiently large , if and for

, the allocation is a Nash equilibrium. Furthermore,
the maximum aggregate surplus is achieved by choosing so
that , so ,
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, and for . Thus, the ratio of Nash
equilibrium aggregate surplus to maximal aggregate surplus is

(25)

Now, as , this ratio approaches 2/3, as required.
We note that by an appropriate choice of utility functions the

worst case efficiency loss is always exactly 1/3 for any affine
price function.

III. GENERAL NETWORKS

In this section, we consider an extension of the single-link
model to general networks. Our key contribution is to show
that the generalization to a network model is a natural, scalable
market mechanism: one where users choose rates over each path
available, rather than at each link in the network. We show that
the efficiency loss remains bounded, when marginal cost func-
tions are affine; this is a counterpoint to the previous results on
efficiency loss for the proportionally fair network resource al-
location mechanism, where efficiency loss is only bounded if
users submit individual bids to each link of the network [4], [6].

We consider a network consisting of links, or resources,
numbered . As before, a set of users numbered

, shares this network of resources. We assume a set of
paths through the network, numbered . By an abuse
of notation, we will use , , and to also denote the sets
of resources, users, and paths, respectively. Each path
uses a subset of the set of resources ; if resource is used by
path , we will denote this by writing . Each user
has a collection of paths available through the network; if path

serves user , we will denote this by writing . We
will assume without loss of generality that paths are uniquely
identified with users, so that for each path there exists a
unique user such that . (There is no loss of generality
because if two users share the same path, that is captured in
our model by creating two paths which use exactly the same
subset of resources.) For notational convenience, we note that
the resources required by individual paths are captured by
the path-resource incidence matrix , defined by if

, and , otherwise. Furthermore, we can capture
the relationship between paths and users by the path-user inci-
dence matrix , defined by if , and ,
otherwise. Note that by our assumption on paths, for each path

we have for exactly one user .
Let denote the rate allocated to path , and let

denote the rate allocated to user ; using the
matrix , we may write the relation between
and as . Furthermore, if we let
denote the total rate on link , we must have

Using the matrix , we may write this constraint as .
We continue to assume that user receives a utility

from an allocated rate , and that each link incurs a cost
when the total allocated rate at link is . We will

assume that the utility functions satisfy Assumption 1, and each

cost function satisfies Assumption 2; we let denote the
marginal cost function associated with link .

The natural generalization of the problem (1) and (2) to a
network context is given by the following optimization problem:

(26)

(27)

(28)

(29)

We continue to refer to the objective function (26) as the ag-
gregate surplus. Since the objective function is continuous and

grows at most linearly while grows superlinearly, an op-
timal solution exists. Since the feasible region is convex and
the cost functions are each strictly convex, the optimal vector

is uniquely defined (though need not be unique).
In addition, if the functions are strictly concave, then the
optimal vector is uniquely defined as well. As in
the previous development, we will use the optimal solution to
(26)–(29) as a benchmark for the outcome of the network game.

We will consider the following network resource allocation
mechanism, a natural generalization of the game considered
for a single link in the previous section. Each user chooses
a rate for each path ; thus the strategy of user is
now a vector . The total rate demanded at
link is then . We continue to assume that each link
chooses a price equal to marginal cost, so that given the com-
posite strategy vector , the price of link is

. Each user then pays a total amount
along each path ; thus the total payment

by user is . Notice that each user is only
choosing rates along each available path through the network,
rather than at each link in the network. This is a much more scal-
able approach to network resource allocation, because users do
not need to be aware of the network topology in making their
rate decisions; each user only needs to know the aggregate price
of each path available to him.

As in the previous development, if we assume that each user
behaves as a price taker, then given a vector of prices

, the payoff to user is

Since we are using marginal cost pricing, we again expect price
taking users to maximize aggregate surplus at a competitive
equilibrium; this is formalized in the following analogue of
Proposition 1, which is again a special case of the first funda-
mental theorem of welfare economics [17].

Proposition 5: Suppose that Assumption 1 holds, and that
for each price function and cost function , Assumption 2
holds. There exists a competitive equilibrium, that is, a pair of
vectors and such that , and

(30)

Furthermore, any such vector solves (26)–(29).
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However, if each user is price anticipating, rather than price
taking, the users may not maximize aggregate surplus. Con-
sider, then, an alternative model where the users are price an-
ticipating, and play a Cournot game to acquire a share of the
links of the network. We use the notation to denote the
vector of all rates chosen by users other than ; i.e.,

. Then, given , each user
chooses to maximize

(31)
The payoff function is similar to the payoff function , ex-
cept that the user now anticipates that the price at link will be
set according to . A Nash equilibrium of the game
defined by is a composite vector such that
for all and all , there holds .

As in Proposition 2, it is straightforward to show that a Nash
equilibrium exists for this game.

Proposition 6: Suppose that Assumption 1 holds, and that for
each price function and cost function Assumption 2 holds.
Then there exists a Nash equilibrium for the game defined by

.
We would now like to investigate the efficiency loss by com-

paring the aggregate surplus at a Nash equilibrium to the optimal
value of (26)–(29). Of course, since a single link is a special
case of a general network, the efficiency loss can be arbitrarily
high at a Nash equilibrium. However, it is possible to establish a
bound on efficiency loss in the special case where all link price
functions are affine. The key technique that we use is to show a
relationship between the Nash equilibria of the game defined by

, and the Nash equilibria of a game where users
choose rates independently at each link. Once this equivalence
is established, we can analyze the latter game using methods
similar to those adopted in the network model of [4] and [5]: we
reduce the analysis to individual games at each link, and then
apply Theorem 3.

Theorem 7: Suppose that Assumption 1 holds, and that for
each , for some , .
Suppose also that for all . If is any solution to
(26)–(29), and is any Nash equilibrium of the game defined
by , then

(32)

Proof outline: First, we define a new game where each
user chooses a rate demanded at each link; the strategy
of user is thus . This strategy determines
the rate allocation to user at each link in the network; given
this allocation, user sends at the maximum rate possible using

the paths which are available. This maximum rate is the
optimal value of the following max-flow optimization problem:

(33)

(34)

(35)

We denote the optimal objective value of this optimization
problem by , where . Finally, the
price at each link is set to , and the total payment
made by user is . Thus, given a composite
strategy vector , the payoff to user is

The key property of the game defined by is that
any Nash equilibrium of the game defined by
is related by a natural transformation to a Nash equilibrium
of the game defined by ; and further, the aggregate
surplus remains unchanged under this transformation. This is
formalized in the following lemma.

Lemma 8: Suppose that Assumption 1 holds, and that
each price function and cost function satisfies Assump-
tion 2. Let be a Nash equilibrium of the game defined by

, and define . Then, is
a Nash equilibrium of the game defined by .
Furthermore, there holds

(36)

Proof of Lemma: Suppose that the vector is a Nash equi-
librium of the game defined by , and define

. By definition it follows that:

(37)

We now claim that . Clearly,
is feasible for (33)–(35), so ; and

thus . Suppose then that
; this is only possible if

. But in this case if is an optimal solution
to (33)–(35) with rate allocation , then is a profitable
deviation for user in the game defined by :
the utility to user strictly increases, while the payment made
by user does not increase. This is not possible, since is a
Nash equilibrium of the game defined by . We
conclude that , and thus we have

for all .
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Now, suppose that is not a Nash equilibrium of the game
defined by ; then there exists a user such that

is a profitable deviation for user . It is then straight-
forward to show that if is an optimal solution to (33)–(35),
then is a profitable deviation for user from in the game
defined by , i.e., .
Thus, could not have been a Nash equilibrium for the game
defined by , a contradiction. So, we conclude is
a Nash equilibrium for the game defined by .

Finally, since we have shown that
for all , and we have

for each by definition, we conclude that (36) holds.
Given Lemma 8, it suffices to focus on the worst case effi-

ciency loss in the game defined by . This game
can be analyzed using techniques similar to those used in [4,
Th. 7] and [5, Th. 14], so we only sketch the remainder of the
proof here. If is a Nash equilibrium of the game defined
by , we replace the “composite” utility function

with a linear utility function , where is
chosen so that is a Nash equilibrium of the new game de-
fined by these linear utility functions. Since the “composite”
utility function for user is linear in the vector of rate al-
locations , the network structure is no longer relevant and the
game defined by decouples into Cournot games,
one at each link . We finally apply Theorem 3 at each link to
arrive at the bound in the theorem.

The preceding theorem extends Theorem 3 to general net-
works, where users may have arbitrary utility functions (subject
to Assumption 1) and arbitrary paths available through the net-
work. Observe that the key step is Lemma 8, which relates a
Cournot game where users choose rates along each path to a
Cournot game where users choose rates at each link. Note that
this relationship is only established between Nash equilibria of
the two games, but that suffices for the efficiency analysis we
perform. Indeed, a direct analysis of the efficiency loss of the
game defined would be much more difficult, due
to the strong coupling between the players; it is not a priori clear
that adverse effects such as those discovered by Hajek and Yang
[6] will not occur in this context.

Finally, we also note that the preceding theorem essentially
uses Theorem 3 as a “black box.” Thus, any other efficiency
loss bound that holds for a single-link Cournot game with arbi-
trary utilities (or even linear utilities, due to Lemma 4) and pos-
sibly more general cost functions can be extended to a network
Cournot game where users choose rates for each path available.

IV. CONCLUSION

This paper has considered a simple model for network re-
source allocation: users choose the rate at which they want to
send data, and links set prices according to the marginal cost of
the total rate allocated. While such a scheme is efficient when all
users are price taking, there is a loss of efficiency when users are
able to anticipate the effects of their choices on the link prices.
We established that this efficiency loss is bounded by 1/3 when
links’ marginal costs are affine.

As mentioned in the Section IIntroduction, the methods of
this paper can be extended to also yield efficiency loss bounds

for a number of related economic environments of interest; we
note two such environments here. When a monopolist with
general convex cost function faces a concave market demand
curve, the “deadweight loss” due to monopoly pricing can be
guaranteed to be no worse than 1/3. In addition, when multiple
oligopolists with general convex cost functions face an affine
market demand curve, the same bound 1/3 on efficiency loss
holds. These results are the first published nontrivial constant
factor bounds on efficiency loss for Cournot competition; for
further details, see [21].

The results of this paper suggest that the dual goals of scalable
network mechanism design and robustness to selfish users can
indeed be achieved, at least under some specific assumptions on
the cost structure of the links. An interesting further direction,
therefore, concerns the design of a network resource allocation
mechanism that is scalable, and provides efficiency loss bounds
regardless of the structure of the cost functions.
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