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Abstract

We consider a network game where the nodes of the network wish to form a graph to route traffic between
themselves. We present a model where costs are incurred for routing traffic, as well as for a lack of network
connectivity. We focus on directed links and the link stability equilibrium concept, and characterize con-
nected link stable equilibria. The structure of connected link stable networks is analyzed for several special
cases.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Network formation models describe the interaction between a collection of nodes that wish
to form a graph. Such models have been introduced and studied in the economics literature; for
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a recent review, see Jackson (2004), who makes a distinction between two categories of forma-
tion models. In the first category, the network is formed by a distributed system, but controlled
by a single actor with a single objective; in the second category, which is the one considered
in this paper, each of the nodes in the network is a different player, and a network is formed
through interaction between the players. We are interested in understanding and characterizing
the networks that result when individuals interact to choose their connections. In particular, we
will focus on the role of bargaining, negotiation, and contracts between the players.

The structure and characteristics of networks where each player selfishly optimizes its own
utility were first studied in Aumann and Myerson (1988). That paper considers an extensive
form game where links are sequentially formed, and the formation of a link requires the consent
of both endpoints of the link. By contrast, Myerson (1991) develops a simultaneous move game,
where all players simultaneously announce the set of players to whom they wish to be linked,
and a link is formed between two players if both parties desire the link.

More recently, several network formation games have been introduced as models of vari-
ous competitive situations, including social networks and markets. Social networks are captured
by the connections model (Jackson and Wolinsky, 1996) and the spatial connections model
(Johnson and Gilles, 1999). In these models the maintenance of a link induces a cost on the
endpoints of the link; furthermore, the players receive a positive utility from the direct and
indirect connections to other players (with decreasing utility as the connection becomes increas-
ingly indirect). Other contexts for network formation games include market models, such as
free-trade networks (Furusawa and Konishi, 2002), market sharing agreements (Belleflamme
and Bloch, 2002), and buyer-seller networks (see Jackson, 2004; Kranton and Minehart, 2000;
Slikker and van den Nouweland, 2001b, and references therein). Most of this work assumes that
the links are bidirectional and that the link serves the two nodes equally; exceptions include
buyer-seller networks (Kranton and Minehart, 2000) and networks in labor markets (Jackson and
Calvó-Armengol, 2004). In this paper, we consider a fundamentally different model where the
links are directed. Specifically, a link from node i to node j indicates that node i can use node j

(e.g., goods can be sent from i to j ), but not necessarily vice versa. We note that formation games
of directed networks were considered in Bala and Goyal (2000). But as we describe below, the
motivation and the cost structure of their work is quite different from this paper.

The model we develop is motivated by multi-player environments where bilateral negotiation
may result in a contractual agreement between two nodes to form a directed link. This link will
be used for flow of goods from the upstream node to the downstream node. The upstream node
benefits from the improved connectivity; however, the downstream node suffers a cost due to the
additional flow sent through it. This tradeoff is resolved by a contract where the upstream node
compensates the downstream node. We note that contractual formation mechanisms have been
considered previously (see, e.g., Currarini and Morelli, 2000; Slikker and van den Nouweland,
2001a); however, because contracts in our model are motivated by the need to ensure delivery
of goods, we must not only specify the formation of a network, but also a routing of flow on
that network. This constitutes a significant departure in the current paper from previous work on
network formation.

Our work is related to Bala and Goyal (2000) who consider formation games with both di-
rected links and with undirected links. As in our model, the cost of the link is incurred only to the
node initiating the link, which leads to a noncooperative game. There are, however, two major
differences between the model of Bala and Goyal (2000) and the model we study. First, in our
model a node pays other nodes for establishing a link, thus the nodes bargain to create a link.
In Bala and Goyal (2000) money is not transferred between nodes, but rather every link has its
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own predefined price. Second, we assume that there is some underlying traffic of goods on the
network, and that each node incurs a cost proportional to the flow of goods through it. Thus,
in our model each node is trying to reduce the amount of incoming traffic, or at least require
compensation from other nodes for the traffic they send through it. There is no underlying traffic
mechanism in Bala and Goyal (2000); rather, a node incurs a direct cost for having incoming
links. The two models share the idea of forming connected graphs and incurring loss for being
disconnected.

The model considered in this paper can be motivated from various contexts. As an example,
consider a “privatized mail distribution” network, as it might arise from the deregulation of postal
and delivery services (Sherman, 1991; Cohen, 2000). In such a network, there are several nodes,
representing mail office branches; for every node, a link to another node indicates that mail can
reach the other node directly. There is a natural requirement that mail should be able to reach
any destination, possibly indirectly; this is the “universal service obligation” for postal services
(Rawnsley and Lazar, 1999). There is a cost associated with each node, which represents the
storage and labor costs of handling the traffic. This setting leads naturally to a network formation
model with directed links, where a link from i to j represents a contractual obligation by branch j

to deliver or forward any mail sent from i to j .
As another example, consider an information services network (e.g., a distributed storage

system or a replication management network), where each node represents a separate facility,
containing data storage (i.e., disks) and communications hardware. To ensure business continu-
ity or for purposes of remote backup, each node (facility) wishes to replicate its data at other
nodes; see Sidell et al. (1996) and Cox et al. (2002) for some examples. The contractual agree-
ments between the nodes are to carry information, and deliver data to the intended nodes (Geels
and Kubiatowicz, 2002; Fuqua et al., 2003). In many cases, e.g., for data migration or asyn-
chronous data replication, the number of hops (i.e., the number of nodes traversed from origin
to destination) is of lesser importance, and the primary requirement is that data can reach their
destination. There is a cost associated with each node, which represents data storage and com-
munications costs. As before, a model with directed links is natural, where each link represents
a directional flow of traffic, and a contractual obligation that the downstream node will carry the
traffic coming from an upstream node.

A last, particularly compelling example of a goods delivery network with a universal service
obligation is found in the Internet and other communications networks, with nodes representing
different providers. Here transit contracts are common (Norton, 2000; Gao and Rexford, 2001);
such contracts commit a provider to deliver or forward incoming traffic from another provider or
customer. The models of this paper can be applied to understand the transit contract formation
process.

Overview of the paper

We consider a model where multiple players (nodes) interact to form a graph with directed
links. Each node wishes to send a given amount of traffic to some of the other nodes, and only
cares whether the traffic eventually arrives at the destination. Furthermore, there is a handling
cost at each node, which is proportional to the amount of traffic through that node. In this model,
every node prefers to be connected to all other nodes, but also prefers that nobody is connected to
it; in some sense, each player prefers to be a leaf in the graph. However, since not all players can
be leaves in a connected graph, there exists an inherent tradeoff between the connectivity cost
and the traffic cost to a node. This leads us to consider the following bargaining process. Each
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node i submits to every other node j a separate bid indicating the amount i is willing to pay in
order to form a link from i to j . Simultaneously, each node j declares the amount it is willing
to accept for each link that terminates at j . A link (i, j) is formed if the amount j is willing to
accept is no larger than the bid by node i.

Our game is specified by three parameters: a traffic matrix B , a vector of connectivity costs α,
and a routing mechanism. The entry bij in the traffic matrix represents the amount of flow node i

wishes to send to node j . The connectivity cost αi represents the cost per unit of traffic that
node i fails to send to nodes it cannot reach. (We note that the connectivity cost may be different
for different nodes, to help model heterogeneity among agents.) Finally, the routing mechanism
specifies the flow sent through each vertex, given the graph structure. To streamline the pre-
sentation of the results, we will assume shortest path routing. However, the results of the paper
continue to hold for other routing schemes that satisfy certain natural conditions; see Johari et al.
(2004) for details.

We define the game of interest in Section 2, by formally completing the description above,
and by introducing some assumptions on the way that traffic is routed once a graph is formed.
Our main assumption is that if we add a link between two nodes, the flow through either node
cannot decrease. We further show that shortest path routing (either with a fixed tie-breaking rule,
or with equal splitting between paths of equal length) satisfies this assumption.

In Section 3, we introduce a suitable equilibrium concept. In contrast to the equilibrium
concepts of Aumann and Myerson (1988) and Myerson (1991), we use the notion of pairwise
stability with side payments suggested by Jackson and Wolinsky (1996). A graph of undirected
links and “payments” is pairwise stable if the following two conditions hold:

(1) If there is a link between i and j , neither i nor j will be better off by breaking the link.
(2) If there is no link between i and j , there is no possible payment under which the link is

formed, and both i and j become better off.

We adopt the same stability concept, but modify it to apply to our contract-based directed graph
formation game; we call the resulting equilibrium concept link stability, and say that a graph G

is link stabilizable if there exists a link stable strategy vector such that G is formed.
Our main interest is in graphs where each node i can reach all desired destinations, i.e.,

nodes j for which bij > 0; we refer to such graphs as B-connected graphs. In Section 3, we
provide an explicit characterization of the set of link stable strategies which lead to B-connected
graphs. We also prove that the graphs which are formed are “minimal,” in the sense that no link
can be removed without losing B-connectivity.

The special case where each node wants to send exactly one unit of goods to each other node
is discussed in Section 4. We study in some detail the possible connected link stabilizable graphs.
We show that if the cost of being disconnected is sufficiently large, then every link stabilizable
graph is connected. On the other hand, if the cost of being disconnected is below a threshold, then
every link stabilizable graph is not connected. Moreover, at this threshold, the only connected link
stabilizable graph is a directed cycle. We also consider social welfare for this special case. We
define “social cost” as the sum of the costs incurred by nodes (both for routing traffic, and for
a lack of connectivity). We show that the connected link stabilizable graph with lowest social
cost is the bidirectional star (i.e., a graph with a central hub, where all other nodes have links to
and from this hub). We also show that the directed cycle has the highest social cost among all
connected link stabilizable graphs. Furthermore, we show that the ratio of the social cost of the



R. Johari et al. / Games and Economic Behavior 56 (2006) 201–224 205

directed cycle to the social cost of the bidirectional star grows linearly in the number of nodes,
and thus may become arbitrarily large. We conclude in Section 5.

2. The game

We are given a finite set of nodes V , each of whom wishes to route a given amount of traffic
between themselves; in particular, we assume that each node i has bij ! 0 units of flow to send to
each node j "= i. We define bii = 0 for all i and denote the matrix of flows by B = (bij , i, j ∈ V ).
The nodes play a game to form a directed graph on which traffic will be routed. The strategy of
node i is a vector (pij , qji, j "= i). The entry pij ! 0 represents a bid from node i to node j ,
to form the link (i, j). The entry qji > 0 represents the minimum acceptance value, i.e., the
minimum amount of payment node i is willing to accept from j to form the link (j, i). Note that
qji must be strictly positive.

Given the strategies of all the nodes, denoted by the vector s = (pij , qji, i, j ∈ V, j "= i),
a directed graph G(s) = (V ,A(s)) is formed, where:

A(s) =
{
(i, j): i "= j, pij ! qij

}
. (1)

Thus, the link (i, j) is formed if the bid pij is larger than or equal to the acceptance value qij ;
since qij > 0, this implies that a link can only be formed if the bid pij is strictly positive. The
graph G(s) is then used to route traffic between the nodes.

Given a set of links A, we will assume that the traffic routing results in a vector (fi(A), i ∈ V ),
where fi(A) is the amount of flow passing through or terminating at node i; as we will discuss
below, we define fi(A) by assuming shortest path routing—see Section 2.1. To capture graph
connectivity, we define wi(A) ⊂ V to be the set of nodes j "= i which are unreachable from
node i, given the set of links A.

When a set of links A is used to route traffic, we will assume that node i incurs a cost ci ! 0 for
each unit of traffic which either passes through or terminates at i. In addition, if destination j is
unreachable from node i, we will assume that node i incurs a cost proportional to the traffic bij

that i wishes to send j ; we denote the constant of proportionality by αi > 0. Thus, given the
graph G = (V ,A), the total cost to node i is

Ci(A) = cifi(A) + αi

∑

j∈wi(A)

bij . (2)

Notice that as αi increases, node i has an increasing incentive to insure connectivity to other
nodes.

The following example illustrates the calculation of Ci(A).

Example 1. In Fig. 1(a), we have three nodes (V = {1,2,3}) connected with a directed cycle, so
A = {(1,2), (2,3), (3,1)}. Suppose that each node has one unit of traffic to send to each other
node, and that the connectivity costs are all equal to α: αi = α, i = 1,2,3. In this case, wi(A) = ∅
for all i, and the cost experienced by each node is Ci(A) = 2ci .

In Fig. 1(b), we have a new set of links A′ = {(1,2), (2,3)}. Since link (3,1) has been re-
moved, we now have reduced the flow traveling through the network; no node sends any traffic
to node 1, and node 3 no longer sends any traffic to other nodes. Further, w2(A

′) = {1}, and
w3(A

′) = {1,2}. This leads to the following costs:
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(a) (b)

Fig. 1. Cost structure; see Eq. (2).

C1(A
′) = 0,

C2(A
′) = c2 + αb21 = c2 + α,

C3(A
′) = 2c3 + αb31 + αb32 = 2c3 + 2α.

Given the composite strategy vector s, the payoff to node i is determined entirely by the
revenues received from other nodes, the payments made to other nodes, and the cost Ci . The
payoff to node i is thus:

Ri(s) =
∑

j :(j,i)∈A(s)

pji −
∑

j :(i,j)∈A(s)

pij − Ci

(
A(s)

)
. (3)

Notice that only the bids pij appear in the payoff function; the acceptance values qij appear
indirectly, as they determine whether or not a link (i, j) is formed. This leads to the following
remark.

Remark 2. If s and s′ are two strategy vectors such that A(s) = A(s′) = A, and pij = p′
ij for all

(i, j) ∈ A, then Ri(s) = Ri(s
′).

To complete the specification of the model, in the next section we describe a shortest path
routing mechanism that characterizes the flow functions (fi(A), i ∈ V ).

2.1. Routing

Recall that (fi(A), i ∈ V ) is the amount of traffic entering node i through the various links
that end at i. We will assume that given a graph G = (V ,A), traffic is routed using shortest path
routing; in particular, we will assume that there exists a total ordering over all paths, such that
shorter paths are preferred to longer paths. This routing then determines the functions fi(A). We
will find that although we make the assumption of shortest path routing, the results we develop
depend only on a critical property we refer to as flow monotonicity; the results can thus be gen-
eralized to any routing mechanism which satisfies flow monotonicity. See Johari et al. (2004) for
more details.

We start with a definition and some notation.
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Definition 3. A path from i to j is a set of links P = {(i, i1), (i1, i2), . . . , (im−2, im−1), (im−1, j)}
such that iu "= iv if u "= v, and iu "= i, j for all u.

We denote a path {(i, i1), . . . , (im−1, j)} by P = ii1i2 · · · im−1j . By an abuse of notation, if
P consists of only the link (i, j) we will write P = (i, j). We will write |P | = m to denote the
fact that P contains m links. In addition, for k ∈ V , we will write k ∈ P if there exists a link
(i, k) ∈ P , or a link (k, j) ∈ P .

We use the notation PA(i, j) to denote the set of all paths from i to j using the set of links A.
We say that a graph (V ,A) is strongly connected if for every i and j there exists a path from i

to j using links in A—i.e., if PA(i, j) "= ∅ for every i, j . We also let E denote the set of all
possible links: E = {(i, j): i "= j}. We then define P(i, j) " PE(i, j), representing all the paths
from i to j in the complete graph on the node set V .

Since there may be multiple possible paths between a pair of nodes i and j , we have to specify
a mechanism for choosing one of the paths. We assume that there exists a total ordering on paths,
which uniquely chooses a shortest path from i to j , given a particular set of links A.

Definition 4. A total ordering on paths ≺ satisfies the following two properties:

(1) For each pair of distinct nodes i, j ∈ V , ≺ is a total ordering on P(i, j).
(2) For P,P ′ ∈ P(i, j), if |P | < |P ′|, then P ′ ≺ P .

We say P is ranked higher than P ′ if P ′ ≺ P .

The first condition says that ≺ compares all paths between i and j ; and the second condi-
tion says that shorter paths are always ranked higher than longer paths, coinciding with shortest
path routing. Given the set of links A, since the set of paths PA(i, j) is finite, there exists a
unique highest ranked path, which we denote PA(i, j); if there are no paths from i to j (i.e., if
PA(i, j) = ∅), then we set PA(i, j) = ∅ as well. We then assume that on the graph (V ,A), all
traffic originating at i destined for j flows along PA(i, j). Thus we have the following definition
for fi(A):

fi(A) =
∑

j :j "=i

∑

k

bjk1{i∈PA(j,k)}. (4)

Note that with these definitions, flow is only routed between vertices which are connected. That
is, if PA(j, k) = ∅, then j cannot reach k, and thus the flow bjk does not contribute to fi(A) for
any i.

We also note that while the absolute information requirements of a total ordering over paths
are possibly quite high—a complete specification of the ordering is exponential in the number
of nodes—there are simple rules which give rise to a total ordering. For example, if the nodes
are numbered 1, . . . , n, a reasonable method of breaking ties between shortest paths is to make a
choice according to a lexicographic ordering based on node number. Such a tie breaking scheme
is succinctly specified, and also gives rise to a total ordering in the precise sense described here.

Many of our proofs depend on the following critical property of the flow functions fi(A).

Proposition 5. Suppose that (fi(A), i ∈ V ) is defined according to (4). Then given the set of
links A, the following inequalities hold for all pairs (i, j), i "= j :
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fi

(
A ∪

{
(i, j)

})
! fi(A), (5)

fj

(
A ∪

{
(i, j)

})
! fj (A). (6)

Proof. Fix a set of links A, and a link (i, j). If (i, j) ∈ A, then (5)–(6) are satisfied trivially; so
suppose that (i, j) /∈ A, and let A′ = A ∪ {(i, j)}. Consider any pair (k,") such that i ∈ PA(k,").
We know that PA(k,") ⊆ PA′(k,"), and every path in PA′(k,") \ PA(k,") passes through i. It
follows that the highest ranked path PA′(k,") must traverse i as well. As a result, any pair (k,")

sending traffic through i in (V ,A) also sends traffic through i in (V ,A′). This shows that (5)
holds. The proof that (6) holds is identical. !

According to the preceding proposition, when a link (i, j) is added to the graph, the total flow
through both i and j cannot decrease. This is a natural result: one would expect that adding a
link does not decrease the total flow entering the endpoints of that link. We will find that this
proposition plays a key role in developing the results of this paper; indeed, our results depend
on the routing mechanism only through the conditions (5)–(6). Thus, the results of this paper
continue to hold for any routing mechanism for which the result of Proposition 5 holds. For
example, it is possible to verify that a routing mechanism which splits flow equally among all
available shortest paths also satisfies (5)–(6) (Johari et al., 2004).

3. Link stable equilibria

For the following discussion, recall that E is the set of all possible links: E = {(i, j): i "= j}.
For A ⊆ E, we will use the notation sA to denote bids and acceptance values of the strategy
vector s restricted to the set of links A; i.e.,

sA =
(
pij , qij , (i, j) ∈ A

)
. (7)

Notice that we have included both bids and acceptance values for all links in A; this means that
components of the strategies of all endpoints of links in A are included in sA. By an abuse of
notation, for (i, j) ∈ E, we will write s(i,j) = s{(i,j)} = (pij , qij ). Thus s = (s(i,j), sE\{(i,j)}).

We have the following definition, which describes the equilibrium concept to be studied in the
rest of the paper.

Definition 6. A strategy vector s is link stable if for every possible link (i, j) ∈ E, the following
conditions hold:

(1) For any s′
(i,j) = (p′

ij , qij ):

Ri

(
s′
(i,j), sE\{(i,j)}

)
# Ri(s). (8)

(2) For any s′
(i,j) = (pij , q

′
ij ):

Rj

(
s′
(i,j), sE\{(i,j)}

)
# Rj (s). (9)

(3) For any s′
(i,j) = (p′

ij , q
′
ij ), at least one of the following holds:

Ri

(
s′
(i,j), sE\{(i,j)}

)
# Ri(s), (10)

Rj

(
s′
(i,j), sE\{(i,j)}

)
# Rj (s). (11)
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We will also refer to such a strategy vector s as a link stable equilibrium.
The conditions in the preceding definition are meant to reflect the different possibilities for

deviations between i and j . The condition (8) requires that i has no incentive to unilaterally
change the bid pij , while (9) requires that j has no incentive to unilaterally change the acceptance
value qij . The first two conditions are thus individual rationality conditions, as defined by Mas-
Colell et al. (1995) and Jackson and Wolinsky (1996). The two conditions (10)–(11) require that
no bilateral deviation exists where i and j simultaneously change both the bid and acceptance
value for the link (i, j), and at least one of i or j improves its payoff.

We make the following useful remark regarding link stable equilibria.

Remark 7. At a link stable equilibrium we must have pij = qij > 0 whenever (i, j) ∈ A(s),
since otherwise node i could profitably deviate by reducing the bid pij . Of course, by definition
0 # pij < qij if (i, j) /∈ A(s); recall that we had assumed that qij > 0 for all (i, j).

Notice that given a strategy vector s and the graph G(s), breaking a link requires only unilat-
eral deviation (either i reduces pij or j increases qij ). The following proposition summarizes this
point formally: in checking whether a strategy vector s is link stable, Condition 3 of Definition 6
need not be checked for (i, j) ∈ A(s).

Proposition 8. Given a strategy vector s, suppose that:

(1) Conditions 1 and 2 of Definition 6 hold for every (i, j); and
(2) Condition 3 of Definition 6 holds for every (i, j) /∈ A(s).

Then s is link stable.

Proof. Fix a link (i, j) ∈ A(s). Since both (8) and (9) hold, we must have pij = qij > 0 (from
Remark 7). Fix s′

(i,j) = (p′
ij , q

′
ij ), and let s′ = (s′

(i,j), sE\{(i,j)}). We check that not both (10) and
(11) are violated, i.e., that i and j do not both improve their payoff at s′.

Suppose that both (10) and (11) are violated for some link (i, j). If (i, j) ∈ A(s′), then
Ri(s

′) + Rj (s
′) = Ri(s) + Rj (s); so nodes i and j cannot both improve their payoff under s′.

Thus we must have (i, j) /∈ A(s′). But if breaking the link (i, j) improves the payoff to node i

(so that (10) is violated), then node i can achieve this outcome by a unilateral deviation as well,
by choosing p′

ij < qij ; this violates (8). A similar analysis follows for node j ; so we conclude
that since (8)–(9) have been assumed to hold, that Condition 3 of Definition 6 must hold as well.
Thus s is link stable. !

Intuitively, under link stability, if (i, j) ∈ A(s), then node i does not wish to decrease pij and
node j does not wish to increase qij . Conversely, if (i, j) /∈ A(s), then both nodes could not be
made better off by forming the link (at some bid/acceptance value combination). This situation
is closely related to the definition of pairwise stability with side payments made by Jackson and
Wolinsky (1996): unilateral deviations which break links, and bilateral deviations which form
links, should not be profitable.

We are interested in characterizing graphs which can possibly be formed as link stable equi-
libria, captured by the following definition.
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Definition 9. A graph G is link stabilizable if there exists a link stable strategy vector s such that
G(s) = G.

In Section 3.1, we characterize link stabilizable graphs that satisfy an additional connected-
ness property with respect to the traffic matrix B , and we show the set of link stable strategy
vectors leading to a given graph form a “box” in the strategy space. We specify the boundaries of
this box explicitly in terms of the given graph, the traffic matrix B , the connectivity cost vector α,
and the routing mechanism.

3.1. Connected link stabilizable graphs

We first need to characterize a particular class of graphs, captured by the following two defi-
nitions.

Definition 10. Given a matrix B , a directed graph G = (V ,A) is B-connected if PA(i, j) "= ∅
for all i, j ∈ V such that bij > 0.

The preceding definition captures the idea that if bij > 0 then i wishes to have a path available
leading to j . A graph which is B-connected ensures that no node suffers a connectivity cost,
given by the second term in (2).

In general, a B-connected path may contain redundant links. Instead, we will show that link
stability is closely tied to minimal B-connected graphs, defined as follows.

Definition 11. Given a matrix B , a directed graph G = (V ,A) is minimally B-connected if the
following two conditions hold:

(1) G is B-connected.
(2) For each (i, j) ∈ A, the graph (V ,A \ {(i, j)}) is not B-connected.

Thus, in a minimal B-connected graph, removal of any link destroys B-connectivity. Intu-
itively, given the form of the cost in (2), together with the result of Proposition 5 (monotonic-
ity), nodes have no incentive to form additional links once a graph has become B-connected.
In light of this insight, we start by relating B-connected link stabilizable graphs to minimally
B-connected graphs.

Proposition 12. If G = (V ,A) is B-connected and link stabilizable, then G is minimally
B-connected.

Proof. Suppose that s is link stable and G(s) = (V ,A(s)) = G, but that there exists a link
(i, j) ∈ A(s) which can be removed from G(s) while leaving the graph B-connected. We must
have qij = pij > 0, since s is link stable. Consider any unilateral deviation by node i which
breaks link (i, j). This does not increase the flow passing through node i (by Proposition 5), and
strictly reduces the total payment made by node i. Thus the payoff to node i strictly increases
with this deviation, and hence s could not have been link stable; so, if s is link stable, G(s) must
be minimally B-connected. !
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The key result of this section is Theorem 13, which characterizes the set of link stable strategy
vectors that result in a given B-connected graph. In the discussion to follow, given a graph
G = (V ,A), we denote the set of strategies under which A is stable by S(A), that is:

S(A) =
{
s: s is link stable and A(s) = A

}
.

We will investigate two main issues regarding the set S(A). First, we will determine when the set
S(A) is nonempty; this will yield conditions under which link stable equilibria exist. In addition,
we will determine the exact shape of the set S(A). In particular, we will show that S(A) can be
represented as a “box” in the strategy space, effectively decoupling components of the strategy
vector across the links (i, j). Formally, in the next theorem, we show that given a B-connected
graph G = (V ,A), we may calculate the boundaries of the link stable set S(A). Furthermore,
if the inequalities defining this set have empty intersection, then we will conclude that no link
stable vector exists.

Given a set of links A, we will need the following operators, defined for each i ∈ V and
(j, k) ∈ E:

F−
i

(
A, (j, k)

)
= fi(A) − fi

(
A \

{
(j, k)

})
,

F+
i

(
A, (j, k)

)
= fi

(
A ∪

{
(j, k)

})
− fi(A),

W−
i

(
A, (j, k)

)
= αi

∑

j∈wi(A\{(j,k)})
bij − αi

∑

j∈wi(A)

bij .

Thus the operators F−
i and F+

i give the change in flow through node i when a link (j, k) is
removed or added, respectively; and W−

i gives the change in the connectivity cost when link
(j, k) is removed from A. Note that W−

i is nonnegative; by Proposition 5, if i = j or i = k, then
F−

i (A, (j, k)) and F+
i (A, (j, k)) are nonnegative as well.

We now make the following definitions:

mij (A) =
{

F−
j (A, (i, j))cj , (i, j) ∈ A,

0, (i, j) /∈ A,
(12)

Mij (A) =
{

W−
i (A, (i, j)) − F−

i (A, (i, j))ci , (i, j) ∈ A,

F+
j (A, (i, j))cj , (i, j) /∈ A.

(13)

The following theorem shows that mij (A) and Mij (A) exactly characterize S(A); thus, given
a set of links A we can explicitly compute S(A).

Theorem 13. Suppose G = (V ,A) is B-connected. Then, s ∈ S(A) if and only if the following
conditions hold:

mij (A) # pij # Mij (A), for all (i, j), (14)

0 < qij = pij , (i, j) ∈ A, (15)

0 # pij < qij , (i, j) /∈ A. (16)

Furthermore, the following are equivalent:

(1) G is link stabilizable (i.e., S(A) is nonempty);
(2) mij (A) # Mij (A) for all (i, j);
(3) G is minimally B-connected and mij (A) # Mij (A) for all (i, j) ∈ A;
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(4) G is minimally B-connected and for all (i, j) ∈ A:

F−
i

(
A, (i, j)

)
ci + F−

j

(
A, (i, j)

)
cj # W−

i

(
A, (i, j)

)
. (17)

Proof. Let s be a strategy vector such that (15)–(16) hold; then of course A(s) = A. We will
characterize the conditions that are necessary and sufficient for (8)–(11) to hold.

Step 1: For (i, j) ∈ A, (8) holds if and only if pij # Mij (A). We need only consider unilateral
deviations where node i breaks link (i, j), as these are the only deviations which can be profitable
for node i (since pij = qij ). Breaking the link (i, j) causes a reduction of pij in the payment
by i, and a reduction of flow into i by F−

i (A, (i, j)); but i’s connectivity cost increases by
W−

i (A, (i, j)). Thus, (8) holds if and only if:

pij + F−
i

(
A, (i, j)

)
ci # W−

i

(
A, (i, j)

)
.

This is precisely the condition that pij # Mij (A).
Step 2: For (i, j) ∈ A, (9) holds if and only if mij (A) # pij . Again, we need only consider

unilateral deviations where node j breaks link (i, j), since these are the only deviations which
can be profitable for node j . Breaking the link (i, j) causes a reduction of pij in the revenue
of j , and a reduction of flow into j of F−

j (A, (i, j)). Thus (9) holds if and only if:

F−
j

(
A, (i, j)

)
cj # pij .

This is precisely the condition mij (A) # pij .
Step 3: For (i, j) /∈ A, (8) and (10) hold. Since G is B-connected, if the link (i, j) is formed,

then the cost to node i does not decrease (since the connectivity cost is zero, and by Proposition 5,
the flow through node i does not decrease). On the other hand, if the link (i, j) is formed then
the payment made by node i strictly increases; thus the payoff to node i can only decrease if link
(i, j) is formed. Since this is the only deviation with respect to the link (i, j) which changes the
payoff of node i, (8) and (10) must hold.

Step 4: For (i, j) /∈ A, (9) holds if and only if pij # Mij (A). We need only consider the
unilateral deviation by node j which forms the link (i, j). This leads to an increase of pij in
the revenue to node j , and an increase of F+

j (A, (i, j)) to the flow into j . Thus (9) holds if and
only if:

pij # F+
j

(
A, (i, j)

)
cj .

This is precisely the condition pij # Mij (A).
Step 5: A strategy vector s with A(s) = A is link stable if and only if the conditions (14)–(16)

hold. By Steps 1–4 and Proposition 8, we have shown that if s satisfies (14) in addition to
(15)–(16), then s ∈ S(A). Conversely, if s ∈ S(A), then by Remark 7 we know that (15)–(16)
hold. Thus from Steps 1–4, together with the fact that mij (A) = 0 for (i, j) /∈ A, we conclude
that (14) holds.

Step 6: Conditions 1–4 are equivalent. We have already shown that S(A) is nonempty, and
G is link stabilizable, if and only if mij (A) # Mij (A) for all (i, j). Thus Condition 1 and Con-
dition 2 are equivalent. Condition 3 and Condition 4 are equivalent by definition of mij (A) and
Mij (A). Furthermore, Condition 1 implies Condition 3, by Proposition 12 and Condition 2. For
the reverse implication, we only need to check that if G is B-connected, then mij (A) # Mij (A),
for all (i, j) /∈ A. Indeed, if (i, j) /∈ A, then mij (A) = 0, and Mij (A) = F+

j (A, (i, j))cj ! 0 by
Proposition 5. !



R. Johari et al. / Games and Economic Behavior 56 (2006) 201–224 213

Remark 14. The proof of the preceding theorem provides an interpretation of the functions
mij (A) and Mij (A) when G = (V ,A) is B-connected. For (i, j) ∈ A, mij (A) is the minimum
amount that node j is willing to accept for the link (i, j); and Mij (A) is the maximum amount
that node i is willing to pay for link (i, j). For (i, j) /∈ A, mij (A) is the maximum amount node
i is willing to pay for link (i, j), i.e., mij (A) = 0; and Mij (A) is the minimum amount node j is
willing to accept for link (i, j).

The previous theorem shows that link stable payments pij lie in a “box” determined by the
functions mij and Mij , which depend only on the graph. Of course, from Proposition 12, the set
S(A) is empty if G is B-connected but not minimally B-connected.

We conclude by noting that two extreme points of the “box” defined by (14)–(16) are also
the equilibrium points of certain two-stage simultaneous games. In the first game, each node j

first sets the acceptance levels qij for i ∈ V ; then, after observing the set of all possible qij , each
node i chooses whether or not to bid pij = qij for j ∈ V . Informally, we expect that since nodes
choose acceptance levels first, the second stage payments will have to be as large as possible,
i.e., pij = Mij (A). In the second game, each node i will first set pij for j ∈ V ; then each node j

will decide whether or not to accept the bid pij for i ∈ V . Informally, we expect that in such a
game the payment for each link (i, j) ∈ A will be as small as possible, i.e., pij = mij (A). For
formal statements of these results, see Johari et al. (2004).

4. Models with uniform all-to-all traffic

In this section, we study the structure of the graphs that might result when each node wishes to
be connected to all other nodes. Such a situation may arise when all entries of the traffic matrix B
are very large (in particular, if the product of αi and Bij is much larger than the product of ci

and fi for every i, j ), so that nodes care most about being connected to all other nodes; if we
view the nodes as nodes of a goods delivery network, then the model of this section applies when
the paramount goal of the nodes is to ensure that goods can be delivered from any origin to
any destination. By considering the tradeoff to each node between the connectivity cost and the
cost of transit traffic, we are able to investigate which graphs emerge as strongly connected link
stabilizable graphs. We note that a model of free trade networks where all nodes are symmetric
has been studied by Furusawa and Konishi (2002).

In this section we focus on uniform all-to-all traffic, i.e., we assume that bij = 1 for all i "= j ;
we also assume that αi = α for all i, for some positive constant α (which we interpret as the
cost to each node per disconnected destination). We assume that ci = c for all i. Finally, we
assume throughout that V = {1, . . . , n}, so that in particular |V | = n. Note that in this setting,
since bij = 1, the flow functions fi take a particularly simple form: given a set of links A, fi(A)

is simply the number of shortest paths which contain node i.
As in earlier parts of the paper, we will be interested in graphs which are minimally

B-connected. Directed graphs which are minimally B-connected, when the traffic matrix B is
defined as in the previous paragraph, are called minimal strongly connected directed graphs,
or MSDs (Harary, 1968; Cunningham, 1982; Grotschel, 1979); for completeness, we include a
formal definition.
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Definition 15. A directed graph G = (V ,A) is a minimal strongly connected directed graph
(MSD) if the following two conditions hold:

(1) G is strongly connected (i.e., PA(i, j) "= ∅ for all i, j ).
(2) For each (i, j) ∈ A, the graph (V ,A \ {(i, j)}) is not strongly connected (i.e., there exist k,"

such that PA\{(i,j)}(k,") = ∅).

We expect that for strongly connected link stable equilibria to result, the ratio α/c must be
sufficiently large; that is, the cost of being disconnected must be sufficiently large relative to the
cost of carrying additional traffic. To formally explore this relationship, we start with two ex-
amples in Section 4.1, and then continue in Section 4.2 to characterize link stabilizable graphs
for different values of the ratio α/c. In each of these cases, given an MSD G, we will apply
Theorem 13 to find a necessary condition on α/c to guarantee that G is link stabilizable. In Ex-
ample 16 we consider a directed cycle. We prove in Theorem 19 that the directed cycle is the
first link stabilizable graph to emerge as the ratio α/c increases. An example where the traffic
is concentrated in bottleneck nodes is described in Example 17. In this example the ratio of α/c
required for strong connectivity scales in a quadratic manner with the number of nodes; as we
show later, in Theorem 21, this is the worst possible scaling rate.

In Section 4.3, we consider the “social welfare” of link stabilizable graphs. We define social
cost as the sum of costs incurred by all nodes; a socially optimal graph is then one which mini-
mizes this aggregate cost. We first show the trivial result that the complete graph on n nodes is
socially optimal within the set of strongly connected graphs. We then establish that a directed
cycle has the worst social cost among all strongly connected link stabilizable graphs, and that the
bidirectional star has the best social cost among all strongly connected link stabilizable graphs.
The ratio of social costs between the worst and best strongly connected link stabilizable graphs
is shown to increase linearly in n; thus as the number of nodes increases, the welfare loss of link
stabilizable graphs may become arbitrarily large.

4.1. Examples

We begin with two examples which highlight the importance of the ratio α/c in determining
the set of link stabilizable graphs. The key tool in evaluating whether or not a graph G = (V ,A)

is link stabilizable will be Condition 4 of Theorem 13; specifically, we will be checking whether
the relation (17) holds for each link (i, j) ∈ A. We repeat (17) here for easier reference:

F−
i

(
A, (i, j)

)
ci + F−

j

(
A, (i, j)

)
cj # W−

i

(
A, (i, j)

)
.

Example 16 (Directed cycle). Let the set of links be A = {(1,2), (2,3), . . . , (n − 1, n), (n,1)};
in this case we say the graph G = (V ,A) is a directed cycle. See Fig. 2 for the case n = 4.

The graph G = (V ,A) is clearly an MSD. By Theorem 13, and in particular (17), G will
be link stabilizable if F−

i (A, (i, i + 1))c + F−
i+1(A, (i, i + 1))c # W−

i (A, (i, i + 1)) for all i

(where the nodes are numbered modulo n). Since the graph is completely symmetric, it suffices
to consider i = 1. We first note that f1(A) = (n− 1)+ (n− 2)+ · · ·+ 1 = n(n−1)

2 ; that is, node 1
receives n − 1 units of traffic from node n, n − 2 units of traffic from node n − 1, and so on. If
the link (1,2) is cut, then clearly node 2 no longer receives any traffic, so that:

F−
2

(
A,

{
(1,2)

})
= n(n − 1)

2
.
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Fig. 2. A cycle on 4 nodes; see Example 16.

Fig. 3. A graph which requires α/c ! n2 − 5n + 10 for link stability; see Example 17.

Similarly, node 1 only receives the n−1 units of traffic destined for it from the other nodes; thus:

F−
1

(
A,

{
(1,2)

})
= n(n − 1)

2
− (n − 1) = (n − 1)(n − 2)

2
.

Finally, cutting the link (1,2) disconnects node 1 from all other nodes, so that W−
1 (A, (1,2)) =

(n−1)α. Thus (17) is satisfied if and only if n−1 # α/c. Since all links have the same behavior,
we have shown the directed cycle is link stabilizable if and only if α/c ! n − 1.

Example 17 (Concentrated traffic). The previous example required that α/c scale linearly in the
number of nodes n. In this example, we will demonstrate that there are structures for which α/c
must scale quadratically in n.

Consider the example of Fig. 3. The set of links is defined by:

A =
{
(1,2), (1,3), (2,4), (3,4)

}
∪

{
(4, i), (i,1): 5 # i # n

}
.
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The graph G = (V ,A) is then an MSD.
We will assume that the routing ≺ ranks routes passing through node 3 higher than routes

passing through node 4; thus, for example, when routing from node 1 to node 4, all traffic
flows over route 134 rather than 124. Consider the link (1,3), drawn with a dashed line in
Fig. 3. Removing this link disconnects node 1 from exactly one other node, namely node 3;
thus W−

1 (A, (1,3)) = α. Furthermore, it reduces the flow through node 1 by exactly n − 2 units,
since all other nodes stop sending to node 3, so F−

1 (A, (1,3)) = n − 2.
We now ask: how much is the flow through node 3 reduced when (1,3) is removed? There

are three types of flow which are no longer sent to node 3: (1) traffic destined for node 3, equal
to n − 1 units; (2) traffic destined for node 4, from all nodes other than 2 and 3, equal to n − 3
units; and (3) traffic destined for nodes 5,6, . . . , n, from nodes 1,5,6, . . . , n, equal to (n − 4)2

units. Thus the total reduction in flow through node 3 is F−
3 (A, (1,3)) = (n − 4)2 + 2n − 4 =

n2 − 6n + 12 units.
By (17), for G to be link stabilizable, we must have α/c ! n2 − 5n + 10; in other words, α/c

scales at least as fast as O(n2) as the number of nodes increases.

4.2. Strongly connected link stabilizable graphs

The examples of the previous section give different relationships between α and c, depending
on the structure of the graph. In this section, we characterize strongly connected link stabilizable
graphs, as a function of the ratio α/c.

Before continuing, we prove a simple bound on the number of links in an MSD. We will say
a link (i, j) in the graph G = (V ,A) is bidirectional if both (i, j) ∈ A and (j, i) ∈ A, so the
link is present in both directions between i and j . A bidirectional tree is then an MSD such
that every link is bidirectional. It is straightforward to verify that any bidirectional tree may be
constructed by first forming an undirected spanning tree on the set of nodes V , and then replacing
an undirected link joining i and j by two directed links, (i, j) and (j, i). Note that a bidirectional
tree has exactly 2(n − 1) links, and a directed cycle has exactly n links. We have the following
lemma.

Lemma 18. Suppose that G = (V ,A) is an MSD. Then:

n # |A| # 2(n − 1).

The lower bound is achieved if and only if G is a directed cycle, and the upper bound is achieved
if and only if G is any bidirectional tree.

Proof. Let G = (V ,A) be an MSD. Since G is strongly connected, every node has at least one
outgoing link; thus |A| ! n. We now show that the lower bound is achieved if and only if G is
a directed cycle. Suppose that |A| = n. Since G is strongly connected, every node has at least
one incoming link, and at least one outgoing link; since |A| = n, we conclude every node has
exactly one incoming link and one outgoing link. Thus G is a disjoint collection of cycles. Again
applying the fact that G is strongly connected, we conclude G is in fact a single directed cycle.

The remainder of the proof addresses the upper bound. Fix a node i, and consider two sets
of links T1 and T2. We define T1 ⊂ A as the set of links in a directed spanning tree connecting
from i to all other nodes in the graph; T1 contains exactly n − 1 links. Similarly, we let T2 ⊂ A

be the set of links in a directed spanning tree connecting to i from all other nodes in the graph;
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again, T2 contains exactly n− 1 links. Observe that the graph (V ,T1 ∪T2) is strongly connected.
Since we assumed that G was an MSD, we must in fact have T1 ∪T2 = A, so that |A| # 2(n−1).

We now show by induction that the upper bound is achieved if and only if G is a bidirectional
tree. Let G = (V ,A) be an MSD on n nodes. Then there exists at least one node i ∈ V with
exactly one incoming link (say (j, i)), and exactly one outgoing link (say (i, k), where possibly
j = k); see Berge (1973, Corollary 3.1) and Grotschel (1979). Let V ′ = V \ {i}, and define a set
of links A′ as follows:

A′ =
{

A \ {(j, i), (i, k)}, if (V ′,A \ {(j, i), (i, k)}) is strongly connected,

(A \ {(j, i), (i, k)}) ∪ {(j, k)}, otherwise.

Thus we remove the two links (j, i) and (i, k), and add the link (j, k) if necessary to maintain
connectivity. With this definition, the new graph G′ = (V ′,A′) is an MSD. In the first case in the
definition of A′, G′ is a subgraph of G and thus must be an MSD. In the second case, we have
replaced the path jik in A by the link (j, k) in A′; as a result, since G is strongly connected, G′

must be strongly connected. Furthermore, if removal of any link other than (j, i) or (i, k) from A
disconnects two nodes in G, then the same is true in G′. Finally, removing the link (j, k) from A′

leaves a graph which is not strongly connected; thus G′ must be an MSD in the second case as
well.

Now suppose that |A| = 2(|V | − 1) = 2(n − 1), so that the upper bound is met. Then again
since G′ is an MSD, we must have |A′| # 2(|V ′| − 1) = 2(n − 2) = |A| − 2. But this is only
possible if A′ = A \ {(j, i), (i, k)}, in which case |A′| = 2(n − 2). By the inductive hypothesis,
G′ is in fact a bidirectional tree. We distinguish two cases. If j = k, then G is formed by starting
with the bidirectional tree G′ and adding one “leaf”, in which case G is also a bidirectional
tree. If on the other hand j "= k, then consider the path from j to k in the bidirectional tree G′;
denote the last link on this path by (", k). We now define a new set of links Â = A \ {(", k)};
i.e., we remove the link (", k) from G. The graph (V , Â) remains strongly connected, because
from any node we can get to j (by traveling within the bidirectional tree G′), and then follow the
links (j, i), (i, k) to get to k. But this would contradict the assumption that G is an MSD. This
completes the induction and the proof of the lemma. !

The next theorem reveals that the directed cycle (cf. Example 16) is the first strongly con-
nected link stabilizable graph to emerge as α/c increases.

Theorem 19. A strongly connected link stabilizable graph exists if and only if α/c ! n − 1.
Furthermore, if α/c = n − 1, a strongly connected link stabilizable graph must be a directed
cycle.

Proof. We first show that if α/c < n − 1, no strongly connected link stabilizable graphs exist.
By Proposition 12, we may restrict our attention to MSDs. We will use the structure of MSDs to
show that a link stable strategy vector can exist only if α/c ! n − 1.

Suppose that we are given an MSD G = (V ,A). By the ear decomposition for MSDs
(Grotschel (1979); Berge, 1973, Corollary 3.1), there exists a strongly connected subgraph
(V ′,A′) of G, together with a, b ∈ V ′ with the property that A \ A′ consists of the links of
the path ai1i2 · · · ikb, where V \ V ′ = {i1, . . . , ik}. (Note that we may have a = b.) Here k ! 1,
and |V ′| = n− k ! 1. The path ai1i2 · · · ikb is an “ear,” whose addition to the strongly connected
subgraph (V ′,A′) produces the entire graph G; see Fig. 4. (Observe that since G is an MSD, the
graph (V ′,A′) is also an MSD.) We will focus on the link (a, i1), and show that stability for this
link requires at least α/c ! n − 1.
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Fig. 4. An ear decomposition of an MSD; see the proof of Theorem 19.

We note that there are two types of traffic across the link (a, i1): traffic terminating at id ,
for 1 # d # k; and traffic terminating at nodes in V ′. We now let Xai1 represent the traffic
terminating at nodes in V ′, which would no longer be sent to a if the link (a, i1) were removed
from G. Since Proposition 5 holds, we have Xai1 ! 0. Furthermore, Xai1 is exactly equal to the
traffic terminating at nodes in V ′, which is sent across the link (a, i1).

We now apply (17) from Theorem 13. If the link (a, i1) is cut, an amount of traffic equal
to Xai1 is no longer sent to a. The traffic from the other n − k − 1 nodes of V ′ to the k nodes
i1, . . . , ik is also no longer received by a. Finally, a no longer receives: 1 unit of traffic originating
at i2 and destined for i1; 2 units of traffic originating at i3, and destined for i1, i2; and so on, up
to the k − 1 units of traffic originating at ik , and destined for i1, . . . , ik−1. This is a total of
k(k − 1)/2 units of traffic. Thus we have:

F−
a

(
A, (a, i1)

)
=

(
Xai1 + (n − k − 1)k + k(k − 1)

2

)
c.

On the other hand, cutting the link (a, i1) disconnects a from exactly k nodes (since (V ′,A′) is
strongly connected). Thus we have:

W−
a

(
A, (a, i1)

)
= kα.

We now consider the amount of traffic no longer sent to i1 if the link (a, i1) is cut. We divide this
traffic into a portion which travels to V ′, and a portion which terminates at i1, . . . , ik . The first
term is exactly Xai1 ; and by the same reasoning as for node a, the second term is (n − k)k +
k(k − 1)/2. (The first term is now (n − k)k, because (a, i1) carries traffic from all nodes of V ′

destined for nodes in i1, . . . , ik .) Thus we have:

F−
i1

(
A, (a, i1)

)
=

(
Xai1 + (n − k)k + k(k − 1)

2

)
c.

As a result, upon dividing by k and c the relation (17) reduces to:
(

2Xai1

k
+ 2(n − k − 1) + k

)
# α/c.

Since |V ′| = n − k ! 1, we have k # n − 1. Since we also have Xai1 ! 0, the left hand side
must be at least n − 1, achieved with equality if and only if Xai1 = 0, and k = n − 1; it follows
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that the only MSD satisfying Xai1 = 0 and k = n − 1 is a directed cycle. We conclude that a link
stable strategy vector exists if and only if n− 1 # α/c; and if α/c = n− 1, every link stabilizable
MSD is a directed cycle. !

The following theorem shows that bidirectional trees are link stabilizable if and only if α/c !
2n − 3.

Theorem 20. Suppose that G is a bidirectional tree. Then G is link stabilizable if and only if
α/c ! 2n − 3.

Proof. Suppose that T = (V ,A) is a bidirectional tree, and fix two nodes i and j which are
connected by a bidirectional link in this tree. Suppose we remove the two links (i, j) ∈ A and
(j, i) ∈ A; then T decomposes into two connected components T1 = (V1,A1) and T2 = (V2,A2),
such that i ∈ V1 and j ∈ V2. Let |V1| = k, so that |V2| = n − k.

If the link (i, j) is broken, then i is disconnected from n − k nodes, so W−
i (A, (i, j)) =

(n − k)α. On the other hand, traffic from the k − 1 nodes in V1 \ {i} destined for V2 would no
longer be routed through i, resulting in a reduction in traffic through i of (k − 1)(n − k); thus
F−

i (A, (i, j)) = (k − 1)(n − k).
Now consider node j . If the link (i, j) is broken, the nodes in V1 will no longer send traffic

destined for V2 through node j , resulting in a traffic reduction of k(n − k); thus F−
j (A, (i, j)) =

k(n − k).
We conclude that (17) is satisfied if and only if:

2k − 1 # α/c.
A symmetric analysis follows for the link (j, i). In any bidirectional tree, the largest possible
value for k is n−1; so this requirement is met for all k if and only if α/c ! 2n−3, as desired. !

Finally, the following theorem shows that if α/c > 2n2 − 2n, then only MSDs are link sta-
bilizable; note the relationship to Example 17, where α/c ≈ n2 for link stability of a particular
MSD to emerge.

Theorem 21. If α/c > 2n2 − 2n, then G is link stabilizable if and only if G is an MSD.

Proof. Suppose that we are given a link stabilizable graph G = (V ,A). If G is strongly con-
nected, then we know it must be an MSD, by Proposition 12. Suppose, then, that G is not strongly
connected, and choose (i, j) such that PA(i, j) = ∅; in particular, (i, j) /∈ A.

Consider adding the link (i, j) to A. Since the total traffic in the network is n(n−1), the traffic
through nodes i and j can increase by no more than n(n − 1); however, adding the link (i, j)
connects i to j , and thus reduces the connectivity cost incurred by i by at least α > 2n(n − 1)c.
Thus node i would be willing to bid at least n(n − 1)c for the link (i, j), and node j would be
willing to accept at least n(n − 1)c as a payment for the link (i, j). We conclude that a profitable
deviation exists for the pair i and j , so G could not have been link stabilizable.

Conversely, suppose we are given an MSD G = (V ,A). To show G is link stabilizable, it
suffices to check that (17) holds for all (i, j) ∈ A, by Theorem 13; this follows by the same
reasoning as in the previous paragraph. We conclude, therefore, that G is link stabilizable. !

We summarize the relationship between α/c and link stabilizable graphs in Table 1; in particu-
lar, the dependence of α/c on n is the critical determinant of the space of link stabilizable graphs.
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Table 1
Link stabilizable MSDs for different values of α/c

Region Link stabilizable MSDs

α/c < n − 1 No link stabilizable MSDs

α/c = n − 1 Directed cycles are the only link stabilizable MSDs

n − 1 < α/c < 2n − 3 Not all link stabilizable graphs are MSDs;
none is a bidirectional tree

2n − 3 # α/c # 2n2 − O(n) Not all link stabilizable graphs are MSDs;
all bidirectional trees are link stabilizable

α/c > 2n2 − 2n All MSDs are link stabilizable;
no other link stabilizable graphs

Recall that a strongly connected link stabilizable graph must be an MSD. Further-
more, if an MSD is link stabilizable, it remains so for larger values of α/c. In the
fourth row of the table, the notation O(n) is taken to mean that O(n)/n is bounded
below by zero and above by a constant. We note more formally that there exist MSDs
for which α/c ! 2n2 − 23n + 77 is required for link stability (Johari et al., 2004).

To complete the picture, we note that the result of Theorem 21 is essentially tight to leading or-
der, in the sense that there exists an MSD which is link stabilizable only if α/c ! 2n2 −23n+77;
this construction is similar to Example 17, and is developed by Johari et al. (2004).

4.3. Social welfare

In this section we will consider the properties of strongly connected link stabilizable graphs
from a “social welfare” point of view. The next definition interprets the social cost of a graph as
the total cost incurred by all nodes, both due to routing traffic as well as a lack of connectivity.
Similar notions of social welfare have been considered for other network formation models by
Fabrikant et al. (2003) and Anshelevich et al. (2003).

Definition 22. Given a graph G = (V ,A), the social cost S(G) of the graph G is the sum of the
costs incurred by all the nodes when the graph G is used to route traffic:

S(G) =
∑

i∈V

Ci(A) =
∑

i∈V

(
cfi(A) + α

∣∣wi(A)
∣∣). (18)

Note that since the sum of payments between all the nodes is zero, S(G) may be alternatively
interpreted as the negative of the sum of the payoffs of all the nodes when the graph G is formed.
Our interest will be in evaluating the social cost of strongly connected graphs, in which case∑

i∈V α|wi(A)| = 0; thus the social cost reduces to just the cost of routing traffic.
The following simple proposition shows that among all strongly connected graphs, there is a

unique choice which minimizes social cost; recall that E is the set of all possible links on the
node set V .

Proposition 23. The complete graph GC = (V ,E) on the node set V has social cost S(GC) =
n(n − 1)c; and for any other strongly connected graph G on V , S(G) > S(GC).

Proof. Let G = (V ,A) be any strongly connected graph. Fix a node i; then since G is strongly
connected, i receives one unit of traffic from each other node, so that fi(A) ! (n−1)c. Summing



R. Johari et al. / Games and Economic Behavior 56 (2006) 201–224 221

over all i ∈ V , we have S(G) ! n(n− 1)c. The bound is met with equality if and only if fi(A) =
(n − 1)c for all i ∈ V ; but this is only possible if no node i receives traffic destined for a node
other than i. Since G is strongly connected, it must be the complete graph, GC . !

The previous proposition establishes that among all strongly connected graphs, the lowest
possible social cost is n(n − 1)c. The next proposition considers only link stabilizable strongly
connected graphs (which is equivalent to the set of MSDs, by Proposition 12), and shows that the
bidirectional star minimizes social cost among all strongly connected link stabilizable graphs.
We recall that two graphs G and G′ are isomorphic if there exists a permutation of the node
labels under which they have the same set of links (Harary, 1968).

Proposition 24. The bidirectional star GS = (V ,AS), given by AS = {(1, i), (i,1): i = 2, . . . , n},
has social cost S(GS) = 2(n − 1)2c; and for any other strongly connected link stabilizable
graph G which is not isomorphic to GS , S(G) > S(GS).

Proof. Since the bidirectional star is an MSD, the only costs are traffic routing costs. Con-
sider any node i > 1; then i only receives traffic terminating at i, so fi(AS) = n − 1. Thus∑

i>1 fi(A) = (n−1)2. Node 1 receives, from each other node i, all outgoing traffic from node i;
so f1(AS) = (n − 1)2. Thus S(GS) = 2(n − 1)2c.

Let G = (V ,A) be a strongly connected link stabilizable graph; then G is an MSD, by Propo-
sition 12. Furthermore, from Lemma 18, |A| # 2(n− 1). To complete the proof, we will measure
the social cost of G by summing the number of nodes traversed on the shortest path between
each source-destination pair. Formally, define hij (A) as the number of nodes traversed on the
shortest path from i to j using links in A; we include the terminal node j in computing hij (A),
but exclude the initial node i. Then observe that:

S(G) = c
∑

i∈V

fi(A) = c
∑

i∈V

∑

j :j "=i

hij (A).

Now since |A| # 2(n − 1), at most 2(n − 1) source-destination pairs (i, j) have hij (A) = 1; the
remainder must have hij (A) ! 2. Since there are a total of n(n − 1) source-destination pairs, we
have:

S(G) = c
∑

i∈V

∑

j :j "=i

hij (A)

!
(
2(n − 1) + 2

[
n(n − 1) − 2(n − 1)

])
c = 2(n − 1)2c = S(GS).

Furthermore, since |A| = 2(n − 1) if and only if G is a bidirectional tree (from Lemma 18), the
only graphs G for which the bound is met with equality are bidirectional trees. However, the
bound is met with equality if and only if hij (A) # 2 for all pairs (i, j), and the only bidirectional
tree with this property is the bidirectional star. !

The previous theorem shows that, to leading order, the MSD with lowest social cost has a
cost twice as high as that of the social optimum, the complete graph; in particular, note that
the social cost of the bidirectional star scales quadratically with the number of nodes n. As the
following proposition shows, in the worst case it is in fact possible that the social cost of a
strongly connected link stabilizable graph scales as O(n3) as n increases. As a result, in the
worst case the ratio of the social cost of a strongly connected link stabilizable graph to the lowest
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possible social cost over all strongly connected link stabilizable graphs may become arbitrarily
large (and in the worst case, may grow linearly in n).

Proposition 25. A directed cycle has social cost n2(n − 1)c/2; and for any other strongly con-
nected link stabilizable graph G which is not a directed cycle, the social cost is strictly smaller:
S(G) < n2(n − 1)c/2.

Proof. Consider the directed cycle GC = (V ,AC), where AC = {(1,2), (2,3), . . . , (n −
1, n), (n,1)}. From Example 16, f1(AC) = n(n − 1)/2, and by symmetry, fi(AC) = n(n − 1)/2
for all i; thus S(GC) = n2(n − 1)c/2.

Now suppose that we are given a strongly connected link stabilizable graph G = (V ,A); then
by Proposition 12, G is an MSD. As in the proof of Proposition 24, we define hij (A) as the
number of nodes traversed (including j ) on the shortest path from i to j using the links in A, and
observe that:

S(G) = c
∑

i∈V

fi(A) = c
∑

i∈V

∑

j :j "=i

hij (A).

Fix a node i, and sort and label the remaining nodes as i1, . . . , in−1, so that hii1(A) #
hii2(A) # · · · # hiin−1(A). Since the kth node in this labeling cannot be more than distance k

away from i, it follows that hiik (A) # k. We thus have:

∑

j :j "=i

hij (A) #
n−1∑

k=1

k = n(n − 1)

2
.

As a result:

S(G) = c
∑

i∈V

∑

j :j "=i

hij (A) # n2(n − 1)c

2
= S(GC).

Finally, we show the preceding inequality is strict if G "= GC . We relabel the nodes so that
i1 = 1, and ik = k. Then if the preceding inequality holds with equality, we must have hik(A) = k

for all k; observe that this implies each node 1, . . . , n − 1 has exactly one outgoing link, and the
shortest path spanning tree rooted at node 1 must be {(1,2), (2,3), . . . , (n − 1, n)}. Since G

is strongly connected, we must also have (n,1) ∈ A; as a result, G is an MSD and contains a
directed cycle, so in fact G must be a directed cycle. This completes the proof. !

The social cost metric considered in this section provides a way of quantifying the overall at-
tractiveness of various strongly connected link stabilizable graphs. We saw that the ratio between
the highest and lowest social costs achievable among strongly connected link stabilizable graphs
scales linearly in n; this large gap highlights the importance of understanding exactly how game
dynamics contribute to selecting among the range of strongly connected link stable equilibria.

5. Conclusion

We considered a network formation game where the different nodes act as players and each
node needs to send goods to the other nodes. Our model has two distinctive features: asymmetric
contracts between the agents which lead to directed networks, and a cost function which is based
on both flow and connectivity. The stability concept we used is similar to the concept of pairwise
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stability with side payments developed by Jackson and Wolinsky (1996), but our analysis uses
graph-theoretic concepts and leads to structural results on link stable equilibria.

Several important factors have been ignored in this formulation. For example, no fixed cost
is incurred for forming a link. A more general model that includes such a fixed cost might be
appropriate in the context of communication networks and transportation networks. The fixed
cost of the link should be split between the two nodes, and the choice of split may even be a part
of the contract between the nodes.

Another generalization involves considering the flow as part of the strategy space as well. In
our model, while prices are chosen by the nodes, flows are determined by the resulting network
structure. Some applications may require a model where the strategy of the nodes includes both
routing of the flow and pricing for the links.

Yet another important factor which the cost structure in our model does not take into account
is the delay between source and destination. In many contexts, especially in goods delivery and
communication networks, it may be natural to include a cost that increases with the delay expe-
rienced by a unit of flow. Notice that with this more general cost model, strongly connected link
stabilizable graphs need not be minimally connected.

Our model ignores the dynamics of the evolution of networks (e.g., Jackson and Watts, 2002;
Bala and Goyal, 2000) as well as the initial process that leads to the formation of the network.
As argued by Skyrms and Pemantle (2000), dynamics are essential for making formation games
realistic. The dynamics of a network where links are broken and formed over time are of great
interest. One advantage of our model in this context is the fact that each player can easily predict
(at least in the short term) the effect of breaking or forming a link. Thus, dynamics which focus
only on short term best responses of the players might be analytically tractable.

In addition to dynamics, our model does not consider end user response to changes in the
network structure (by “end user,” we mean any consumer of the service provided by the network
nodes). Specifically, our model takes the traffic matrix as fixed. Including the response of end
users to the behavior of the network is an important and essential extension to the model, to
realistically capture the long term variations in the customer base of network nodes. Indeed, one
might expect the response of the end users to act as a stabilizing mechanism which pushes the
nodes towards an “efficient” network structure.
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